国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

核轉(zhuǎn)錄因子E2相關(guān)因子2和Keap1的分子結(jié)構(gòu)和功能及其信號(hào)通路調(diào)控分子機(jī)制研究進(jìn)展

2016-01-30 17:08王朝陽
關(guān)鍵詞:蛋白激酶結(jié)構(gòu)域氧化應(yīng)激

王朝陽,荊 黎

(首都醫(yī)科大學(xué)公共衛(wèi)生學(xué)院,北京100069)

核轉(zhuǎn)錄因子E2相關(guān)因子2和Keap1的分子結(jié)構(gòu)和功能及其信號(hào)通路調(diào)控分子機(jī)制研究進(jìn)展

王朝陽,荊 黎

(首都醫(yī)科大學(xué)公共衛(wèi)生學(xué)院,北京100069)

核轉(zhuǎn)錄因子E2相關(guān)因子(Nrf2)和抗氧化反應(yīng)元件(ARE)結(jié)合可啟動(dòng)多種抗氧化、抗炎蛋白和解毒酶的表達(dá)。Nrf2/ARE信號(hào)通路在機(jī)體抗氧化和抗外源有毒化學(xué)物損傷過程中發(fā)揮著重要的作用,不僅參與調(diào)節(jié)營(yíng)養(yǎng)物質(zhì)代謝等生理過程,也參與多種疾病的發(fā)病過程。本文綜述了Nrf2/ARE的生物學(xué)結(jié)構(gòu)和功能及其信號(hào)通路調(diào)控的分子機(jī)制。

核轉(zhuǎn)錄因子E2相關(guān)因子;氧化應(yīng)激;抗氧化反應(yīng)元件;調(diào)控機(jī)制

核轉(zhuǎn)錄因子E2相關(guān)因子2(nuclear factor ery?throid 2 related factor 2,Nrf2)/抗氧化反應(yīng)元件(antioxidant response element,ARE)信號(hào)通路是調(diào)控細(xì)胞內(nèi)氧化應(yīng)激水平的核心通路,直接影響細(xì)胞內(nèi)的氧化應(yīng)激水平,因而與多種疾病的發(fā)生密切相關(guān)[1-2]。該信號(hào)通路可調(diào)控多種靶基因的表達(dá),如Ⅱ相解毒酶、抗氧化酶、DNA修復(fù)酶、分子伴侶蛋白和抗炎蛋白等多種與氧化應(yīng)激和化學(xué)應(yīng)激相關(guān)的蛋白編碼基因,占人類基因總數(shù)的1%~10%[3-4]。Nrf2/ARE信號(hào)通路本身也受到機(jī)體的嚴(yán)密調(diào)控,該調(diào)控網(wǎng)絡(luò)的異常會(huì)導(dǎo)致多種疾病的發(fā)生。本文綜述其研究進(jìn)展,以闡明Nrf2/ARE信號(hào)通路調(diào)控的分子機(jī)制。

1 Nrf2的結(jié)構(gòu)和功能

Nrf2分子質(zhì)量為66 ku,具有堿性亮氨酸拉鏈結(jié)構(gòu)(basic leucine zipper,bZIP),是CNC(cap‘n’collar)轉(zhuǎn)錄因子家族中的重要成員,且轉(zhuǎn)錄活性最強(qiáng)[2]。1994年,Moi等[5]首先發(fā)現(xiàn)并克隆出Nrf2蛋白,由于Nrf2蛋白可結(jié)合到轉(zhuǎn)錄因子AP-1和NF-E2結(jié)合的共有序列上,故得名。除Nrf2外,CNC家族還包括P53,P45,Nrf1,Nrf3,Bach1和 Bach2[6-7]。Nrf2蛋白廣泛表達(dá)于肝、腎、心、肺、神經(jīng)組織、消化道上皮等多種組織細(xì)胞,由7個(gè)結(jié)構(gòu)域組成,分別為Neh 1~Neh 7[8]。Neh1包含1個(gè)CNC-bZIP結(jié)構(gòu),該結(jié)構(gòu)可與Maf蛋白結(jié)合形成異二聚體并與DNA上的ARE結(jié)合[9]。Neh2包含DLG和ETGE模體(motif),可招募Kelch樣環(huán)氧氯丙烷(ECH)相關(guān)蛋白-1(Kelch-like ECH-associated protein 1,Keap1)[10],從而負(fù)調(diào)控Nrf2的轉(zhuǎn)錄活性。Neh2突變可使Nrf2失去與Keap1的結(jié)合能力,導(dǎo)致Nrf2的持續(xù)活化[11]。Nrf2羧基端的Neh3可招募色素-ATP酶/螺旋酶DNA結(jié)合蛋白6,是Nrf2的反式激活結(jié)構(gòu)域[12]。Neh4和Neh5也是Nrf2的反式激活結(jié)構(gòu)域。Nrf2與Maf蛋白結(jié)合形成的二聚體即使與ARE結(jié)合也不能獨(dú)立地激活靶基因的轉(zhuǎn)錄,尚需通過Neh4和Neh5與其他轉(zhuǎn)錄輔助因子(如CREB結(jié)合蛋白、受體相關(guān)輔助激活因子)結(jié)合才能啟動(dòng)靶基因的轉(zhuǎn)錄[13]。Neh6包含DSGIS和DSAPGS模體,可借助DSGIS和DSAPGS與二聚體β轉(zhuǎn)導(dǎo)子重復(fù)包含蛋白結(jié)合從而負(fù)調(diào)控Nrf2的轉(zhuǎn)錄活性[14-16]。Neh7介導(dǎo)Nrf2與視黃酸X受體的物理性結(jié)合,這種結(jié)合可抑制Nrf2的轉(zhuǎn)錄活性[17]。

2 Keap1的結(jié)構(gòu)與功能

Keap1因與果蠅肌動(dòng)蛋白結(jié)合蛋白Kelch相似而得名[18]。是位于細(xì)胞質(zhì)中的Nrf2的負(fù)調(diào)控蛋白,可與Nrf2和細(xì)胞骨架蛋白(肌動(dòng)蛋白)結(jié)合,將Nrf2定位于細(xì)胞質(zhì)而無法進(jìn)入細(xì)胞核發(fā)揮其轉(zhuǎn)錄活性。Keap1包含624個(gè)氨基酸殘基,具有5個(gè)結(jié)構(gòu)域:NTR,BTB,IVR,DGR和CTR[8]。DGR可與Nrf2的Neh1結(jié)合,也可與肌動(dòng)蛋白結(jié)合[19]。BTB可介導(dǎo)Keap1形成同二聚體,BTB的第104位氨基酸高度保守,該氨基酸的突變可使Keap1無法形成二聚體。IVR結(jié)構(gòu)域富含半胱氨酸,是氧化劑和親電子劑的感受區(qū)。當(dāng)細(xì)胞內(nèi)氧化水平異常升高或細(xì)胞暴露于親電子劑時(shí),IVR結(jié)構(gòu)域的半胱氨酸殘基(Cys226,Cys273和Cys288)可與氧化劑或親電子劑反應(yīng),導(dǎo)致Keap1構(gòu)象的改變,與Nrf2分離,后者則進(jìn)入細(xì)胞核內(nèi),啟動(dòng)抗氧化基因或解毒酶基因的轉(zhuǎn)錄。除了IVR結(jié)構(gòu)域具有氧化劑和親電子劑感受性外,BTB結(jié)構(gòu)域的Cys151,DGR結(jié)構(gòu)域的Cys434和CTR結(jié)構(gòu)域的Cys613也可感受細(xì)胞內(nèi)的氧化應(yīng)激水平[20-24]。例如,當(dāng)暴露于氣態(tài)遞質(zhì)(gasotransmitter)硫化氫時(shí),Cys226可與Cys613形成二硫鍵,從而使Keap1構(gòu)象發(fā)生改變[25]。

3 Nrf2活性調(diào)控的分子機(jī)制

3.1 蛋白質(zhì)水平的活性調(diào)控

目前,多數(shù)觀點(diǎn)認(rèn)為細(xì)胞對(duì)Nrf2活性的調(diào)控主要發(fā)生在蛋白質(zhì)穩(wěn)定性水平。細(xì)胞在基礎(chǔ)狀態(tài)下即有足量Nrf2表達(dá),此時(shí)大部分Nrf2被Keap1介導(dǎo)的泛素化降解途徑所降解;氧化應(yīng)激時(shí),Keap1構(gòu)象改變,失去對(duì)Nrf2的降解作用,Nrf2由細(xì)胞質(zhì)進(jìn)入細(xì)胞核,發(fā)揮轉(zhuǎn)錄活性。此外,氧化應(yīng)激和化學(xué)應(yīng)激也可激活某些蛋白激酶,使Nrf2發(fā)生磷酸化而活化。

3.1.1 Keap1抑制Nrf2活性

Keap1是Nrf2活性調(diào)節(jié)的分子開關(guān)。生理狀態(tài)下,Keap1可通過C端的Kelch重復(fù)結(jié)構(gòu)域與Nrf2 N端的Neh2結(jié)構(gòu)域結(jié)合,將Nrf2錨定在微絲上,并可介導(dǎo)Nrf2的泛素化降解。Keap1的N端具有BTB結(jié)構(gòu)域,與其他具有BTB結(jié)構(gòu)域的蛋白一樣是滯蛋白(cullin)依賴性泛素連接酶E3的作用底物,可介導(dǎo)Nrf2的泛素化,并最終為26S蛋白酶體所降解。這個(gè)過程中Keap1起了連接Nrf2和Cul3-Rbx1-E3泛素連接酶復(fù)合體的作用[26]。綜上,生理狀態(tài)下Keap1通過將Nrf2錨定在細(xì)胞質(zhì)中及介導(dǎo)Nrf2的泛素化降解抑制Nrf2活性的。

當(dāng)細(xì)胞內(nèi)氧化物或自由基增多時(shí),或細(xì)胞暴露于親電子物質(zhì)時(shí),Keap1上的敏感氨基酸殘基(主要是半胱氨酸殘基)可與氧化劑、自由基或親電子劑反應(yīng),進(jìn)而導(dǎo)致Keap1構(gòu)象改變,失去與Nrf2的結(jié)合能力,后者則可游離并在Nrf2的Neh1結(jié)構(gòu)域核轉(zhuǎn)位信號(hào)的指導(dǎo)下由胞質(zhì)進(jìn)入胞核,在細(xì)胞核內(nèi)不斷蓄積并啟動(dòng)靶基因的轉(zhuǎn)錄。

關(guān)于Keap1和Nrf2的相互作用,目前提出了一個(gè)“鉸鏈與門閂”或兩位點(diǎn)底物識(shí)別的模型(hinge and latch或two-site substrate recognition model)[27]。該模型認(rèn)為Keap1同二聚體的Kelch結(jié)構(gòu)域可與Nrf2的Neh2結(jié)構(gòu)域N端的DLG模體和ETGE模體結(jié)合。Keap1與DLG的結(jié)合是弱結(jié)合(門閂),與ETGE的結(jié)合是強(qiáng)結(jié)合(鉸鏈),鉸鏈的強(qiáng)度是門閂的100倍[28]。每2個(gè)Keap1可結(jié)合1個(gè)Nrf2上的DLG和ETGE模體,這種結(jié)合可使位于這兩種模體之間的可接受泛素的7個(gè)氨基酸殘基排列成合適的構(gòu)象,以利于泛素的連接[29]。當(dāng)處于氧化或化學(xué)應(yīng)激時(shí),Keap1上的敏感氨基酸殘基發(fā)生反應(yīng),導(dǎo)致Keap1構(gòu)象改變,破壞了Kelch與DLG的弱結(jié)合(門閂破壞),但是Kelch與ETGE的強(qiáng)結(jié)合不受影響(鉸鏈保留)。此時(shí),Nrf2依然與Keap1結(jié)合,但是Nrf2的泛素化明顯減弱,結(jié)果導(dǎo)致Keap1被Nrf2飽和,新生成的Nrf2不斷地自胞質(zhì)進(jìn)入胞核,啟動(dòng)靶基因的轉(zhuǎn)錄。值得注意的是,當(dāng)Nrf2表達(dá)增加時(shí),Nrf2本身可誘導(dǎo)Keap1的表達(dá)。顯然這是Nrf2的一種負(fù)反饋調(diào)節(jié)機(jī)制,可能會(huì)防止Nrf2/ARE通路的過度活化或者有利于該通路的及時(shí)終止。

3.1.2 蛋白激酶激活Nrf2的活性

除了Keap1,多種蛋白激酶對(duì)Nrf2的磷酸化也可實(shí)現(xiàn)對(duì)Nrf2活性的快速調(diào)節(jié)。有研究指出,當(dāng)細(xì)胞內(nèi)ROS產(chǎn)生時(shí)可激活某些蛋白激酶,后者可直接作用于Nrf2,促使其發(fā)生磷酸化修飾和構(gòu)象改變,進(jìn)而與Keap1分離,進(jìn)入細(xì)胞核內(nèi)發(fā)揮轉(zhuǎn)錄活性。一種典型的使Nrf2發(fā)生磷酸化激活的物質(zhì)是岡田酸,它是一種高效的蛋白磷酸酶抑制劑,可高效地促使細(xì)胞內(nèi)蛋白質(zhì)發(fā)生磷酸化。岡田酸處理HepG2細(xì)胞能促進(jìn)Nrf2的核蓄積和含ARE轉(zhuǎn)基因的轉(zhuǎn)錄[30]。蛋白激酶C(protein kinase C,PKC)、細(xì)胞外信號(hào)調(diào)節(jié)激酶、PKR樣內(nèi)質(zhì)網(wǎng)激酶、PI3K和MAPK等均可使Nrf2發(fā)生磷酸化激活。目前研究比較清楚的是PKC可使位于Nrf2的Neh2結(jié)構(gòu)域上的Ser40發(fā)生磷酸化,導(dǎo)致Nrf2與Keap1的解離[31]。已經(jīng)證明Ser40是PKC的作用靶點(diǎn),因?yàn)橛肁la40置換Ser40后,PKC對(duì)Nrf2的激活作用明顯減弱[32]。但如以Glu40代替Ser40,即使沒有PKC,也會(huì)出現(xiàn)Nrf2磷酸化的系列表現(xiàn),Nrf2在細(xì)胞核內(nèi)大量蓄積[33]。但并非所有的蛋白激酶對(duì)于Nrf2的磷酸化都是產(chǎn)生激活效應(yīng)的,這可能與磷酸化位點(diǎn)的不同有關(guān)。酪氨酸蛋白激酶Fyn可使Nrf2的Tyr568發(fā)生磷酸化,進(jìn)而促使Nrf2從細(xì)胞核移出[34]。因此,不同蛋白激酶對(duì)Nrf2不同位點(diǎn)氨基酸殘基的磷酸化修飾可能導(dǎo)致Nrf2的激活或抑制,充當(dāng)了Nrf2活性的分子開關(guān)。值得指出的是,各種蛋白激酶對(duì)Nrf2活性的調(diào)節(jié)只是一種“微調(diào)”,因?yàn)楫?dāng)敲除Keap1基因或使用siRNA技術(shù)沉默Keap1時(shí),Nrf2和下游靶基因處于持續(xù)的活化狀態(tài),此時(shí)蛋白激酶誘導(dǎo)劑刺激Nrf2活化的作用并不能顯現(xiàn)出來。這說明Keap1對(duì)Nrf2活性的調(diào)節(jié)可能是一種最為重要的總體調(diào)節(jié),而蛋白激酶對(duì)Nrf2活性的調(diào)節(jié)可能只是一種精細(xì)的微調(diào)[35]。

3.1.3 其他蛋白質(zhì)因子對(duì)Nrf2活性的調(diào)控

細(xì)胞對(duì)Nrf2活性調(diào)節(jié)最主要的方式是Keap1的抑制和蛋白激酶的活化作用,此外還有許多蛋白因子可影響Nrf2的活性。Bach1與Nrf2一樣也屬于CNC-bZIP轉(zhuǎn)錄因子家族,廣泛表達(dá)于各種組織細(xì)胞。Bach1也可與Maf蛋白結(jié)合,Bach1-Maf蛋白復(fù)合物也可識(shí)別并結(jié)合ARE,但卻不能啟動(dòng)ARE下游基因的轉(zhuǎn)錄,從而競(jìng)爭(zhēng)性地抑制Nrf2與Maf蛋白的結(jié)合及Nrf2-Maf復(fù)合物與ARE結(jié)合,最終抑制ARE靶基因的轉(zhuǎn)錄。當(dāng)細(xì)胞處于氧化應(yīng)激狀態(tài)時(shí),Bach1基于某種未知的機(jī)制,與Maf蛋白解離并移出胞核降解。此時(shí)Nrf2與Keap1解離,移入胞核,并與Maf蛋白形成復(fù)合物,與靶基因上游的ARE結(jié)合啟動(dòng)靶基因的轉(zhuǎn)錄?,F(xiàn)在已經(jīng)知道,Bach1可與Nrf2靶基因之一的血紅素加氧酶1基因的ARE結(jié)合,抑制人類和小鼠的血紅素加氧酶1基因轉(zhuǎn)錄[36]。還有研究指出Nrf2對(duì)血紅素加氧酶1的轉(zhuǎn)錄啟動(dòng)作用是以Bach1的出核降解為前提的[37]。當(dāng)進(jìn)入細(xì)胞核內(nèi)的Nrf2增多時(shí),可誘導(dǎo)Bach1的重新合成和入核,進(jìn)而抑制Nrf2的活性[36]。顯然,Nrf2的這種負(fù)反饋調(diào)節(jié)作用有利于Nrf2/ARE信號(hào)通路的及時(shí)終止和避免Nrf2活性的劇烈波動(dòng)。Chen等[38]發(fā)現(xiàn)P21蛋白可通過其KRR模體直接與Nrf2的DLG模體和ETGE模體相互作用,增加Nrf2蛋白的穩(wěn)定性;由于可與Keap1競(jìng)爭(zhēng)性地結(jié)合Nrf2,因而還可減少Keap1介導(dǎo)的Nrf2泛素化降解。事實(shí)上,細(xì)胞內(nèi)還具有許多蛋白質(zhì)因子(P62/SQSTM1,二肽基肽酶3/DPP3等)可通過競(jìng)爭(zhēng)性地結(jié)合Keap1而使Nrf2活化,這可能是基礎(chǔ)狀態(tài)下Nrf2/ARE信號(hào)通路仍然具有部分活性的原因。

3.2 Nrf2活性調(diào)控的表觀遺傳學(xué)機(jī)制

Nrf2活性調(diào)控主要發(fā)生在蛋白質(zhì)水平,但是近年來發(fā)現(xiàn)Nrf2的表觀遺傳學(xué)調(diào)控也可能具有重要意義。盡管Nrf2廣泛表達(dá)于多種組織細(xì)胞,但不同類型細(xì)胞的Nrf2 mRNA表達(dá)水平卻相差很大[39],造成這種差異的原因尚不清楚。但在前列腺腫瘤發(fā)生過程中,發(fā)現(xiàn)Nrf2的表達(dá)量顯著降低,這是因?yàn)樵贜rf2的啟動(dòng)子區(qū)域具有5個(gè)CpG序列,這些CpG序列發(fā)生了高度的甲基化[40]。由此可推測(cè),不同類型正常細(xì)胞的Nrf2表達(dá)差異也可能與表觀遺傳學(xué)調(diào)控有關(guān)。目前關(guān)于Nrf2表觀遺傳學(xué)調(diào)控的研究并不多,這里主要介紹Nrf2啟動(dòng)子多態(tài)性和miRNA對(duì)Nrf2表達(dá)水平的調(diào)節(jié)及機(jī)制。

3.2.1 Nrf2啟動(dòng)子多態(tài)性對(duì)Nrf2表達(dá)的影響

研究發(fā)現(xiàn),小鼠Nrf2基因啟動(dòng)子區(qū)域的單核苷酸多態(tài)性可影響Nrf2基因的表達(dá),該多態(tài)性位點(diǎn)位于轉(zhuǎn)錄起始點(diǎn)上游-336 bp的位置,與不同品系小鼠對(duì)急性肺損傷的易感性差異有關(guān)[41]。值得注意的是,在人類NRF2基因啟動(dòng)子區(qū)域也發(fā)現(xiàn)了一個(gè)單核苷酸多態(tài)性調(diào)控Nrf2表達(dá)的例子,該單核苷酸多態(tài)性位于一個(gè)ARE樣序列(rs6721961)中,與人Nrf2表達(dá)量降低和對(duì)肺損傷易感性增加有關(guān)[42]。

3.2.2 miRNA對(duì)Nrf2表達(dá)的調(diào)控

miRNA可抑制Nrf2 mRNA的翻譯過程,這是因?yàn)檫@些miRNA可與Nrf2 mRNA的3′非翻譯區(qū)互補(bǔ)配對(duì),降低Nrf2 mRNA的穩(wěn)定性并阻遏其翻譯過程。迄今,所有miRNA對(duì)Nrf2表達(dá)水平影響的實(shí)驗(yàn)都是體外人為增加某種miRNA的表達(dá)水平,觀察到Nrf2 mRNA和蛋白表達(dá)量降低。但在自然狀態(tài)下,miRNA對(duì)Nrf2表達(dá)水平是否有影響,以及這種調(diào)控作用在所有Nrf2活性調(diào)控機(jī)制中的相對(duì)重要性仍有待進(jìn)一步研究。細(xì)胞實(shí)驗(yàn)證實(shí),在人MCF-7乳腺癌細(xì)胞中異位表達(dá)miR-28可以降低Nrf2 mRNA和蛋白的表達(dá)量[43];在人SH-SY5Y神經(jīng)母細(xì)胞瘤細(xì)胞中過表達(dá)miR-27a,miRNA-142-5p,miRNA-144及miR-153也可降低Nrf2 mRNA和蛋白的表達(dá)量[44];同樣,在人MCF-10A和T47D乳腺癌細(xì)胞中過表達(dá)miR-93,可降低Nrf2 mRNA和蛋白的表達(dá)[45]。目前關(guān)于lncRNA對(duì)Nrf2表達(dá)水平調(diào)控的研究很少,但是與miRNA類似,lncRNA很可能也參與了Nrf2活性的表觀遺傳學(xué)調(diào)控,因而需要更深入的探索和研究。

總的來看,Nrf2活性的表觀遺傳學(xué)調(diào)控可能是一種對(duì)Nrf2活性的長(zhǎng)期調(diào)控或基礎(chǔ)調(diào)控,對(duì)外界環(huán)境因子的敏感性和反應(yīng)性可能不及Keap1或蛋白激酶。Keap1和蛋白激酶對(duì)Nrf2活性的調(diào)控是一種直接、迅速、即時(shí)的調(diào)控,對(duì)于細(xì)胞應(yīng)對(duì)氧化應(yīng)激和化學(xué)應(yīng)激可能更為重要。

3.3 小分子化學(xué)物對(duì)Nrf2活性的調(diào)控

Nrf2/ARE信號(hào)通路與多種疾病密切相關(guān),是很有前景的藥物作用靶點(diǎn)。目前已有許多可調(diào)節(jié)Nrf2活性的天然和人工合成化學(xué)物。它們可分為Nrf2活性激活劑和抑制劑2類。值得指出的是,這些小分子化學(xué)物對(duì)Nrf2活性的調(diào)節(jié)多是間接性和激活性的。今后需要加大直接調(diào)節(jié)Nrf2活性和抑制Nrf2活性小分子化學(xué)物的研究,因?yàn)橐延醒芯勘砻?,Nrf2過度活化與腫瘤細(xì)胞的耐藥性有關(guān),利用Nrf2的抑制劑可增加腫瘤細(xì)胞對(duì)藥物的敏感性??箟难崾且环N高效的抗氧化劑,可降低細(xì)胞內(nèi)過氧化物水平,最終抑制Nrf2與GCL基因啟動(dòng)子區(qū)域的ARE結(jié)合。用抗壞血酸處理具有伊馬替尼抗性的細(xì)胞系KCL22/SR導(dǎo)致細(xì)胞谷胱甘肽水平降低和對(duì)伊馬替尼敏感性的增強(qiáng)。KCL22/SR細(xì)胞對(duì)伊馬替尼敏感性的增強(qiáng)至少部分是由于抗壞血酸對(duì)Nrf2活性的抑制[46],但抗壞血酸對(duì)Nrf2活性的抑制顯然是一種間接依賴Keap1的方式。Wang等[47]發(fā)現(xiàn)全反式視黃酸可顯著抑制Nrf2的活性,其機(jī)制是在全反式視黃酸的存在下,Nrf2可與視黃酸受體α形成Nrf2-視黃酸受體α復(fù)合體,因而無法與靶基因啟動(dòng)子區(qū)域的ARE結(jié)合。最近Olayanju等[48]發(fā)現(xiàn)一種苦木苦味素化合物鴉膽子苦醇(brusatol)能迅速和一過性地降低Nrf2蛋白質(zhì)水平,且證明這種抑制是發(fā)生在Nrf2轉(zhuǎn)錄后水平(即只有Nrf2蛋白表達(dá)降低,而Nrf2 mRNA表達(dá)并未下降),是Keap1、蛋白激酶等非依賴性的,但是鴉膽子苦醇導(dǎo)致Nrf2蛋白表達(dá)降低的具體機(jī)制尚不清楚。木犀草素(lute?olin)是一種黃酮類植物化學(xué)物,可以氧化-還原非依賴性方式抑制ARE基因的表達(dá)[49]。已知非小細(xì)胞性肺癌A549中Nrf2組成型活化,木犀草素處理細(xì)胞后能顯著降低Nrf2的mRNA和蛋白質(zhì)水平,致使Nrf2無法入核與ARE結(jié)合,進(jìn)而下調(diào)ARE基因的表達(dá)。木犀草素的這種作用可能與其加速Nrf2 mRNA的降解有關(guān)。但是,Lin等[50]卻在PC12細(xì)胞中得出了完全相反的結(jié)論,在PC12細(xì)胞中木犀草素能促進(jìn)血紅素加氧酶-1 mRNA和蛋白質(zhì)的表達(dá),抑制細(xì)胞凋亡,增加Nrf2與ARE的結(jié)合。事實(shí)上,目前對(duì)抑制Nrf2活性的小分子化學(xué)物的研究很少且爭(zhēng)議頗多。今后需加強(qiáng)這方面的研究,如通過高通量篩選和基于結(jié)構(gòu)的藥物設(shè)計(jì)等方法開發(fā)安全、高效、可逆的Nrf2小分子抑制劑,以便于實(shí)驗(yàn)室和臨床上的應(yīng)用。

4 Nrf2/ARE信號(hào)通路調(diào)控的靶基因

4.1 抗氧化蛋白/酶類基因

Nrf2/ARE信號(hào)通路是氧化應(yīng)激時(shí)機(jī)體激活的最主要的通路,可激活許多抗氧化蛋白/酶類的表達(dá)。抗氧化蛋白/酶類可有效代謝各種自由基、ROS及其他過氧化物,避免過氧化物對(duì)細(xì)胞的損傷,有利于細(xì)胞在氧化應(yīng)激狀態(tài)下的存活?,F(xiàn)已證明,Nrf2/ARE通路激活的抗氧化酶類有血紅素加氧酶1、過氧化氫酶、超氧化物歧化酶、γ-谷氨酰半胱氨酸合成酶、谷胱甘肽還原酶2和4和依賴還原型輔酶Ⅱ/醌氧還蛋白1等,這些酶類都具有抗氧化功能,能減少過氧化物的產(chǎn)生或加速過氧化物、自由基的清除。Nrf2/ARE通路激活的抗氧化蛋白很多,主要包括過氧化氧還蛋白1和6、巰基氧還蛋白1、硫氧還蛋白(thioredoxin)和谷胱甘肽等。它們對(duì)于清除自由基、避免生物大分子氧化損傷具有重要意義[8]。

4.2 解毒酶類基因

Nrf2/ARE信號(hào)通路也是化學(xué)應(yīng)激時(shí)機(jī)體激活的主要通路,可以激活許多代謝、轉(zhuǎn)運(yùn)、排泄有毒化學(xué)物的蛋白和酶類,有利于細(xì)胞在化學(xué)應(yīng)激狀態(tài)下的存活。Nrf2促進(jìn)轉(zhuǎn)錄的解毒酶類包含了Ⅰ,Ⅱ和Ⅲ相解毒酶[8],Ⅰ相解毒酶主要是催化外源化學(xué)物的氧化、還原和水解反應(yīng),可以直接破壞毒物的結(jié)構(gòu),降低毒性。Ⅱ相解毒酶主要催化外源化學(xué)物或外源化學(xué)物經(jīng)Ⅰ相解毒酶代謝的中間產(chǎn)物的結(jié)合反應(yīng),增加化學(xué)物的水溶性,促進(jìn)其排出體外。Ⅲ相解毒實(shí)質(zhì)上是細(xì)胞將細(xì)胞內(nèi)的外源化學(xué)物泵出細(xì)胞的過程,主要由一些依賴ATP的主動(dòng)轉(zhuǎn)運(yùn)蛋白承擔(dān)。

5 結(jié)語

Nrf2/ARE信號(hào)通路是機(jī)體應(yīng)對(duì)氧化應(yīng)激和化學(xué)應(yīng)激的主要通路,參與細(xì)胞增殖、三大營(yíng)養(yǎng)物質(zhì)代謝、細(xì)胞凋亡和衰老等多種生物學(xué)過程,與腫瘤、心血管疾病、糖尿病、慢性阻塞性肺病、肝腎疾病和炎癥等多種疾病的發(fā)生密切相關(guān)。該通路主要受胞漿蛋白Keap1和各種蛋白激酶信號(hào)通路的調(diào)控,而表觀遺傳學(xué)調(diào)控也具有一定的意義,這方面的研究較少,需要進(jìn)一步的探索。Nrf2活化的靶基因絕大多數(shù)都是細(xì)胞保護(hù)基因,可促進(jìn)細(xì)胞存活,避免細(xì)胞受到損害,因而是很有前景的藥物作用靶點(diǎn)。

[1]Sayre LM,Perry G,Smith MA.Oxidative stress and neurotoxicity[J].Chem Res Toxicol,2008,21(1):172-188.

[2]Yu X,Kensler T.Nrf2 as a target for cancer che?moprevention[J].Mutat Res,2005,591(1-2):93-102.

[3]Tkachev VO,Menshchikova EB,Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling sys?tem[J].Biochemistry(Mosc),2011,76(4):407-422.

[4]Li J,Lee JM,Johnson JA.Microarray analysis re?veals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells[J].J BiolChem,2002,277(1):388-394.

[5]Moi P,Chan K,Asunis I,Cao A,Kan YW.Isola?tion of NF-E2-related factor 2(Nrf2),a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region[J].Proc Natl Acad SciUSA,1994,91(21):9926-9930.

[6]Sykiotis GP,Bohmann D.Stress-activated cap‘n’collar transcription factors in aging and human dis?ease[J].SciSignal,2010,3(112):re3.

[7]Chevillard G,Blank V.NFE2L3(NRF3):the Cin?derella of the cap‘n’collar transcription factors[J].Cell MolLife Sci,2011,68(20):3337-3348.

[8]Hayes JD,Dinkova-Kostova AT.The Nrf2 regula?tory network provides an interface between redox and intermediary metabolism[J].Trends Bio?chem Sci,2014,39(4):199-218.

[9]Hirotsu Y,Katsuoka F,F(xiàn)unayama R,Nagashima T,Nishida Y,Nakayama K,et al.Nrf2-MafG het?erodimers contribute globally to antioxidant and metabolic networks[J].Nucleic Acids Res,2012,40(20):10228-10239.

[10]Tong KI,Katoh Y,KusunokiH,Itoh K,Tanaka T,Yamamoto M.Keap1 recruits Neh2 through bind?ing to ETGE and DLG motifs:characterization of the two-site molecular recognition model[J].Mol CellBiol,2006,26(8):2887-2900.

[11]Nioi P,Mcmahon M,Itoh K,Yamamoto M,Hayes JD.Identification of a novel Nrf2-regulated antioxidant response element(ARE)in the mouse NAD(P)H:quinone oxidoreductase 1 gene:reassessment of the ARE consensus se?quence[J].Biochem J,2003,374(Pt2):337-348.

[12]Hayes JD,Mcmahon M.NRF2 and KEAP1 muta?tions:permanent activation of an adaptive re?sponse in cancer[J].Trends Biochem Sci,2009,34(4):176-188.

[13]Kim JH,Yu S,Chen JD,Kong AN.The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signal? ing by interacting with transactivation domains[J].Oncogene,2013,32(4):514-527.

[14]Rada P,Rojo AI,Chowdhry S,Mcmahon M,Hayes JD,Cuadrado A.SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner[J].Mol Cell Biol,2011,31(6):1121-1133.

[15]Rada P,Rojo AI,Evrard-Todeschi N,Innamora?to NG,Cotte A,Jaworski T,et al.Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis[J]. MolCell Biol,2012,32(17):3486-3499.

[16]Chowdhry S,Zhang Y,Mcmahon M,Sutherland C,Cuadrado A,Hayes JD.Nrf2 is controlled by two distinctβ-TrCP recognition motifs in its Neh6 domain,one ofwhich can be modulated by GSK-3 activity[J].Oncogene,2013,32(32):3765-3781.

[17]Wang H,Liu K,Geng M,Gao P,Wu X,Hai Y,et al.RXRαinhibits the NRF2-ARE signaling path?way through a direct interaction with the Neh7 do?main of NRF2[J].Cancer Res,2013,73(10):3097-3108.

[18]Kobayashi M,Itoh K,Suzuki T,Osanai H,Nishi?kawa K,Katoh Y,et al.Identification of the inter?active interface and phylogenic conservation of the Nrf2-Keap1 system[J].Genes Cells,2002,7(8):807-820.

[19]Kang MI,Kobayashi A,Wakabayashi N,Kim SG,Yamamoto M.Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes[J]. Proc NatlAcad SciUSA,2004,101(7):2046-2051.

[20]Dinkova-Kostova AT,Holtzclaw WD,Cole RN,Itoh K,Wakabayashi N,Katoh Y,et al.Direct ev?idence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants[J].Proc Natl Acad Sci USA,2002,99(18):11908-11913.

[21]Zhang DD,Hannink M.Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiq?uitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress[J]. MolCell Biol,2003,23(22):8137-8151.

[22]Kobayashi M,Li L,Iwamoto N,Nakajima-Takagi Y,Kaneko H,Nakayama Y,et al.The antioxi?dant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds[J].Mol CellBiol,2009,29(2):493-502.

[23]Fourquet S,Guerois R,Biard D,Toledano MB. Activation of NRF2 by nitrosative agents and H2O2involves KEAP1 disulfide formation[J].J Biol Chem,2010,285(11):8463-8471.

[24]Mcmahon M,Lamont DJ,Beattie KA,Hayes JD. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide,zinc,and alkenals[J].Proc Natl Acad Sci USA,2010,107(44):18838-18843.

[25]Hourihan JM,Kenna JG,Hayes JD.The gaso?transmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613[J].Antioxid Redox Signal,2013,19(5):465-481.

[26]Nguyen T,Yang CS,Pickett CB.The pathways and molecular mechanisms regulating Nrf2 activa?tion in response to chemicalstress[J].Free Rad?ic BiolMed,2004,37(4):433-441.

[27]Mcmahon M,Thomas N,Itoh K,Yamamoto M,Hayes JD.Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a″tethering″mechanism:a two-site interaction model for the Nrf2-Keap1 complex[J].J Biol Chem,2006,281(34):24756-24768.

[28]Tong KI,Katoh Y,KusunokiH,Itoh K,Tanaka T,Yamamoto M.Keap1 recruits Neh2 through bind?ing to ETGE and DLG motifs:characterization of the two-site molecular recognition model[J].Mol CellBiol,2006,26(8):2887-2900.

[29]Zhang DD,Lo SC,Cross JV,Templeton DJ,Hannink M.Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex[J].Mol Cell Biol,2004,24(24):10941-10953.

[30]Okawa H,MotohashiH,KobayashiA,AburataniH,Kensler TW,Yamamoto M.Hepatocyte-specific deletion ofthe keap1 gene activates Nrf2 and con?fers potent resistance against acute drug toxicity[J].Biochem Biophys Res Commun,2006,339(1):79-88.

[31]Huang HC,Nguyen T,Pickett CB.Regulation of the antioxidant response element by protein ki?nase C-mediated phosphorylation of NF-E2-relat?ed factor 2[J].Proc Natl Acad Sci USA,2000,97(23):12475-12480.

[32]Bloom DA,Jaiswal AK.Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to anti?oxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumula?tion in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression[J].J BiolChem,2003,278(45):44675-44682.

[33]Numazawa S,Ishikawa M,Yoshida A,Tanaka S,Yoshida T.Atypicalprotein kinase C mediates ac?tivation of NF-E2-related factor 2 in response to oxidative stress[J].Am J Physiol Cell Physiol,2003,285(2):C334-C342.

[34]Kaspar JW,Jaiswal AK.Tyrosine phosphoryla?tion controls nuclear export of Fyn,allowing Nrf2 activation of cytoprotective gene expression[J]. FASEB J,2011,25(3):1076-1087.

[35]Baird L,Dinkova-Kostova AT.The cytoprotective role of the Keap1-Nrf2 pathway[J].Arch Toxi?col,2011,85(4):241-272.

[36]Jyrkk?nen HK,Kuosmanen S,Hein?niemi M,Laitinen H,Kansanen E,Mella-Aho E,et al. Novel insights into the regulation of antioxidantresponse-element-mediated gene expression by electrophiles:induction of the transcriptional re?pressor BACH1 by Nrf2[J].Biochem J,2011,440(2):167-174.

[37]Reichard JF,Motz GT,Puga A.Heme oxygen?ase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1[J].Nucleic Acids Res,2007,35(21):7074-7086.

[38]Chen W,Sun Z,Wang XJ,Jiang T,Huang Z,F(xiàn)ang D,et al.Direct interaction between Nrf2 and p21(Cip1/WAF1)upregulates the Nrf2-medi?ated antioxidant response[J].Mol Cell,2009,34(6):663-673.

[39]McMahon M,Itoh K,Yamamoto M,Chanas SA,Henderson CJ,McLellan LI,et al.The Cap’n’Collar basic leucine zipper transcription factor Nrf2(NF-E2 p45-related factor 2)controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes[J].Cancer Res,2001,61(8):3299-3307.

[40]Yu S,Khor TO,Cheung KL,Li W,Wu TY,Huang Y,et al.Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice[J].PLoS One,2010,5(1):e8579.

[41]Cho HY,Jedlicka AE,Reddy SP,Zhang LY,Kensler TW,Kleeberger SR.Linkage analysis of susceptibility to hyperoxia.Nrf2 is a candidate gene[J].Am J Respir Cell Mol Biol,2002,26(1):42-51.

[42]SuzukiT,Shibata T,Takaya K,ShiraishiK,KohnoT,Kunitoh H,et al.Regulatory nexus of synthe?sis and degradation deciphers cellular Nrf2 ex?pression levels[J].Mol Cell Biol,2013,33(12):2402-2412.

[43]Yang M,Yao Y,Eades G,Zhang Y,Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism[J].Breast Cancer Res Treat,2011,129(3):983-991.

[44]Narasimhan M,PatelD,Vedpathak D,Rathinam M,Henderson G,Mahimainathan L.Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal,SH-SY5Y cells[J].PLoS One,2012,7(12):e51111.

[45]Singh B,Ronghe AM,Chatterjee A,Bhat NK,Bhat HK.MicroRNA-93 regulates NRF2 expres?sion and is associated with breast carcinogenesis[J].Carcinogenesis,2013,34(5):1165-1172.

[46]Tarumoto T,Nagai T,Ohmine K,Miyoshi T,Nakamura M,Kondo T,et al.Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinibresistantcellline[J].Exp Hematol,2004,32(4):375-381.

[47]Wang XJ,Hayes JD,Henderson CJ,Wolf CR. Identification of retinoic acid as an inhibitor oftran?scription factor Nrf2 through activation of retinoic acid receptor alpha[J].Proc Natl Acad Sci USA,2007,104(49):19589-19594.

[48]Olayanju A,Copple IM,Bryan HK,Edge GT,Si?son RL,Wong MW,et al.Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicityimplications for therapeutic targeting of Nrf2[J]. Free Radic BiolMed,2015,78:202-212.

[49]Tang X,Wang H,F(xiàn)an L,Wu X,Xin A,Ren H,et al.Luteolin inhibits Nrf2 leading to negative reg?ulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeu?tic drugs[J].Free Radic Biol Med,2011,50(11):1599-1609.

[50]Lin CW,Wu MJ,Liu IY,Su JD,Yen JH.Neuro?trophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression[J].J Agric Food Chem,2010,58(7):4477-4486.

Research progress in molecular structure and function of nuclear factor erythroid 2 related factor 2 and Keap1 and regulation mechanism of signalpathways

WANG Zhao-yang,JING Li
(Schoolof Public Health,CapitalMedica lUniversity,Beijing 100069,China)

The binding of the nuclear factor erythroid 2 related factor 2(Nrf2)to the antioxidant response elements(ARE)can start the expression of batches of antioxidant proteins,anti-inflammatory factors and detoxification enzymes.Nrf2/ARE signalling plays a pivotalrole in anti-inflammation and in preventing xenobiotics induced lesions.Besides involvenment in physiological processes,such as regulating nutrient metabolism,Nrf2/ARE signalling also functions in the pathogenesis ofvarious dieases. This review outlines the strcuture,functions,and regulation of Nrf2/ARE signalpathways.

nuclear factor erythroid 2 related factor 2;oxidative sress;antioxidantresponse ele?ment;regulation mechanism

The projectsupported by NationalNaturalScience Foundation of China(81202608)

JING Li,E-mail:jingli12@163.com

R963

A

1000-3002-(2016)05-0598-07

10.3867/j.issn.1000-3002.2016.05.018

2015-09-07接受日期:2015-11-12)

(本文編輯:齊春會(huì))

國(guó)家自然科學(xué)基金項(xiàng)目(81202608)

王朝陽,碩士研究生,Tel:18811625182,E-mail:18611000168@163.com

荊黎,Tel:15810500163,E-mail:Jingli12@ 163.com

猜你喜歡
蛋白激酶結(jié)構(gòu)域氧化應(yīng)激
細(xì)菌四類胞外感覺結(jié)構(gòu)域的概述
UBR5突變與淋巴瘤B細(xì)胞成熟
解析參與植物脅迫應(yīng)答的蛋白激酶—底物網(wǎng)絡(luò)
基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
戊己散對(duì)腹腔注射甲氨蝶呤大鼠氧化應(yīng)激及免疫狀態(tài)的影響
基于氧化應(yīng)激探討參附注射液延緩ApoE-/-小鼠動(dòng)脈粥樣硬化的作用及機(jī)制
鈣離子/鈣調(diào)蛋白依賴性蛋白激酶Ⅱδ參與多柔比星導(dǎo)致的心肌細(xì)胞毒性反應(yīng)
乙肝病毒S蛋白對(duì)人精子氧化應(yīng)激的影響
PTPMeg2的PTP結(jié)構(gòu)域?qū)α姿峄疭TAT3入核的抑制作用
絲裂原活化蛋白激酶磷酸酶-1在人胰腺癌組織中的表達(dá)

中國(guó)藥理學(xué)與毒理學(xué)雜志2016年5期

中國(guó)藥理學(xué)與毒理學(xué)雜志的其它文章
蟾酥心臟毒性研究進(jìn)展