金姍,何涌泉,楊瑜, 張曉燕
復(fù)旦大學(xué)附屬公共衛(wèi)生臨床中心,上海 201508
?
人類免疫缺陷病毒潛伏庫定量檢測技術(shù)的研究進展
金姍,何涌泉,楊瑜, 張曉燕
復(fù)旦大學(xué)附屬公共衛(wèi)生臨床中心,上海 201508
摘要:以靜息CD4+T細胞為主的人類免疫缺陷病毒(human immunodeficiency virus,HIV)潛伏庫的清除已成為治愈HIV-1感染的主要障礙,人們迫切需要建立一種高通量、可靠的、高靈敏度的方法來定量檢測病毒潛伏庫的真實大小。本文就目前關(guān)于HIV潛伏庫的多種定量檢測方法進行綜述。
關(guān)鍵詞:人類免疫缺陷病毒;潛伏庫;定量檢測
盡管高效抗反轉(zhuǎn)錄病毒治療(highly active antiretroviral therapy,HAART)能有效阻斷人類免疫缺陷病毒(human immunodeficiency virus,HIV)感染患者體內(nèi)的病毒復(fù)制,使血漿中病毒載量控制在極低水平(<50拷貝/ml),然而在治療中斷后的2~8周內(nèi),多數(shù)患者會出現(xiàn)血漿病毒載量反彈[1]。原因是HIV在感染急性期就形成了以靜息記憶CD4+T細胞為主的病毒潛伏庫(viral reservoir)。病毒潛伏庫的細胞包括效應(yīng)記憶T細胞(effective memory T cell,TEM)[2]、中心記憶T細胞(central memory T cell,TCM)、過渡型記憶T細胞(transitional memory T cell)[3]和記憶性干細胞樣T細胞(memory stem cell-like T cell)[4]。此外,對血漿中殘余HIV序列的研究發(fā)現(xiàn)[2-3],巨噬細胞、濾泡樹突細胞、小神經(jīng)膠質(zhì)細胞、星型膠質(zhì)細胞等也可能成為潛伏庫的組成部分。這些病毒潛伏庫細胞的半衰期較長(44個月),在治療中斷后成為感染復(fù)發(fā)的主要源頭[5]。目前有多種HIV潛伏庫的清除策略,如引蛇出洞療法(shock and kill)[6]、基因修飾技術(shù)[7]、基因打靶技術(shù)[8]等,但主要問題是如何評價這些干預(yù)措施的有效性。因此,人們迫切需要建立一種高通量、可靠的、高靈敏度的方法來定量檢測病毒潛伏庫的真實大小,從而用于臨床藥物動力學(xué)效果的評價和完全治愈的判定[9]。本文主要綜述目前HIV潛伏庫的多種定量檢測方法。
1基于體外培養(yǎng)實驗的HIV潛伏庫定量檢測技術(shù)
1.1病毒擴增實驗
VOA法(viral outgrowth assay)目前被認為是測量潛伏狀態(tài)下攜帶復(fù)制型前病毒的靜息CD4+T細胞拷貝數(shù)的金標準[10]。從接受HAART的患者外周血單個核細胞(peripheral blood mononuclear cell,PBMC)中分選的靜息CD4+T細胞在無外界刺激時不產(chǎn)生病毒顆粒。將稀釋后的靜息CD4+T細胞與經(jīng)γ線照射的健康人PBMC按比例混合,再加入一種很強的促細胞分裂素——植物凝集素(phytohemagglutinin,PHA)共培養(yǎng),經(jīng)γ線照射后的PBMC可增強高濃度PHA下CD4+T細胞的激活效率[11],在共培養(yǎng)過程中PBMC逐漸死亡,僅CD4+T細胞存活。在上述存活的CD4+T細胞中加入淋巴母細胞或持續(xù)增殖的細胞系MOLT-4/ CCR5共培養(yǎng)2~3周,CD4+T細胞內(nèi)病毒不斷復(fù)制并釋放,使培養(yǎng)上清液中病毒含量達到可檢測水平。取培養(yǎng)上清液,用酶聯(lián)免疫吸附試驗(enzyme-linked immunosorbent assay,ELISA)最快7 d便可檢測到病毒顆粒,或通過高靈敏度的反轉(zhuǎn)錄-聚合酶鏈反應(yīng)(reverse transcriptase-polymerase chain reaction,RT-PCR)檢測具有復(fù)制能力的子代病毒。VOA法也有局限性,例如不能檢測出有缺陷的前病毒、需大量血液(120~180 mL)、需在生物安全三級(biosafety level 3,BSL-3)實驗室中進行、只能檢測一輪刺激后的病毒載量而低估了潛伏庫的實際大小[12]。
1.2以病毒RNA為指標的定量檢測
在HIV-1復(fù)制早期,HIV前病毒基因的主要存在形式為多剪接mRNA轉(zhuǎn)錄子,在轉(zhuǎn)錄過程中多剪接mRNA轉(zhuǎn)錄子轉(zhuǎn)化為未剪接或單剪接的mRNA 片段。一些mRNA轉(zhuǎn)錄子翻譯成為病毒蛋白,還有一些全長轉(zhuǎn)錄子被組裝入新的病毒顆粒[13]?;隗w外培養(yǎng)實驗檢測HIV潛伏庫,將患者CD4+T細胞在板上進行有限稀釋,使每孔至多有一個產(chǎn)毒細胞,T細胞經(jīng)最大程度活化后,用定量PCR(quantitative PCR,qPCR)檢測細胞產(chǎn)生病毒RNA的頻率,可檢測到的mRNA包括病毒復(fù)制過程中的未剪接mRNA、多剪接mRNA及培養(yǎng)上清液中的HIV-1 mRNA。培養(yǎng)上清液中的mRNA反映細胞釋放可復(fù)制型病毒的頻率,使定量檢測HIV潛伏庫的效果更精確[14]。最新研究表明,平均1.5%的HIV-1前病毒可重新活化產(chǎn)生病毒顆粒,但來源不同的兩例患者分別有6.8%和8.2%的前病毒可重新活化產(chǎn)生未剪接的HIV-1 RNA[10,13]。這類定量檢測方法的優(yōu)點在于縮短了細胞培養(yǎng)所需時間,與VOA法類似的是只檢測出一輪T細胞活化下的病毒RNA,且能檢測出一些有缺陷但產(chǎn)生非感染性病毒顆粒的前病毒。這些方法可能混淆假陰性和假陽性結(jié)果,不能準確定量HIV潛伏庫的大小[13]。
2基于PCR的HIV潛伏庫定量檢測技術(shù)
2.1qPCR檢測前病毒DNA
PCR已普遍應(yīng)用于定量檢測靜息狀態(tài)下的HIV,為VOA法提供了一種補充途徑。其中qPCR廣泛用于定量檢測PBMC[14-15]中的前病毒DNA。以外周血目的細胞群的總DNA為模板,以HIV-1基因上的一段保守序列為探針,進行qPCR檢測,與已知拷貝數(shù)的前病毒DNA標準曲線進行比對,估算感染細胞數(shù)量。通過qPCR檢測每個細胞中基因組的兩個拷貝來反映樣本中的總細胞數(shù)目,采用前病毒DNA拷貝數(shù)目結(jié)合總細胞數(shù)目可估算藏匿HIV-1 DNA的細胞頻率。該方法同樣適用于檢測腸相關(guān)淋巴組織(gut-associated lymphoid tissue,GALT)中的前病毒DNA[16-17]。
2.2微滴數(shù)字PCR檢測前病毒DNA
新一代PCR——微滴數(shù)字PCR(ddPCRTM)[18]可將反應(yīng)體系無限稀釋至1 000萬份,其中每個微滴或不含待檢核酸靶病毒分子,或只含一個待檢靶病毒分子[19]。經(jīng)PCR擴增后,對每個微滴逐個進行檢測,有熒光信號的微滴判為1,沒有熒光信號的微滴判為0,根據(jù)泊松分布原理及陽性微滴的比例即可計算出靶病毒分子的起始拷貝數(shù)或濃度。與傳統(tǒng)qPCR相比,ddPCRTM測量HIV前病毒DNA的精確率更高[20-21],可檢測外周血中含量極低的病毒序列[19,22],且無需標準品即可檢測出靶病毒分子的啟始拷貝數(shù)或濃度[19]。
2.3Alu-PCR檢測整合形式的前病毒DNA
Alu-PCR用于區(qū)分PBMC和CD4+T細胞中整合的病毒基因與線性未整合的病毒基因[22]。以外周血目的細胞群的總DNA為模板,以基因組中普遍存在的Alu重復(fù)序列和HIV-1gag基因為雙引物,采用Alu-PCR放大整合狀態(tài)的HIV-1基因,隨后以HIV的長末端重復(fù)序列(long terminal repeat,LTR)為引物用套式PCR檢測。對于不同的感染細胞,整合位點與Alu序列的距離不相同,導(dǎo)致對前病毒DNA的一輪PCR放大效果也不相同。為解決這個問題,以細胞不同的HIV-1整合位點與Alu序列的不同距離作整合位點標準曲線,除去距離 Alu序列太遠的前病毒[22]。此外,還可用linker ligation PCR[23]和反向PCR[24]檢測整合形式的前病毒DNA。
2.4qPCR和ddPCRTM檢測2-LTR HIV環(huán)
潛伏形成后,HIV將RNA反轉(zhuǎn)錄成cDNA,形成整合前復(fù)合體(preintegration complex,PIC)。部分PIC進入細胞核,沒有整合入人基因組,而是在核內(nèi)呈游離狀態(tài),形成兩種形式:1-LTR環(huán)和2-LTR環(huán)[25-26]。這兩種形式不能整合入人類基因組,也不能產(chǎn)生感染性病毒顆粒,不是潛伏庫的一部分。但2-LTR環(huán)仍被用于近期感染情況和病毒復(fù)制情況的研究。以2-LTR交叉處側(cè)翼序列為引物,可用ddPCRTM、qPCR對PBMC中2-LTR環(huán)進行測量[10,27],但目前對2-LTR環(huán)的穩(wěn)定性還存在極大爭議[28]。
3單拷貝實驗檢測血中HIV載量
盡管HAART能將血漿中的HIV載量控制在低至檢測線以下,但仍能在低病毒載量血漿中檢測到HIV-1 RNA,表明血漿中存在低水平持續(xù)復(fù)制的HIV。Palmer及其同事研究出了高靈敏度的單拷貝實驗(single-copy assay,SCA),用以定量檢測血漿中的殘留HIV,監(jiān)測患者血漿中的HIV-1 反彈[29]。取患者血液(至少7 mL血漿),進行連續(xù)稀釋,直至最終理論上HIV RNA<1 拷貝/mL。樣本中加入RCAS(一種禽流感反轉(zhuǎn)錄病毒)作為標準。從病毒顆粒中提取RNA,以反轉(zhuǎn)錄cDNA為模板,HIV-1gag區(qū)為探針,行RT-PCR檢測。樣本中HIV-1水平由已知RNA拷貝數(shù)的HIV-1標準曲線測定。
研究表明,血漿中的殘留HIV對目前HAART藥物極其敏感[30],且主要來源于穩(wěn)定的病毒潛伏庫而非正在復(fù)制的病毒。因此,血漿中的殘留病毒反映HAART前潛伏庫細胞的病毒產(chǎn)量。然而,能產(chǎn)生血漿病毒的細胞類型還不清楚,血漿病毒與潛伏庫之間的關(guān)系也尚未明了。SCA是一個非常好的能檢測血漿中持續(xù)存在病毒的工具,但在臨床清除實驗中不能精確定量患者潛伏庫的動態(tài)改變[29-30]。
4基于反彈時間的HIV潛伏庫定量檢測
最初認為經(jīng)過幾年HAART即可完全治愈HIV-1感染,然而穩(wěn)定存在的病毒潛伏庫的發(fā)現(xiàn)表明患者必須一直接受HAART,以防止血漿病毒反彈[1]。例如,兩例“柏林患者”因淋巴癌接受骨髓移植而停藥,停藥后12周和32周分別出現(xiàn)了病毒反彈[31]。又如“密西西比嬰兒”在出生后30 h使用了3種抗反轉(zhuǎn)錄藥物治療,1個月后血漿病毒降低至檢測線以下[31];停止治療后,超過2年未在體內(nèi)檢測到病毒;然后在停止治療后27個月時出現(xiàn)了病毒反彈。這3例患者都不存在HIV-1特異性免疫應(yīng)答,證明小部分HIV潛伏庫由于移植或早期治療而顯著推遲了反彈時間。
盡管中斷治療是判斷患者是否痊愈的唯一方法,但以HIV反彈時間來定量檢測潛伏庫大小仍受到倫理問題和停藥后不可預(yù)測因素的限制。相比于持續(xù)接受HAART的患者,中斷治療的患者有更高的發(fā)病率,惡性腫瘤疾病的發(fā)生率增加,且無法預(yù)測停藥后數(shù)月或數(shù)年可能發(fā)生的病變[32-33]。因此,以中斷HAART來評估HIV潛伏庫的縮減仍困難重重。
5HIV潛伏庫定量檢測技術(shù)面臨的挑戰(zhàn)
關(guān)于定量檢測HIV潛伏庫的挑戰(zhàn)主要來源于兩個方面。第一是生物性,定量HIV潛伏庫均基于臨床樣本,而臨床樣本無法代表個體內(nèi)HIV潛伏庫的情況;第二是技術(shù)性,臨床測量HIV潛伏庫都是尋找一種可靠的高精確性、可靠性、特異性、重復(fù)性技術(shù)來判斷經(jīng)過干預(yù)策略后潛伏庫的變化[34]。目前為止,還沒有一種方法能準確定量HIV潛伏庫實際大小。作為定量檢測HIV潛伏庫的金標準,VOA法能估計出HIV潛伏庫的最小范圍,但不能檢測出所有可復(fù)制型病毒的潛伏感染細胞[35],低估了HIV潛伏庫的實際大小,可能誤導(dǎo)臨床停止用藥,而一旦停止用藥,最終將引起病毒反彈。除VOA法外,還有很多基于PCR的技術(shù)可測量HIV-1前病毒DNA。例如,qPCR被廣泛用來測量未分離的PBMC[14-15]中整合或未整合形式的HIV前病毒DNA,但不能區(qū)分復(fù)制型病毒與有缺陷的前病毒,高估了HIV潛伏庫大小,不能判斷HIV潛伏庫何時已清除干凈,何時可停止用藥。而新的ddPCRTM技術(shù)[18]被應(yīng)用于定量總HIV DNA和2-LTR環(huán),但其費用高,效率較低。對于整合形式的HIV DNA,最好的測量方法就是Alu-PCR;但由于gag探針缺乏特異性,一個樣本需42個PCR,過程過于繁瑣[22]。對于細胞內(nèi)的HIV RNA,常采用如組蛋白去乙酰酶抑制劑等藥物活化潛伏感染細胞,產(chǎn)生病毒轉(zhuǎn)錄子;但目前尚無法區(qū)分一些轉(zhuǎn)錄子是持續(xù)保持潛伏狀態(tài)還是進行低水平復(fù)制,也不能準確量化HIV潛伏庫。對于血漿中的殘留病毒,一般采用高靈敏度的SCA進行檢測;但血漿病毒與潛伏庫之間的關(guān)系仍未明了。而基于反彈時間測量HIV潛伏庫大小,則需考慮到停藥風(fēng)險與疾病進程相關(guān)問題。雖然以上實驗均提供了一些新的視角來定量HIV潛伏庫,但缺乏標準來比較各實驗數(shù)據(jù),尚沒有一項實驗可真正準確量化HIV潛伏庫的實際大小。
6結(jié)語
目前關(guān)于HIV潛伏庫的定量檢測研究主要集中在對外周血的探索,然而外周血中真正被感染的CD4+T細胞并不多,不能代表整個HIV潛伏庫的情況,且殘留病毒血中的病毒序列也不來源于穩(wěn)定的CD4+T細胞潛伏庫[36],這使得量化HIV潛伏庫充滿不確定性。雖然已有研究表明在中樞神經(jīng)系統(tǒng)(central nervous system,CNS)[37]、GALT[38]和淋巴組織(lymphoid organ)[39]中HIV保持低水平持續(xù)復(fù)制,但關(guān)于組織區(qū)域化與外周血之間的病毒進化關(guān)系尚未明了,因此要精確量化HIV潛伏庫的大小,還需在潛伏庫建立和調(diào)控機制方面進一步探索。
參考文獻
[1]Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+T cells [J]. Nat Med, 2003, 9(6): 727-728.
[2]Chargin A, Yin F, Song M, Subramaniam S, Knutson G, Patterson BK. Identification and characterization of HIV-1 latent viral reservoirs in peripheral blood [J]. J Clin Microbiol, 2015, 53(1): 60-66.
[3]Pan X, Baldauf HM, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4+T lymphocytes [J]. Cell Res, 2013, 23(7): 876-885.
[4]Buzon MJ, Sun H, Li C, Shaw A, Seiss K, Ouyang Z, Martin-Gayo E, Leng J, Henrich TJ, Li JZ, Pereyra F, Zurakowski R, Walker BD, Rosenberg ES, Yu XG, Lichterfeld M. HIV-1 persistence in CD4+T cells with stem cell-like properties [J]. Nat Med, 2014, 20(2): 139-142.
[5]Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, Robles YP, Davis BT, Li JZ, Heisey A, Hill AL, Busch MP, Armand P, Soiffer RJ, Altfeld M, Kuritzkes DR. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases [J]. Ann Intern Med, 2014, 161(5): 319-327.
[6]Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy [J]. Nature, 2012, 487(7408): 482-485.
[7]Beans EJ, Fournogerakis D, Gauntlett C, Heumann LV, Kramer R, Marsden MD, Murray D, Chun TW, Zack JA, Wender PA. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo [J]. Proc Natl Acad Sci USA, 2013, 110(29): 11698-11703.
[8]Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, Pandori M, Sinclair E, Günthard HF, Fischer M, Wong JK, Havlir DV. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy [J]. AIDS, 2010, 24(16): 2451-2460.
[9]Rouzioux C, Richman D. How to best measure HIV reservoirs? [J]. Curr Opin HIV AIDS, 2013, 8(3): 170-175.
[10]Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, Bosch RJ, Lai J, Chioma S, Emad F, Abdel-Mohsen M, Hoh R, Hecht F, Hunt P, Somsouk M, Wong J, Johnston R, Siliciano RF, Richman DD, O'Doherty U, Palmer S, Deeks SG, Siliciano JD. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies [J]. PLoS Pathog, 2013, 9(2): e1003174.
[11]Siliciano JD, Siliciano RF. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+T-cells carrying replication-competent virus in HIV-1-infected individuals [J]. Methods Mol Biol, 2005, 304: 3-15.
[12]Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, Siliciano JD, Siliciano RF. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay [J]. PLoS Pathog, 2013, 9(5): e1003398.
[13]Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, Coffin JM, Mellors JW. Quantification of HIV-1 latency reversal in resting CD4+T cells from patients on suppressive antiretroviral therapy [J]. Proc Natl Acad Sci USA, 2014, 111(19): 7078-7083.
[14]Rouzioux C, Mélard A, Avéttand-Féno?l V. Quantification of total HIV1-DNA in peripheral blood mononuclear cells [J]. Methods Mol Biol, 2014, 1087(1): 261-270.
[15]Hatano H, Delwart EL, Norris PJ, Lee TH, Dunn-Williams J, Hunt PW, Hoh R, Stramer SL, Linnen JM, Mccune JM, Martin JN, Busch MP, Deeks SG. Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy [J]. J Virol, 2009, 83(1): 329-335.
[16]Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, Kottilil S, Moir S, Mican JM, Mullins JI, Ward DJ, Kovacs JA, Mannon PJ, Fauci AS. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy [J]. J Infect Dis, 2008, 197(5): 714-720.
[17]Hatano H, Somsouk M, Sinclair E, Harvill K, Gilman L, Cohen M, Hoh R, Hunt PW, Martin JN, Wong JK, Deeks SG, Yukl SA. Comparison of HIV DNA and RNA in gut-associated lymphoid tissue of HIV-infected controllers and noncontrollers [J]. AIDS, 2013, 27(14): 2255-2260.
[18]Vogelstein B, Kinzler KW. Digital PCR [J]. Proc Natl Acad Sci USA, 1999, 96(16): 9236-9241.
[19]Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD. Highly precise measurement of HIV DNA by droplet digital PCR [J]. PLoS One, 2013, 8(4): e55943.
[20]Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation [J]. Nucleic Acids Res, 2012, 40(11): e82.
[21]White RA 3rd, Blainey PC, Fan HC, Quake SR. Digital PCR provides sensitive and absolute calibration for high throughput sequencing [J]. BMC Genomics, 2009, 10:116.
[22]Liszewski MK, Yu JJ, O’doherty U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR [J]. Methods, 2009, 47(4): 254-260.
[23]Vandegraaff N, Kumar R, Burrell CJ, Li P. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA [J]. J Virol, 2001, 75(22): 11253-11260.
[24]Chun TW, Carruth L, Finzi D, Shen XF, Digiuseppe JA, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditchcrovo PA. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection [J]. Nature, 1997, 387(6629): 183-188.
[25]Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection [J]. EMBO J, 2001, 20(12): 3272-3281.
[26]Farnet CM, Haseltine WA. Circularization of human immunodeficiency virus type 1 DNA in vitro [J]. J Virol, 1991, 65(12): 6942-6952.
[27]Buzón MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, Palmer S, Stevenson M, Clotet B, Blanco J, Martinez-Picado J. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects [J]. Nat Med, 2010, 16(4): 460-465.
[28]Pace MJ, Graf EH, O’doherty U. HIV 2-long terminal repeat circular DNA is stable in primary CD4+T Cells [J]. Virology, 2013, 441(1): 18-21.
[29]Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA, Mellors JW, Coffin JM. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma [J]. J Clin Microbiol, 2003, 41(10): 4531-4536.
[30]Dahl V, Peterson J, Spudich S, Lee E, Shacklett BL, Price RW, Palmer S. Single-copy assay quantification of HIV-1 RNA in paired cerebrospinal fluid and plasma samples from elite controllers [J]. AIDS, 2013, 27(7): 1145-1149.
[31]Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M, Chun TW, Strain M, Richman D, Luzuriaga K. Absence of detectable HIV-1 viremia after treatment cessation in an infant [J]. N Engl J Med, 2013, 369(19): 1828-1835.
[32]Routy JP, Boulassel MR, Nicolette CA, Jacobson JM. Assessing risk of a short-term antiretroviral therapy discontinuation as a read-out of viral control in immune-based therapy [J]. J Med Virol, 2012, 84(6): 885-889.
[33]Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1 [J]. Proc Natl Acad Sci USA, 2014, 111(37): 13475-13480.
[34]O’Doherty U, Swiggard WJ, Jeyakumar D, McGain D, Malim MH. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration [J]. J Virol, 2002, 76(21): 10942-10950.
[35]Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure [J]. Cell, 2013, 155(3): 540-551.
[36]Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, Persaud D, Gallant JE, Cofrancesco J Jr, Quinn TC, Wilke CO, Ray SC, Siliciano JD, Nettles RE, Siliciano RF. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+T cells [J]. J Virol, 2006, 80(13): 6441-6457.
[37]Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I; CHARTER Group. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study [J]. Neurology, 2010, 75(23): 2087-2096.
[38]Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, Choi AL, Girling V, Ho T, Li P, Fujimoto K, Lampiris H, Hare CB, Pandori M, Haase AT, Günthard HF, Fischer M, Shergill AK, Mcquaid K, Havlir DV, Wong JK. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy [J]. J Infect Dis, 2010, 202(10): 1553-1561.
[39]Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beilman GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M, Perelson AS, Douek DC, Haase AT, Schacker TW. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues [J]. Proc Natl Acad Sci USA, 2014, 111(6): 2307-2312.
為了促進及幫助本刊讀者提高專業(yè)英語寫作水平,本期刊出1句英文科技詞句,下一期將刊出其對應(yīng)的中文詞句,供讀者對比學(xué)習(xí)。
Malaria is the most important parasitic disease in people, and a major cause of morbidity and mortality in tropical regions. WHO has declared malaria control a global development priority and has changed its focus from containment and control to elimination. Drug resistance inPlasmodiumspecies poses a major obstacle. Resistance inPlasmodiumfalciparum, the main cause of malarial death, has rendered several first-line antimalarial drugs (first chloroquine, then sulfadoxine-pyrimethamine, and in some areas amodiaquine) largely ineffective.
Corresponding author. ZHANG Xiaoyan, E-mail:zhang_xycn2002@yahoo.com.cn
·綜述·
Research progress on measuring the latent reservoir of human immunodeficiency virus
JIN Shan, HE Yongquan, YANG Yu, ZHANG Xiaoyan
Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
Abstract:The latent viral reservoir in resting CD4+T cells is widely recognized as a major barrier to cure human immunodeficiency virus type 1 (HIV-1) infection. A high-throughput, reliable and sensitive assay that can accurately measure the true size of the viral reservoir is urgently needed. In this review, multiple measurement methods of HIV latent reservoir are summarized.
Key words:Human immunodeficiency virus; Reservoir; Quantitative detection
收稿日期:(2015-11-02)
通信作者:張曉燕
基金項目:“十二五”國家科技重大專項(2013ZX10001-002)