彭貴主,葉啟發(fā),2,王壘
(1.武漢大學(xué)中南醫(yī)院 武漢大學(xué)肝膽疾病研究院/武漢大學(xué)移植中心/移植醫(yī)學(xué)技術(shù)湖北省重點實驗室,湖北 武漢 430071;2.中南大學(xué)湘雅三醫(yī)院 衛(wèi)生部移植醫(yī)學(xué)工程技術(shù)研究中心,湖南 長沙 410013)
·專家筆談·
三氧化二砷治療肝癌的出路—聯(lián)合用藥
彭貴主1,葉啟發(fā)1,2,王壘1
(1.武漢大學(xué)中南醫(yī)院 武漢大學(xué)肝膽疾病研究院/武漢大學(xué)移植中心/移植醫(yī)學(xué)技術(shù)湖北省重點實驗室,湖北 武漢 430071;2.中南大學(xué)湘雅三醫(yī)院 衛(wèi)生部移植醫(yī)學(xué)工程技術(shù)研究中心,湖南 長沙 410013)
三氧化二砷;肝癌;中藥;免疫調(diào)節(jié)
三氧化二砷(arsenic trioxide,ATO)又名“砒霜”或“鶴頂紅”,為是一種廣為人知的劇毒藥。但是,在中國傳統(tǒng)醫(yī)藥學(xué)中,ATO有著悠久用藥的歷史。早在2400年前,ATO就被用來治療各種頑疾如潰瘍、瘟疫、瘧疾等[1]。20世紀(jì)70年代,中國學(xué)者采用現(xiàn)代科學(xué)的給藥方式,創(chuàng)造性地將ATO應(yīng)用于血液系統(tǒng)惡性腫瘤,取得了令人矚目的成就。如今,ATO已成為難治性或復(fù)發(fā)性急性早幼粒細(xì)胞白血病(acute promyelocytic leukemia,APL)的經(jīng)典用藥[2]。近年來,人們研究ATO抗癌的熱情被重新點燃:一方面,ATO相繼被引入膽管癌[3]、結(jié)腸癌[4]、鼻咽癌[5]以及多發(fā)性骨髓瘤[6]、橫紋肌肉瘤[7]等多種實體腫瘤的治療,同樣取得快卓越的療效;另一方面,ATO結(jié)合現(xiàn)代給藥技術(shù)與用藥方式,聯(lián)合其他治療手段,極大開闊了人們關(guān)于ATO抗癌研究的思路和視野,并極大提高了ATO抗腫瘤的療效并減少了毒副作用。
我國是一個肝癌大國[8],肝臟是ATO甲基化代謝的主要場所[9],因此ATO治療肝癌前景廣闊。前期工作中我們發(fā)現(xiàn)ATO可以作為一種免疫調(diào)節(jié)劑包括降低腫瘤局部浸潤調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)和提高腫瘤浸潤淋巴細(xì)胞(tumor infiltrated lymphocytes,TILs),進(jìn)而在肝癌的治療中發(fā)揮免疫調(diào)節(jié)作用。但是,ATO單獨(dú)用藥治療肝癌療效有限,且ATO本身的致癌性及毒性也不容忽視。本文著重分析ATO治療肝癌的局限與對策,從小劑量應(yīng)用ATO作為免疫佐劑,聯(lián)合其他藥物或治療手段治療肝癌這一ATO治療肝癌的新方向進(jìn)行總結(jié)和展望。
肝癌是消化系統(tǒng)最常見的惡性腫瘤,致死率高,預(yù)后差。傳統(tǒng)的化療藥物如他莫昔芬、氯他胺等,治療效果和預(yù)后差強(qiáng)人意。肝臟是ATO甲基化代謝的主要場所,因此ATO靶向肝癌抗腫瘤的作用更強(qiáng)。體外研究發(fā)現(xiàn)ATO選擇性阻斷肝癌細(xì)胞的生長而不影響正常肝細(xì)胞[10],體內(nèi)尾靜脈給藥ATO選擇性積聚于小鼠皮下移植瘤內(nèi)而非腦、肝、腎等正常組織[11]。
藥動學(xué)研究發(fā)現(xiàn),ATO在體內(nèi)符合二室效應(yīng)(twocompartment model),其在體內(nèi)分布快,血漿清除半衰期短[12]。動物模型研究發(fā)現(xiàn),與5-Fu相比,ATO不會引起肝癌小鼠惡液質(zhì)的加重[13]。臨床研究發(fā)現(xiàn)ATO治療引起的毒性反應(yīng)是輕微的、一過性的,不會引起嚴(yán)重的骨髓抑制和二級傷害。并且,ATO也不會帶來遠(yuǎn)期的毒性反應(yīng)[2]。
研究發(fā)現(xiàn),ATO主要通過活性氧和氧化應(yīng)激誘導(dǎo)肝癌細(xì)胞的凋亡而非病理性死亡,表現(xiàn)為活性氧(reactive oxygen species,ROS)的募集[14]、轉(zhuǎn)錄因子NF-E2相關(guān)因子2(Nrf2)蛋白[15]及Bim(Bcl-2111)的上調(diào)[16]、谷胱甘肽(GSH)[17]及GCS-γ[15]的下調(diào),并呈濃度與時間依賴效應(yīng)。ATO通過上調(diào)PTEN,使細(xì)胞停滯于G2/M期,阻斷肝癌細(xì)胞的增殖[18]。ATO還能直接引起肝癌細(xì)胞DNA的損傷,或者通過DNA-甲基化誘導(dǎo)micro RNA-491生成阻斷TGF-β/SMAD3/NF-κB信號途徑阻斷血管因子的形成、抑制肝癌細(xì)胞的生長[19]。另外,ATO抗肝癌的機(jī)制還可能與線粒體途徑的Cas-pase-3的活化及磷脂酰絲氨酸外部化等有關(guān)[17]。
但是,研究發(fā)現(xiàn)ATO并非對所有的肝癌細(xì)胞敏感。與Hep-J5細(xì)胞相比,ATO對肝癌細(xì)胞SK-Hep-1更加敏感,因為其缺乏低氧誘導(dǎo)因子-1α(hypoxiainducible factor-1α,HIF-1α)和葡萄糖調(diào)節(jié)蛋白78(glucose regulated protein 78kda,GRP78)[20]。
1.1ATO控制肝癌的擴(kuò)散和轉(zhuǎn)移
轉(zhuǎn)移和復(fù)發(fā)是目前肝癌治療最大的瓶頸。研究發(fā)現(xiàn),ATO可能通過多種途徑抑制肝癌的擴(kuò)散和轉(zhuǎn)移。其機(jī)制可能為:(1)ATO能誘導(dǎo)肝癌細(xì)胞神經(jīng)酰胺的生成,通過下調(diào)基質(zhì)金屬蛋白酶-9(matrix metalloproteinase,MMP-9)阻斷肝癌細(xì)胞的侵襲[21];(2)ATO通過下調(diào)肝癌細(xì)胞CD147和MMP-2的表達(dá)抑制肝癌細(xì)胞的侵襲和轉(zhuǎn)移[22];(3)ATO可能通過DNA甲基化上調(diào)microRNA-491,一方面降低MMP-9的表達(dá),另一方面阻斷NF-κB的活化,阻斷肝癌細(xì)胞的侵襲和轉(zhuǎn)移[23];(4)ATO可能通過抑制Twist的活化阻斷肝癌細(xì)胞EMT,抑制肝癌的進(jìn)展和轉(zhuǎn)移[24],這一點在肝癌肺轉(zhuǎn)移動物模型[25]及臨床[24]均得到證實。
1.2ATO與肝癌腫瘤干細(xì)胞
腫瘤干細(xì)胞(cancer stem cells,CSCs)在腫瘤術(shù)后的復(fù)發(fā)和轉(zhuǎn)移中扮演關(guān)鍵角色[26],并且當(dāng)前的化療藥物對CSCs無效[27-28]。ATO不僅能增強(qiáng)肝癌CSCs對傳統(tǒng)化療藥物的敏感性,還能直接下調(diào)肝癌CSCs表面CD133及其他干性基因的表達(dá)進(jìn)而阻斷CSCs的自我更新并介導(dǎo)CSCs的去分化[29-30]。進(jìn)一步研究發(fā)現(xiàn),這可能與DNA甲基化誘導(dǎo)的microRNA-49下調(diào)SMAD信號有關(guān)[31]。體內(nèi)研究證實肝癌局部切除術(shù)術(shù)后,ATO能顯著降低肝癌小鼠肝癌的復(fù)發(fā)率[29]。
研究發(fā)現(xiàn)ATO只對早幼粒細(xì)胞白血?。╬romyelocytic leukemia,PML)蛋白表達(dá)陰性的肝癌患者有效。因為,雖然PML蛋白與肝癌患者預(yù)后呈正相關(guān),但是PML高表達(dá)也會通過下調(diào)乙醛脫氫酶家族3成員A1(aldehyde dehydrogenase 3A1,ALDH3A1)破壞ATO的抗腫瘤活性[32]。另外,與體外實驗與動物實驗的結(jié)果的相反,I I期臨床試驗發(fā)現(xiàn)單獨(dú)的ATO治療肝癌的作用有限[33-34]。一方面ATO抵抗的肝癌細(xì)胞高度表達(dá)p糖蛋白(p-glycoprotein,p-gp),而高度表達(dá)的p-gp會通過多種機(jī)制降低ATO的胞內(nèi)濃度[33];另一方面,ATO抵抗的HCC細(xì)胞高度表達(dá)多重耐藥基因2(MDM2),MDM2會導(dǎo)致p53或p73的失活,最終阻斷ATO介導(dǎo)的細(xì)胞凋亡[35]。
ATO在實體腫瘤的應(yīng)用受到很大的限制,原因有三:(1)ATO取得實體腫瘤效應(yīng)的劑量遠(yuǎn)大于血液系統(tǒng)惡性腫瘤[36];(2)高劑量的ATO會引起肝、心、腎毒性,甚至猝死[37];(3)劑量依賴性的毒性導(dǎo)致的內(nèi)在性抗藥的產(chǎn)生是ATO治療肝癌失敗的主要原因,也是ATO遺傳毒性產(chǎn)生的主要原因[38]。聯(lián)合用藥的目的在于,通過藥物的協(xié)同效應(yīng)達(dá)到減毒增效的目的。目前,ATO聯(lián)合其他藥物達(dá)到減毒增效或減毒不減效是當(dāng)前ATO抗肝癌研究的熱點。
2.1ATO聯(lián)合靶向藥物
分子靶向治療(molecular targeted therapy,MTT)是腫瘤治療領(lǐng)域發(fā)展的新方向。相比傳統(tǒng)的治療手段,MTT具有更好的分子靶向性,能選擇性地殺傷腫瘤細(xì)胞,減少對正常組織的損傷。近年來,ATO聯(lián)合靶向藥物在肝癌治療領(lǐng)域取得了顯著的進(jìn)展。
2.1.1ATO協(xié)同增強(qiáng)靶向藥物的細(xì)胞毒性:索拉菲尼是唯一被美國FDA批準(zhǔn)的用于肝癌的靶向藥物[39],但是從臨床應(yīng)用的效果來看,索拉菲尼僅對部分患者有效[40-42]。研究發(fā)現(xiàn)ATO可以通過降低MAPK或者Akt的活性協(xié)同索拉菲尼阻斷HCC的增殖或促進(jìn)HCC的凋亡[43],其機(jī)制可能是通過阻斷Akt-GSK-3βmTOR-S6K-4EBP信號通路增強(qiáng)索拉菲尼的抗肝癌特性[44]。另外,ATO還可以通過調(diào)控胸苷合酶的水平選擇性提高5-Fu對肝癌細(xì)胞的細(xì)胞毒性,而非肝星狀細(xì)胞的細(xì)胞毒性[43]。
全反式維甲酸(all-trans retinoic acid,ATRA),又稱視黃酸、維生素甲酸、維甲酸等,是動物體內(nèi)維生素A的代謝中間產(chǎn)物,有著廣泛的生理學(xué)和藥理學(xué)活性。與ATO一樣,ATRA也能抑制肝癌細(xì)胞的體外增殖、誘導(dǎo)肝癌細(xì)胞的凋亡,并且具有時間與濃度依賴效應(yīng)。研究發(fā)現(xiàn),ATRA可能通過提高胞內(nèi)自由鈣濃度協(xié)同ATO降低各自用藥濃度[45]。
水通道蛋白(aquaporin,AQP)又叫水孔蛋白,它是存在于細(xì)胞膜上快速轉(zhuǎn)運(yùn)水的特異性孔道。原位雜交實驗顯示,AQP9在肝細(xì)胞表達(dá)較強(qiáng),主要分布在肝細(xì)胞的基膜面和血竇面,而在膽小管的質(zhì)膜上無表達(dá)。研究發(fā)現(xiàn)調(diào)節(jié)AQP9的表達(dá)可以影響肝癌細(xì)胞的生物學(xué)行為,并影響ATO對肝癌細(xì)胞的敏感性[46]。
3-疊氮-3-脫氧胸苷(Azidothymidine,AZT),在細(xì)胞內(nèi)通過轉(zhuǎn)化為二磷酸酯和三磷酸酯的衍生物抑制病毒逆轉(zhuǎn)錄酶達(dá)到抗病毒的目的,主要用于治療艾滋病獲得性免疫缺陷綜合癥。研究發(fā)現(xiàn)ATO聯(lián)合AZT后,其IC50值明顯降低。研究認(rèn)為AZT可能通過抑制端粒酶活性、激活caspase-3途徑來增強(qiáng)ATO抑制肝癌細(xì)胞的增殖[47]。
聚肌苷酸聚胞苷酸(Poly I:C)作為一種雙鏈RNA(dsRNA)的類似物,常作為佐劑誘導(dǎo)腫瘤細(xì)胞的凋亡。研究發(fā)現(xiàn),Poly I:C不僅能通過Toll樣受體3(toll-like receptor 3,TLR-3)途徑增加ROS的生成、誘導(dǎo)線粒體功能障礙促進(jìn)肝癌細(xì)胞的凋亡,還能引起caspase3/8/9的活化、Bcl-2和生存素的下調(diào)以及Bax和Bia的上調(diào)協(xié)同增強(qiáng)ATO抑制腫瘤細(xì)胞的生長[48]。
2.1.2ATO聯(lián)合靶向藥物降低其毒性反應(yīng):聚腺苷酸二磷酸核糖轉(zhuǎn)移酶[poly(ADP-ribose)polymerase,PARP],存在于真核細(xì)胞中催化聚ADP核糖化的細(xì)胞核酶,在DNA損傷修復(fù)和維持基因組穩(wěn)定性方面發(fā)揮重要作用。其中,PARP-1是PARP家族的主要成員,可被DNA損傷激活,隨后招募DNA修復(fù)蛋白啟動DNA修復(fù)。PARP-1阻斷劑可通過阻斷DNA損傷修復(fù)提高多種抗腫瘤藥物的療效。4-氨基-1,8-二萘甲酰胺(4-amino-1,8-naphthalimide,4-AN)是PARP-1經(jīng)典的阻斷劑,可以通過上調(diào)cyclingB1的表達(dá)阻斷ATO介導(dǎo)的G2/M檢查點的激活,降低高劑量ATO引起的細(xì)胞毒性的產(chǎn)生[49]。
另一方面,ATO抗肝癌的同時,還通過激活NF-κB及其下游的抗凋亡、促炎因子的產(chǎn)生誘導(dǎo)肝癌細(xì)胞的耐藥性及遺傳毒性的產(chǎn)生,并且這種效應(yīng)呈PARP-1依賴性。PARP-1另一阻斷劑,N-乙酰-L-半胱氨酸(N-acetyl-L-cysteine,NAC)是一種潛在的抗氧化劑,其中間產(chǎn)物L(fēng)-半胱氨酸是合成谷胱甘肽(GSH)的必須氨基酸。GSH是細(xì)胞內(nèi)最重要的保護(hù)劑,可防止細(xì)胞免受體內(nèi)外的ROS和各種細(xì)胞毒素物質(zhì)的損害。研究發(fā)現(xiàn)NAC可以通過阻斷ATO介導(dǎo)的PARP-1和NF-κB途徑降低氧自由基的產(chǎn)生,減輕ATO引起的氧化損傷[50]。
2.1.3ATO聯(lián)合靶向藥物打破ATO抵抗:Nultin-3作為MDM2的拮抗劑,研究發(fā)現(xiàn)單獨(dú)的ATO或者Nultin-3對ATO-抵抗的肝癌細(xì)胞不敏感,只有聯(lián)合用藥才能取得顯著的抗腫瘤效果[35]。其機(jī)制可能是Nultin-3作為MDM2的拮抗劑,不僅通過阻斷p-gp增加ATO胞內(nèi)濃度,還能阻斷p-73、p53的MDM2突變來降低肝癌細(xì)胞對ATO的藥物抵抗。
TG相互作用因子(TG-interacting factor,TGIF)是一種轉(zhuǎn)錄共抑制因子,其基因位于18號染色體短臂上,其蛋白屬于三氨基酸環(huán)伸展蛋白(three amino acid loopextension,TLAE)家族的同源域包含蛋白。ATO一方面可以通過TGF-β/Smad信號通路引起下游p21活化誘導(dǎo)肝癌細(xì)胞的凋亡,另一方面還能通過TGIF的上調(diào)對抗自身的抗腫瘤效應(yīng)。研究發(fā)現(xiàn)通過EGFR/PI3K/Akt途徑下調(diào)的TGIF可以通過干擾TGF-β信號讓肝癌細(xì)胞對ATO更加敏感[51]。
臨床研究發(fā)現(xiàn)ATO只對PML陰性的肝癌患者有效,這可能與ROS的生成與募集障礙有關(guān)[52]。研究發(fā)現(xiàn)HCC患者腫瘤組織中高度表達(dá)PML,ALDH3A1信號阻斷劑可以解除PML的抗ATO效應(yīng),這可能有助于ATO對PML陽性肝癌患者的臨床應(yīng)用[32]。
2.2ATO聯(lián)合中藥
傳統(tǒng)中醫(yī)藥中具有“補(bǔ)氣、補(bǔ)肝腎、活血補(bǔ)血”功效的藥物及方劑有極為顯著的抗氧化效果,還具有一定的免疫調(diào)節(jié)作用和抗腫瘤效應(yīng)。近年來,ATO聯(lián)合中藥成為肝癌治療領(lǐng)域的研究熱點。
2.2.1ATO聯(lián)合氧化劑型中藥增強(qiáng)抗腫瘤效果:ATO的細(xì)胞毒性是氧化劑敏感型,研究發(fā)現(xiàn),白藜蘆醇(resveratro)[53]、淫羊藿苷(icariin)[54]、冬凌草素(oridon)[55]、金雀異黃素(genistein)[56-57]等,作為潛在的氧化劑,可以協(xié)同ATO通過阻斷NF-κB的活性增強(qiáng)活性氧的生成促進(jìn)肝癌細(xì)胞的凋亡。其機(jī)制可能為:(1)下調(diào)Akt和XIAP信號通路;(2)降低線粒體膜電位(△φm);(3)下調(diào)Bcl-2、上調(diào)Bax;(4)增強(qiáng)caspase-3/9信號;(5)促進(jìn)細(xì)胞色素C的釋放;(6)抑制腫瘤細(xì)胞血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、表皮生長因子受體(epidermal growth factor receptor,EGFR)、腫瘤微血管密度(microvessel density,MVD)的表達(dá)。
2.2.2ATO聯(lián)合其他抗腫瘤中藥協(xié)同抗肝癌:華蟾素(cinobufacini)和ATO均能抑制肝癌移植瘤VEGF、EG-FR的表達(dá),并可降低MVD。研究發(fā)現(xiàn),不管是瘤重和瘤體來講兩藥相互作用系數(shù)(coefficient of drug interaction,CDI)均小于1,表明兩藥協(xié)同抑瘤作用。并且,聯(lián)合用藥并未增加裸鼠肝、腎和造血系統(tǒng)的毒性[58]。
2.2.3ATO聯(lián)合其他中藥降低毒副作用:ATO還可以聯(lián)合其他中醫(yī)藥達(dá)到減毒不減效的作用。隱丹參酮(cryptotanshinone),是一種從丹參酮中提取的具有抗菌、抗炎、降溫作用的單體。研究發(fā)現(xiàn)隱丹參酮可以改善ATO引起的血液系統(tǒng)副作用,并且聯(lián)合用藥并沒有影響ATO的抗腫瘤作用,其具體機(jī)制仍待進(jìn)一步研究[59]。
局部治療(local regional therapy,LRT)是不可切除肝癌重要的治療手段,包括射頻消融(radiofrequency ablation,RFA)及肝動脈栓塞化療(transcatheter arterial chemoembolization,TACE)等。
3.1ATO聯(lián)合RFA
RFA是在超聲或CT引導(dǎo)下將射頻電極插入腫瘤組織,射頻電極發(fā)出400 kHz的頻率波,通過高速運(yùn)動震蕩產(chǎn)生摩擦熱使得腫瘤組織內(nèi)部升溫,細(xì)胞發(fā)生固縮、壞死,從而殺滅腫瘤細(xì)胞達(dá)到治療目的。臨床研究發(fā)現(xiàn)RFA只對直徑<3 cm的腫瘤有效(80%~90%),而對直徑>3 cm的腫瘤作用有限(50%~75%),其原因可能是灌注介導(dǎo)的組織冷卻和熱庫效應(yīng)。并且,射頻消融在殺死癌變組織的同時,也會損傷周圍正常組織。研究發(fā)現(xiàn)ATO一方面能誘導(dǎo)腫瘤血管的管壁,有高熱療法的潛能[4];另一方面,ATO還能阻斷線粒體呼吸鏈增加腫瘤細(xì)胞內(nèi)P02,增強(qiáng)肝癌細(xì)胞對RFA的敏感性[60]。臨床研究證實,ATO聯(lián)合RF能協(xié)同治療大直徑的腫瘤[61]。
3.2ATO聯(lián)合TACE
TACE,是不能切除的HCC的一種重要的局部治療手段[62],主要通過栓塞腫瘤的供血動脈,阻斷腫瘤的血供,導(dǎo)致腫瘤缺血、缺氧,達(dá)到抑制腫瘤生長、促使腫瘤細(xì)胞壞死凋亡的目的。與全身經(jīng)脈給藥相比,局部給藥濃度大、效果好、療效快、副反應(yīng)輕微。動物模型研究發(fā)現(xiàn)TACE聯(lián)合ATO能通過降低腫瘤組織中生存素(survivin)的表達(dá)促進(jìn)肝癌原位小鼠腫瘤細(xì)胞的凋亡[63]。臨床試驗證實TACE聯(lián)合ATO能顯著提高肝癌存活率、降低肝癌肝外轉(zhuǎn)移[64]。研究認(rèn)為ATO可能通過抑制Twist的活化阻斷肝癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),增強(qiáng)TACE的治療效果[24]。另外,研究發(fā)現(xiàn)與靜脈相比,肝動脈可能更適合ATO發(fā)揮作用[65]。
腫瘤生物治療是一種新興的、具有顯著療效的腫瘤治療模式,是一種自身免疫抗癌的新型療法。它以腫瘤發(fā)生發(fā)展過程中的關(guān)鍵分子為靶點,以核酸、蛋白質(zhì)或小分子化合物為治療介質(zhì),以修飾腫瘤生物學(xué)行為為主要治療目的,成為繼手術(shù)、放療和化療之后的第4大腫瘤治療技術(shù)。
4.1ATO聯(lián)合溶瘤腺病毒
溶瘤腺病毒(oncolytic adenovirus,OAd),在腫瘤細(xì)胞中復(fù)制后可以裂解腫瘤細(xì)胞,并釋放出子代病毒,感染周圍腫瘤細(xì)胞,直至完全殺滅腫瘤。OAd通過對腺病毒的基因改造使其復(fù)制具有腫瘤特異性,在功能正常的細(xì)胞中復(fù)制能力極低[66]。研究發(fā)現(xiàn)ATO粉針劑聯(lián)合重組腺病毒介導(dǎo)的IκBαM能顯著促進(jìn)肝癌細(xì)胞凋亡[67]。另外,荷載PML蛋白的腺病毒(Ad-PML)聯(lián)合ATO在體外體內(nèi)均能顯著降低肝癌細(xì)胞的生長[68]。
4.2ATO聯(lián)合過繼細(xì)胞免疫治療
過繼細(xì)胞免疫療法(adoptive cell transfer therapy,ACT)是將體外激活的自體或異體免疫效應(yīng)細(xì)胞輸注給患者,包括樹突狀細(xì)胞(dendritic cells,DC)疫苗、細(xì)胞因子誘導(dǎo)的殺傷細(xì)胞(cytokines induced killer,CIK)、γδT細(xì)胞、嵌合抗原受體T細(xì)胞(chimeric antigen receptor T lymphocytes,CAR-T)、腫瘤浸潤淋巴細(xì)胞(tumor infiltrating lymphocytes,TILs)以及細(xì)胞毒性T淋巴細(xì)胞(cytotoxic T lymphocytes,CTL)。近年來,ACT在肝癌方面取得了顯著的臨床療效[69-71]。
調(diào)節(jié)性T細(xì)胞(regulatory T cells,Treg)是肝癌發(fā)生免疫逃逸的關(guān)鍵,同時也是肝癌預(yù)后的獨(dú)立影響因素[72-74]。研究發(fā)現(xiàn)ATO能選擇性降低腫瘤動物模型體內(nèi)的Treg水平[75],打破腫瘤的免疫耐受。在肝癌原位模型中,我們發(fā)現(xiàn)ATO能引起免疫細(xì)胞在體內(nèi)的重新分布。并且,ATO能提高CIK和CTL的體外殺傷活性。下一步我們將在小鼠體內(nèi)評估ATO聯(lián)合ACT的抗腫瘤效果。
從目前國內(nèi)外的研究來看,ATO治療肝癌療效確切,但是ATO是藥物還是毒物的爭論依然是個永恒的話題[76-77]:ATO本身的致癌性[78-79]以及高濃度產(chǎn)生的細(xì)胞毒性[38]是ATO臨床應(yīng)用的“阿喀琉斯之踵”。因此,如何降低ATO治療帶來的毒副作用成為ATO臨床應(yīng)用的關(guān)鍵。一方面,我們可以因人而異,篩選出臨床上對ATO敏感的肝癌患者進(jìn)行個體化治療。另一方面,我們既可以結(jié)合現(xiàn)代給藥技術(shù)和給藥方式達(dá)到減毒不減效的目的,又可以聯(lián)合其他藥物或治療手段協(xié)同治療肝癌,這也是未來ATO治療肝癌的一個方向。
[1] EMADI A, GORE S D. Arsenic trioxide —— an old drug rediscovered [J]. Blood Rev, 2010, 24(4-5): 191-199.
[2] ZHOU J. Arsenic trioxide: an ancient drug revived [J]. Chin Med J (Engl), 2012, 125(19): 3556-3560.
[3] KIM E Y, LEE S S, SHIN J H, et al. Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model [J]. Clin Exp Med, 2014, 14 (2): 215-224.
[4] LEE J C, LEE H Y, MOON C H, et al. Arsenic trioxide as a vascular disrupting agent: synergistic effect with irinotecan on tumor growth delay in a CT26 allograft model [J]. Transl Oncol, 2013, 6(1): 83-91.
[5] SIDES M D, SOSULSKI M L, LUO F, et al. Co-treatment with arsenic trioxide and ganciclovir reduces tumor volume in a murine xenograft model of nasopharyngeal carcinoma [J]. Virol J, 2013, 10: 152.
[6] HE X, YANG K, CHEN P, et al. Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a metaanalysis and systematic review [J]. Onco Targets Ther, 2014, 7: 1593-1599.
[7] KERL K, MORENO N, HOLSTEN T, et al. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1 [J]. Int J Cancer, 2014, 135 (4): 989-995.
[8] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[9] JIAO Y H, ZHANG Q, PAN L L, et al. Rat liver mitochondrial dysfunction induced by an organic arsenical compound 4-(2-Nitrobenzaliminyl) phenyl arsenoxide [J]. J Membr Biol, 2015, 248(6): 1071-1078.
[10] KITO M, AKAO Y, OHISHI N, et al. Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines [J]. Biochem Biophys Res Commun, 2002, 291(4): 861-867.
[11] KITO M, MATSUMOTO K, WADA N, et al. Antitumor effect of arsenic trioxide in murine xenograft model [J]. Cancer Sci, 2003, 94(11): 1010-1014.
[12] HUA H, QIN S, RUI J, et al. Pharmacokinetics of arsenic trioxide (As(2)O(3)) in Chinese primary hepatocarcinoma patients [J]. Asian Pac J Cancer Prev, 2011, 12(1): 61-65.
[13] XU H Y, YANG Y L, LIU S M, et al. Effect of arsenic trioxide on human hepatocarcinoma in nude mice [J]. World J Gastroenterol, 2004, 10(24): 3677-3679.
[14] YOO D R, CHONG S A, NAM M J. Proteome profiling of arsenic trioxide-treated human hepatic cancer cells [J]. Cancer Genomics Proteomics, 2009, 6(5): 269-274.
[15] ZHAO W, HU Y N, JIANG X J, et al. The apoptotic mechanism of hepatocellular carcinoma cell line (HepG2) induced by arsenic trioxide [J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2014, 45(5): 739-743.
[16] 于浩, 姜洪磊, 許東, 等. 三氧化二砷對不同肝癌細(xì)胞系凋亡的影響 [J]. 生物醫(yī)學(xué)工程與臨床, 2016(1): 83-86.
[17] ALARIFI S, ALI D, ALKAHTANI S, et al. Arsenic trioxidemediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells [J]. Onco Targets Ther, 2013, 6: 75-84.
[18] ZHANG X, JIA S, YANG S, et al. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression [J]. J Cell Biochem, 2012, 113(11): 3528-3535.
[19] JIANG F, WANG X, LIU Q, et al. Inhibition of TGF-beta/ SMAD3/NF-kappaB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells [J]. Toxicol Lett, 2014, 231(1): 55-61.
[20] TUNG J N, ChENG Y W, HSU C H, et al. Normoxically overexpressed hypoxia inducible factor 1-alpha is involved in arsenic trioxide resistance acquisition in hepatocellular carcinoma [J]. Ann Surg Oncol, 2011, 18(5): 1492-1500.
[21] ZhANG S, ZHOU J, ZHANG C, et al. Arsenic trioxide inhibits HCCLM3 cells invasion through de novo ceramide synthesis and sphingomyelinase-induced ceramide production [J]. Med Oncol, 2012, 29(3): 2251-2260.
[22] LI H Y, CAO L M. Inhibitory effect of arsenic trioxide on invasion in human hepatocellular carcinoma SMMC-7721 cells and its mechanism [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2012, 28(12): 1254-1257.
[23] WANG X, JIANG F, MU J, et al. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491 [J]. Toxicol Lett, 2014, 227(2): 75-83.
[24] WANG G Z, ZHANG W, FANG Z T, et al. Arsenic trioxide: marked suppression of tumor metastasis potential by inhibiting the transcription factor Twist in vivo and in vitro [J]. J Cancer Res Clin Oncol, 2014, 140(7): 1125-1136.
[25] 唐印華, 王璽, 梁桃, 等. As2O3抑制人肝癌細(xì)胞侵襲及轉(zhuǎn)移的實驗研究 [J]. 哈爾濱醫(yī)科大學(xué)學(xué)報, 2013(1): 24-27.
[26] EAVES C J. Cancer stem cells: Here, there, everywhere [J]. Nature, 2008, 456(7222): 581-582.
[27] BHOLA N E, BALKO J M, DUGGER T C, et al. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer [J]. J Clin Invest, 2013, 123(3): 1348-1358.
[28] VIDAL S J, RODRIGUEZ-BRAVO V, GALSKY M, et al. Targeting cancer stem cells to suppress acquired chemotherapy resistance [J]. Oncogene, 2014, 33(36): 4451-4463.
[29] ZHANG K Z, ZHANG Q B, ZHANG Q B, et al. Arsenic trioxide induces differentiation of CD133+hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GLI1 expression in a mouse model [J]. J Hematol Oncol, 2014, 7: 28.
[30] TOMULEASE C, SORITAU O, FISCHER-FOROR E, et al.Arsenic trioxide plus cisplatin/interferon alpha-2b/doxorubicin/capecitabine combination chemotherapy for unresectable hepatocellular carcinoma [J]. Hematol Oncol Stem Cell Ther, 2011, 4(2): 60-66.
[31] LI Y, JIANG F, LIU Q, et al. Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal [J]. Toxicol Sci, 2015, 143(1): 156-164.
[32] ZHANG X, YANG X R, SUN C, et al. Promyelocytic leukemia protein induces arsenic trioxide resistance through regulation of aldehyde dehydrogenase 3 family member A1 in hepatocellular carcinoma [J]. Cancer Lett, 2015, 366(1): 112-122.
[33] CHEN X, ZHANG M, LIU L X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells [J]. Oncol Rep, 2009, 22(1): 73-80.
[34] Lin C C, Hsu C, Hsu C H, et al. Arsenic trioxide in patients with hepatocellular carcinoma: a phase II trial [J]. Invest New Drugs, 2007, 25(1): 77-84.
[35] ZHENG T, YIN D, LU Z, et al. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in hepatocellular carcinoma [J]. Mol Cancer, 2014, 13: 133.
[36] ARDALAN B, SUBBARAYAN P R, Ramos Y, et al. A phase I study of 5-fluorouracil/leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma [J]. Clin Cancer Res, 2010, 16(11): 3019-3027.
[37] HAO L, ZHAO J, WANG X, et al. Hepatotoxicity from arsenic trioxide for pediatric acute promyelocytic leukemia [J]. J Pediatr Hematol Oncol, 2013, 35(2): e67-e70.
[38] JIAO Y H, ZHANG Q, PAN L L, et al. Rat liver mitochondrial dysfunction induced by an organic arsenical compound 4-(2-Nitrobenzaliminyl) Phenyl Arsenoxide [J]. J Membr Biol, 2015, 248(6): 1071-1078.
[39] ROSOMORDUC O, CHEVREAU C, DIELENSEGER P, et al. Use of sorafenib in patients with hepatocellular or renal carcinoma [J]. Gastroenterol Clin Biol, 2010, 34(3): 161-167.
[40] SHAN J, SHEN J, LIU L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma [J]. Hepatology, 2012, 56(3): 1004-1014.
[41] BLIVET-VAN E M, CHETTOUH H, FARTOUX L, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells [J]. J Hepatol, 2012, 57(1): 108-115.
[42] CHEN H C, JENG Y M, YUAN R H, et al. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis [J]. Ann Surg Oncol, 2012, 19(6): 2011-2019.
[43] RANGWALA F, WILLIAMS K P, SMITH G R, et al. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines [J]. BMC Cancer, 2012, 12: 402.
[44] YANG X, SUN D, TIAN Y, et al. Metformin sensitizes hepatocellular carcinoma to arsenic trioxide-induced apoptosis by downregulating Bcl2 expression [J]. Tumour Biol, 2015, 36 (4): 2957-2964.
[45] WEI J, YE C, LIU F, et al. All-trans retinoic acid and arsenic trioxide induce apoptosis and modulate intracellular concentrations of calcium in hepatocellular carcinoma cells [J]. J Chemother, 2014, 26(6): 348-352.
[46] 唐潔, 王川, 姜政. 水通道蛋白9表達(dá)水平影響HepG2肝癌細(xì)胞的生物學(xué)行為及對As2O3的敏感性 [J]. 細(xì)胞與分子免疫學(xué)雜志, 2015, (6): 769-774.
[47] CHEN C, ZHANG Y, WANG Y, et al. Synergic effect of 3’-azido-3’-deoxythymidine and arsenic trioxide in suppressing hepatoma cells [J]. Anticancer Drugs, 2011, 22(5): 435-443.
[48] SHEN P, JIANG T, LU H, et al. Combination of Poly I: C and arsenic trioxide triggers apoptosis synergistically via activation of TLR3 and mitochondrial pathways in hepatocellular carcinoma cells [J]. Cell Biol Int, 2011, 35(8): 803-810.
[49] LUO Q, LI Y, DENG J, et al. PARP-1 inhibitor sensitizes arsenic trioxide in hepatocellular carcinoma cells via abrogation of G2/M checkpoint and suppression of DNA damage repair [J]. Chem Biol Interact, 2015, 226: 12-22.
[50] LUO Q, LI Y, LAI Y, et al. The role of NF-kappaB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells [J]. J Toxicol Sci, 2015, 40(3): 349-363.
[51] LIU Z M, TSENG J T, HONG D Y, et al. Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells [J]. Biochem J, 2011, 438(2): 349-358.
[52] RABELLINO A, SCAGLIONI P P. PML degradation:multiple ways to eliminate PML [J]. Front Oncol, 2013, 3: 60.
[53] ZHAO X Y, YANG S, CHEN Y R, et al. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo [J]. PLoS One, 2014, 9(6): e98925.
[54] LI W, WANG M, WANG L, et al. Icariin synergizes with arsenic trioxide to suppress human hepatocellular carcinoma [J]. Cell Biochem Biophys, 2014, 68(2): 427-436.
[55] CHEN G, WANG K, YANG B Y, et al. Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells [J]. Int J Oncol, 2012, 40(1): 139-147.
[56] JIANG H, MA Y, CHEN X, et al. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma [J]. Cancer Sci, 2010, 101(4): 975-983.
[57] MA Y, WANG J, LIU L, et al. Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: role of Akt and nuclear factor-kappaB [J]. Cancer Lett, 2011, 301(1): 75-84.
[58] LIU L, CHEN B A, QIN S K. Anti-angiogenesis effect of arsenic trioxide plus cinobufacin on human hepatocarcinoma transplantation model nude mice [J]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2011, 31(1): 67-72.
[59] 倪珊珊, 廖廣輝, 張廣順, 等. 三氧化二砷與隱丹參酮不同配比對人肝癌HepG2裸鼠移植瘤的抑制作用 [J]. 浙江中醫(yī)藥大學(xué)學(xué)報, 2015(1): 62-66.
[60] DIEPART C, KARROUM O, MAGAT J, et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors [J]. Cancer Res, 2012, 72(2): 482-490.
[61] HINES-PERALTA A, SUKHATME V, REGAN M, et al. Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models [J]. Radiology, 2006, 240(1): 82-89.
[62] KIM H Y, PARK J W. Clinical trials of combined molecular targeted therapy and locoregional therapy in hepatocellular carcinoma: past, present, and future [J]. Liver Cancer, 2014, 3(1): 9-17.
[63] LI H, GONG J, JIANG X, et al. Arsenic trioxide treatment of rabbit liver VX-2 carcinoma via hepatic arterial cannulationinduced apoptosis and decreased levels of survivin in the tumor tissue [J]. Croat Med J, 2013, 54(1): 12-16.
[64] WANG H, LIU Y, WANG X, et al. Randomized clinical control study of locoregional therapy combined with arsenic trioxide for the treatment of hepatocellular carcinoma [J]. Cancer, 2015, 121(17): 2917-2925.
[65] SEONG N J, YOON C J, KANG S G, et al. Effects of arsenic trioxide on radiofrequency ablation of VX2 liver tumor: intraarterial versus intravenous administration [J]. Korean J Radiol. 2012, 13(2): 195-201.
[66] KOLODKIN-GAL D, EDDEN Y, HARTSHTARK Z, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect [J]. Gene Ther, 2009, 16(7): 905-915.
[67] 楊雅雯, 劉丹, 劉婷, 等. 三氧化二砷粉針劑聯(lián)合重組腺病毒介導(dǎo)的IκBαM治療肝癌 [J]. 世界華人消化雜志, 2013(13): 1159-1163.
[68] CUI L, ZHANG S, ZHANG W, et al. Arsenic trioxide and promyelocytic leukemia protein-adenovirus synergistically inhibit in vitro and in vivo growth of a hepatoma cell line [J]. Oncol Res, 2010, 18(7): 305-314.
[69] SRIVASTAVA S, RIEEDLL S R. Engineering CAR-T cells: Design concepts [J]. Trends Immunol, 2015, 36(8): 494-502.
[70] GRUPP S A, KALOS M, BARRETT D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia [J]. N Engl J Med, 2013, 368(16): 1509-1518.
[71] GAO H, LI K, TU H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma [J]. Clin Cancer Res, 2014, 20(24): 6418-6428.
[72] ZHENG Y, DOU Y, DUAN L, et al. Using chemo-drugs or irradiation to break immune tolerance and facilitate immunotherapy in solid cancer [J]. Cell Immunol, 2015, 294(1): 54-59.
[73] LI F, GUO Z, LIZEE G, et al. Clinical prognostic value of CD4+CD25+FOXP3+regulatory T cells in peripheral blood of Barcelona Clinic Liver Cancer (BCLC) stage B hepatocellular carcinoma patients [J]. Clin Chem Lab Med, 2014, 52(9): 1357-1365.
[74] HUANG Y, WANG F, WANG Y, et al. Intrahepatic interleukin-17+T cells and FoxP3+regulatory T cells cooperate to promote development and affect the prognosis of hepatocellular carcinoma [J]. J Gastroenterol Hepatol, 2014, 29(4): 851-859.
[75] THOMAS-SCHOEMANN A, BATTEUX F, MONGARET C, et al. Arsenic trioxide exerts antitumor activity through regulatory T cell depletion mediated by oxidative stress in a murine model of colon cancer [J]. J Immunol, 2012, 189(11): 5171-5177.
[76] POWELL B L. Arsenic trioxide in acute promyelocytic leukemia: potion not poison [J]. Expert Rev Anticancer Ther, 2011, 11(9): 1317-1319.
[77] RAO Y, LI R, ZHANG D. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered [J]. Sci China Life Sci, 2013, 56(6): 495-502.
[78] LAU A, ZHENG Y, TAO S, et al. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner [J]. Mol Cell Biol, 2013, 33(12): 2436-2446.
[79] MIAO Z, WU L, LU M, et al. Analysis of the transcriptional regulation of cancer-related genes by aberrant DNA methylation of the cis-regulation sites in the promoter region during hepatocyte carcinogenesis caused by arsenic [J]. Oncotarget, 2015, 6(25): 21493-21506.
(本文編輯:張海燕,魯翠濤)
R735.7; R730.53
A
10.11952/j.issn.1007-1954.2016.06.001
2016-04-15
國家自然科學(xué)基金新疆聯(lián)合基金項目(U1403222);湖北省武漢市科技局項目(20160601010033)。
彭貴主(1961-),男,江西余干人,碩士,教授,主任醫(yī)師,碩士生導(dǎo)師。
簡介]葉啟發(fā)(1954-),博士,教授,博士生導(dǎo)師,E-mail:yqf_china@163.com。