国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鐵調(diào)素調(diào)控與肝臟疾病引起的鐵代謝紊亂

2016-03-09 16:16秦源郭永紅王亞寧賈戰(zhàn)生張穎
肝臟 2016年6期
關(guān)鍵詞:鐵調(diào)素丙型肝炎酒精性

秦源 郭永紅 王亞寧 賈戰(zhàn)生 張穎

?

鐵調(diào)素調(diào)控與肝臟疾病引起的鐵代謝紊亂

秦源郭永紅王亞寧賈戰(zhàn)生張穎

710038西安第四軍醫(yī)大學(xué)唐都醫(yī)院全軍感染病診療中心(秦源,王亞寧,賈戰(zhàn)生,張穎);西安交通大學(xué)醫(yī)學(xué)院第二附屬醫(yī)院感染科(郭永紅)通信作者:賈戰(zhàn)生,Email:jiazsh@fmmu.edu.cn;張穎,Email:zyfmmu@hotmail.com

機(jī)體鐵代謝涉及鐵離子的吸收、轉(zhuǎn)運(yùn)、利用、循環(huán)和儲存等過程。多種肝臟疾病可引起機(jī)體鐵代謝紊亂,包括病毒性肝炎和酒精性肝病等。鐵離子可通過芬頓(Fenton)反應(yīng)促進(jìn)細(xì)胞活性氧簇水平升高造成細(xì)胞損傷,因此組織中的鐵含量需維持在正常生理水平[1, 2]。2000年和2001年,Krause[3]和Park[4]等分別從人血清和尿中分離得到鐵調(diào)素。該分子是一種肝臟分泌的抗菌短肽,由25個氨基酸組成[5, 6]。鐵調(diào)素作為負(fù)性調(diào)控分子在維持鐵代謝穩(wěn)態(tài)中起著關(guān)鍵性作用, 并與多種鐵代謝疾病發(fā)病機(jī)制有關(guān)[7]。本文就相關(guān)肝臟疾病對鐵調(diào)素調(diào)控的影響及其與鐵代謝紊亂的關(guān)系作出如下綜述。

一、機(jī)體鐵代謝穩(wěn)態(tài)

人體缺乏有效的鐵離子排出途徑,小腸吸收的鐵離子和巨噬細(xì)胞釋放的鐵離子共同決定了血清鐵離子水平。食物中的Fe3+在胃和十二指腸酸性環(huán)境下溶解,由十二指腸細(xì)胞色素還原為可溶性Fe2+并與腸黏膜細(xì)胞頂端的二價(jià)鐵離子轉(zhuǎn)運(yùn)體1(Divalent Metal Transporter1,DMT1)結(jié)合進(jìn)入小腸上皮細(xì)胞。小腸上皮細(xì)胞中的一部分鐵離子與細(xì)胞內(nèi)去鐵蛋白結(jié)合生成鐵蛋白,另一部分通過與基底膜側(cè)膜鐵轉(zhuǎn)運(yùn)蛋白(Ferroportin,F(xiàn)PN)結(jié)合進(jìn)行跨細(xì)胞質(zhì)運(yùn)輸,鐵離子穿過細(xì)胞基底膜進(jìn)入血漿[8]。血漿中的鐵離子與轉(zhuǎn)鐵蛋白(Transferrin,Tf)結(jié)合后綁定于細(xì)胞膜表面轉(zhuǎn)鐵蛋白受體(Transferrin Receptor,TfR)形成Tf-TfR復(fù)合物,通過受體介導(dǎo)的內(nèi)吞作用進(jìn)入細(xì)胞。胞漿中的Tf-TfR復(fù)合物進(jìn)入內(nèi)涵體,其內(nèi)環(huán)境pH約為5.5,酸化的環(huán)境使Tf和TfR發(fā)生構(gòu)象改變釋放鐵離子,Tf和TfR則循環(huán)至細(xì)胞膜表面[9]。

當(dāng)機(jī)體鐵離子水平高于閾值時(shí),肝臟分泌鐵調(diào)素循環(huán)至小腸。鐵調(diào)素通過作用于B2微球蛋白/組織相融性復(fù)合物/轉(zhuǎn)鐵蛋白受體1復(fù)合物(B2-Microglobulin/ Hemochromatosis Gene/Transferrin Receptor,B2M/HFE/TfR1)降低鐵調(diào)蛋白(Iron Regulatory Proteins,IRP)活性抑制鐵運(yùn)輸?shù)鞍妆磉_(dá),減少小腸上皮細(xì)胞對鐵離子吸收。同時(shí)鐵調(diào)素也可使小腸上皮細(xì)胞膜表面FPN內(nèi)化降解,從而減少小腸上皮細(xì)胞鐵離子的輸出。對于巨噬細(xì)胞,研究發(fā)現(xiàn)上調(diào)鐵調(diào)素表達(dá)會直接抑制巨噬細(xì)胞輸出鐵離子導(dǎo)致胞內(nèi)鐵離子積累[10]。Nemeth[11]和Lim[12]等人研究表明阻斷鐵調(diào)素受體FPN表達(dá)可抑制巨噬細(xì)胞中鐵離子釋放到血漿。因此鐵調(diào)素偶聯(lián)鐵轉(zhuǎn)運(yùn)蛋白在維持機(jī)體鐵穩(wěn)態(tài)中發(fā)揮重要作用。

二、鐵調(diào)素調(diào)控機(jī)制

研究表明鐵調(diào)素表達(dá)受到多種外源性和內(nèi)源性因素調(diào)控,包括炎癥因子、低氧及其他機(jī)體信號通路[13]。骨形態(tài)發(fā)生蛋白/SMAD (Bone Morphogenetic Protein/Small Mother Against Decapentaplegic Homolog,BMP/SMAD)通路是調(diào)控鐵調(diào)素表達(dá)的重要途徑。BMP分子與鐵調(diào)素調(diào)節(jié)蛋白 (Hemojuvelin,HJV)共同結(jié)合于細(xì)胞表面BMP受體導(dǎo)致SMAD磷酸化并形成復(fù)合體。SMAD復(fù)合體轉(zhuǎn)入細(xì)胞核與鐵調(diào)素啟動子區(qū)BMP反應(yīng)元件結(jié)合調(diào)節(jié)鐵調(diào)素HAMP基因轉(zhuǎn)錄[14]。BMP分子如:BMP2、BMP4、BMP9和BMP6都參與了鐵調(diào)素表達(dá)調(diào)控。

細(xì)胞炎癥因子白介素-6(Interleukin-6,IL-6)在固有免疫中發(fā)揮作用。研究表明IL-6可通過激活信號轉(zhuǎn)化器及轉(zhuǎn)錄激活因子3 (Signal Transducer and Activator of Transcription 3,STAT3)通路完成對鐵調(diào)素調(diào)控。磷酸化的STAT3與HAMP基因啟動子區(qū)域STAT應(yīng)答元件結(jié)合增強(qiáng)HAMP基因轉(zhuǎn)錄活性,促進(jìn)鐵調(diào)素表達(dá)[15]。也有研究顯示在機(jī)體炎癥反應(yīng)中白介素-22(Interleukin-22,IL-22)和I型干擾素(Interferon,IFN)等細(xì)胞因子可通過STAT3信號通路激活鐵調(diào)素啟動子增加鐵調(diào)素表達(dá)[16]。

最近的研究表明,維生素D是肝細(xì)胞和單核細(xì)胞中潛在鐵調(diào)素調(diào)控因子。在維生素D缺乏的環(huán)境中肝臟促進(jìn)鐵調(diào)素合成,細(xì)胞內(nèi)和機(jī)體中的鐵調(diào)素水平升高并抑制細(xì)胞膜表達(dá)FPN。1,25-二羥維生素D通過綁定維生素D受體介導(dǎo)的鐵調(diào)素啟動子區(qū)抑制鐵調(diào)素mRNA翻譯[17]。鐵調(diào)素調(diào)控也受到胞內(nèi)信號影響,在內(nèi)源性介質(zhì)中CO發(fā)揮了重要作用。CO可阻斷STAT-3磷酸化和內(nèi)質(zhì)網(wǎng)應(yīng)激,抑制鐵調(diào)素表達(dá)[18]。此外有研究報(bào)道低氧環(huán)境可抑制鐵調(diào)素表達(dá),低氧誘導(dǎo)因子能間接的通過促進(jìn)HJV分解抑制鐵調(diào)素表達(dá)增強(qiáng)小腸對鐵離子的吸收、攝取和血紅素合成,保證充足的鐵離子用于紅細(xì)胞生成[19]。

三、肝臟疾病引起的鐵代謝紊亂

肝臟是儲存鐵離子的主要器官,為新陳代謝提供鐵離子。慢性丙型肝炎、乙型肝炎及酒精性肝病均可引發(fā)機(jī)體鐵代紊亂。

慢性丙型肝炎患者常出現(xiàn)輕到中度的肝鐵過載癥狀,對肝臟造成損害。已有研究證實(shí),慢性丙型肝炎患者的肝鐵離子平均含量接近0.50 g至0.69 g,是健康人肝鐵離子含量的2~5倍。一些臨床研究報(bào)道慢性丙型肝炎患者鐵過載主要集中在網(wǎng)狀內(nèi)皮組織系統(tǒng),而Fiel等[20]研究表明慢性丙型肝炎患者鐵過載主要存在于肝細(xì)胞中。Fujita等[7]認(rèn)為慢性丙型肝炎患者肝臟鐵調(diào)素mRNA水平與血清鐵蛋白濃度及肝臟鐵沉積的程度均有關(guān)聯(lián)性。Miura等[21]發(fā)現(xiàn),丙型肝炎病毒(Hepatitis C Virus,HCV)誘導(dǎo)的活性氧簇(Reactive Oxygen Species,ROS)通過增加組蛋白乙?;D(zhuǎn)移酶活性(Histone Deacetylase,HDAC)抑制了CCAAT/增強(qiáng)子綁定蛋白α(CCAAT/Enhancer-Binding Protein α,C/EBPα)與鐵調(diào)素啟動子綁定活性。鐵調(diào)素表達(dá)隨著ROS水平增加而下調(diào)[22, 23]。已有研究證實(shí),肝細(xì)胞中STAT3磷酸化與IFN誘導(dǎo)的抗HCV效率有關(guān)[31]。慢性丙型肝炎患者血清IL-6水平升高增加了STAT3促進(jìn)鐵調(diào)素表達(dá)的可能性,但HCV誘導(dǎo)ROS引起的鐵調(diào)素轉(zhuǎn)錄抑制作用更為明顯[24]。

乙型肝炎患者血清鐵調(diào)素水平與鐵代謝密切相關(guān)。潘衛(wèi)華等[25]對不同類型的乙型肝炎患者血清鐵、鐵蛋白、鐵調(diào)素及炎性因子指標(biāo)相關(guān)性研究表明,乙型肝炎患者鐵蛋白含量與病情嚴(yán)重程度呈正相關(guān)。乙型肝炎引起的炎癥反應(yīng)會抑制鐵調(diào)素表達(dá),重型乙型肝炎患者血清鐵水平顯著升高。Yonal[26]和Jaroszewicz[27]等研究表明,乙型肝炎患者鐵調(diào)素水平隨病情不同發(fā)展階段波動,肝硬化階段患者血清鐵調(diào)素前體顯著降低且與肝功能損害程度呈負(fù)相關(guān)。在肝癌患者癌組織中鐵調(diào)素表達(dá)顯著下調(diào)[7]。Olmez等[28]發(fā)現(xiàn)與健康志愿者和丙型肝炎患者相比,乙型肝炎患者血清中的鐵調(diào)素前體水平明顯下調(diào),并與肝纖維化程度呈負(fù)相關(guān)。也有研究顯示,乙型肝炎、丙型肝炎患者體內(nèi)鐵調(diào)素水平都下調(diào)并導(dǎo)致FPN表達(dá)增多引起血清鐵水平升高及肝鐵過載, 但丙型肝炎患者肝鐵過載癥狀更顯著[29-31]。IL-6可激活STAT3通路促進(jìn)鐵調(diào)素表達(dá),羅光成[32]和朱濤[33]等研究表明慢性乙型肝炎非活動組和活動組IL-6水平均高于對照組,患者血清IL-6水平隨著病情加重顯著升高,提示慢性乙型肝炎患者機(jī)體鐵調(diào)素表達(dá)受到抑制可能是包括STAT3和BMP/SMAD在內(nèi)的多種信號通路共同調(diào)控結(jié)果。這與慢性丙型肝炎患者血清IL-6水平升高但鐵調(diào)素表達(dá)仍受到抑制的現(xiàn)象一致。此外鐵離子對乙型肝炎病毒(Hepatitis B Virus,HBV)持續(xù)感染有重要作用,HBV更容易感染鐵含量高的肝細(xì)胞[34],抗病毒治療可顯著促進(jìn)鐵調(diào)素表達(dá)從而減輕肝臟鐵過載癥狀。

酒精性肝病患者常伴有肝臟鐵過載癥狀[35],鐵離子和酒精對肝臟損傷具有協(xié)同作用[36]。研究發(fā)現(xiàn)酒精代謝可促進(jìn)活性氧化簇生成,氧化應(yīng)激反應(yīng)抑制了鐵調(diào)素表達(dá)從而導(dǎo)致腸上皮細(xì)胞攝取鐵離子增加和肝臟鐵過載[37]。Harrison等[38]發(fā)現(xiàn),酒精代謝介導(dǎo)氧化應(yīng)激反應(yīng)產(chǎn)生的活性氧化簇可通過C/EBPα抑制鐵調(diào)素轉(zhuǎn)錄,而酒精代謝酶抑制劑可阻斷酒精代謝介導(dǎo)的肝臟鐵調(diào)素變化,如乙酰半胱氨酸和維生素E等抗氧化劑。因此對于通過抑制C/EBPα活性干擾鐵調(diào)素轉(zhuǎn)錄而言,慢性丙型肝炎引起的肝鐵過載和酒精性肝病導(dǎo)致的肝鐵過載內(nèi)在機(jī)制有一定的相似性。

四、總結(jié)與展望

綜上所述,慢性丙型肝炎、乙型肝炎及酒精性肝病患者均存在不同程度的鐵代謝紊亂,而鐵調(diào)素調(diào)控與這些肝臟疾病密切相關(guān),且慢性丙型肝炎與乙型肝炎之間、慢性丙型肝炎與酒精性肝病之間對鐵調(diào)素表達(dá)的抑制機(jī)制有一定關(guān)聯(lián)和相似性。總之,闡明鐵調(diào)素表達(dá)和相關(guān)信號通路之間的關(guān)系將促進(jìn)病毒性肝炎和酒精性肝病的控制和治療。

參考文獻(xiàn)

[ 1 ]Brissot P, Loreal O. Iron metabolism and related genetic diseases: a cleared land, keeping mysteries. J Hepatol, 2016,64:505-515.

[ 2 ]Gardi C, Arezzini B, Fortino V, et al. Effect of free iron on collagen synthesis, cell proliferation and MMP-2 expression in rat hepatic stellate cells. Biochem Pharmacol, 2002, 64: 1139-1145.

[ 3 ]Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett, 2000, 480:147-150.

[ 4 ]Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001, 276: 7806-7810.

[ 5 ]Hunter HN, Fulton DB, Ganz T, et al. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem, 2002,277:37597-37603.

[ 6 ]Michels K, Nemeth E, Ganz T, et al. Hepcidin and Host Defense against Infectious Diseases. PLoS Pathog, 2015, 11: e1004998.

[ 7 ]Fujita N, Sugimoto R, Takeo M, et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol Med, 2007, 13: 97-104.

[ 8 ]Graham RM, Reutens GM, Herbison CE, et al. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol, 2008, 48: 327-334.

[ 9 ]Giannetti AM, Snow PM, Zak O, et al. Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol, 2003, 1: E51.

[10]Fillebeen C, Pantopoulos K. Hepatitis C virus infection causes iron deficiency in Huh7.5.1 cells. PLoS One, 2013, 8: e83307.

[11]Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306: 2090-2093.

[12]Lim JE, Jin O, Bennett C, et al. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet, 2005, 37: 1270-1273.

[13]Ashby DR, Gale DP, Busbridge M, et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int, 2009, 75: 976-981.

[14]Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet, 2006, 38: 531-539.

[15]Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology, 2007, 132: 294-300.

[16]Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood, 2006, 108: 3204-3209.

[17]Brechard S, Tschirhart EJ. Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol, 2008, 84: 1223-1237.

[18]Shin D-Y, Chung J, Joe Y, et al. Pretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways. Blood, 2012, 119: 2523-2532.

[19]Evstatiev R, Gasche C. Iron sensing and signalling. Gut, 2012, 61: 933-952.

[20]Fiel MI, Schiano TD, Guido M, et al. Increased hepatic iron deposition resulting from treatment of chronic hepatitis C with ribavirin. Am J Clin Pathol, 2000, 113: 35-39.

[21]Miura K, Taura K, Kodama Y, et al. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology, 2008, 48: 1420-1429.

[22]Foka P, Dimitriadis A, Kyratzopoulou E, et al. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci, 2014, 71: 4243-4258.

[23]Ma L, Zou T, Yuan Y, et al. Duodenal ferroportin is up-regulated in patients with chronic hepatitis C. PLoS One, 2014, 9: e110658.

[24]秦源, 郭永紅, 張穎, 等. 慢性丙型肝炎鐵代謝的失調(diào)機(jī)制. 臨床肝膽病雜志, 2015, 31: 291-294.

[25]潘衛(wèi)華, 黎映芹, 朱平安, 等. 乙型肝炎病毒攜帶者鐵代謝與血清鐵調(diào)素相關(guān)性研究. 海南醫(yī)學(xué)院學(xué)報(bào), 2014, 10: 20-23.

[26]Yonal O, Akyuz F, Demir K, et al. Decreased prohepcidin levels in patients with HBV-related liver disease: relation with ferritin levels. Dig Dis Sci, 2010, 55: 3548-3551.

[27]Jaroszewicz J, Rogalska M, Flisiak R. Serum prohepcidin reflects the degree of liver function impairment in liver cirrhosis. Biomarkers, 2008, 13: 478-485.

[28]Olmez OF, Gurel S, Yilmaz Y. Plasma prohepcidin levels in patients with chronic viral hepatitis: relationship with liver fibrosis. Eur J Gastroenterol Hepatol, 2010, 22: 461-465.

[29]余琳娜, 呂佳珺, 朱云珍, 等. 慢性乙型, 丙型肝炎患者肝臟鐵調(diào)素表達(dá)的下調(diào). 世界華人消化雜志, 2015, 23: 3366-3373.

[30]Wang XH, Cheng PP, Jiang F, et al. The effect of hepatitis B virus infection on hepcidin expression in hepatitis B patients. Ann Clin Lab Sci, 2013, 43: 126-134.

[31]Armitage AE, Stacey AR, Giannoulatou E, et al. Distinct patterns of hepcidin and iron regulation during HIV-1, HBV, and HCV infections. Proc Natl Acad Sci USA, 2014, 111: 12187-12192.

[32]羅光成, 易婷婷, 閆惠平, 等. 慢性乙型肝炎患者不同疾病階段的血清細(xì)胞因子水平研究. 免疫學(xué)雜志, 2012, 28: 1065-1068.

[33]朱濤, 陶志華, 陳曉東, 等. 乙型肝炎患者外周血中IL-6和sIL-2R含量變化及其意義. 肝膽胰外科雜志, 2006, 18: 228-229.

[34]Lustbader ED, Hann HW, Blumberg BS. Serum ferritin as a predictor of host response to hepatitis B virus infection. Science, 1983, 220: 423-425.

[35]肖楠, 莊輝. 酒精性肝病分子發(fā)病機(jī)制的研究進(jìn)展. 肝臟, 2010, 4:299-302.

[36]Ohtake T, Saito H, Hosoki Y, et al. Hepcidin is down-regulated in alcohol loading. Alcohol Clin Exp Res, 2007, 31: S2-8.

[37]Harrison-Findik DD, Klein E, Evans J, et al. Regulation of liver hepcidin expression by alcohol in vivo does not involve Kupffer cell activation or TNF-alpha signaling. Am J Physiol Gastrointest Liver Physiol, 2009, 296: G112-118.

[38]Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem, 2006, 281: 22974-22982.

(本文編輯:張苗)

基金項(xiàng)目:國家自然科學(xué)基金(81273218)

(收稿日期:2015-12-25)

猜你喜歡
鐵調(diào)素丙型肝炎酒精性
非酒精性脂肪性肝病的中醫(yī)治療
圍剿暗行者——丙型肝炎
丙型肝炎病毒感染和2型糖尿病的相關(guān)性
清肝二十七味丸對酒精性肝損傷小鼠的保護(hù)作用
鐵調(diào)素和鐵相關(guān)神經(jīng)退行性疾病
大黃蟄蟲丸對小鼠酒精性肝纖維化損傷的保護(hù)作用
鐵調(diào)素與慢性心力衰竭合并貧血關(guān)系的研究進(jìn)展
α-干擾素聯(lián)合利巴韋林治療慢性丙型肝炎
丙型肝炎治療新藥 Simeprevir
川崎病患兒鐵調(diào)素與血紅蛋白檢測相關(guān)分析