劉曉艷 阮黎明
·綜述·
miR-31的腫瘤調(diào)控作用
劉曉艷 阮黎明
miR-31;腫瘤;調(diào)控作用
microRNA(miRNA)是一類長20~25nt的單鏈非編碼RNA分子,廣泛存在于從植物、線蟲到人類的細胞中。目前最新的miRNA數(shù)據(jù)庫(miRBase)版本號是21.0(2014.6,www.mirbase.org),涵蓋了223個物種、共35 828條成熟miRNA序列。miRNA通過與靶mRNA的互補配對在轉(zhuǎn)錄后水平對基因表達進行調(diào)控,導致mRNA的降解或翻譯抑制,參與包括細胞增殖凋亡、細胞分化、發(fā)育和逆境應答等所有已驗證的生物學過程,以及許多病毒致病和腫瘤發(fā)生的過程。研究表明,miRNA在人類的癌癥中扮演著至關(guān)重要的角色,可能起到癌基因或抑癌基因的作用[1-2],被稱做“腫瘤性miRNA(oncomirs)”或“腫瘤抑制性miRNA(tumour suppressor miRNA)”。本文綜述miR-31在不同腫瘤中的作用、其調(diào)控的靶基因及其功能,以及miR-31自身的表達調(diào)控機制的研究進展。
通常編碼miRNA基因位于基因區(qū)間區(qū)域,有的位于基因的內(nèi)含子中,甚至是EST序列內(nèi)?;蜣D(zhuǎn)錄產(chǎn)生的初始Pri-miRNA在細胞核中被Drosha切成70nt左右莖環(huán)狀的Pre-miRNA。Pre-miRNA由核質(zhì)/細胞質(zhì)轉(zhuǎn)運蛋白Exportin-5運輸?shù)桨|(zhì)中,被Dicer酶剪切成22nt的雙鏈miRNA,這段序列定位于PremiRNA的3’端或5’端。其中1條形成RNA誘導基因沉默復合物(RNA induced silencing complex,RISC),后者結(jié)合到靶mRNA的3’非翻譯區(qū)(UTR),阻斷靶基因的翻譯[3-4]。在大多數(shù)情況下成熟miRNA和靶mRNA序列不完全互補,miRNA和它的目的mRNA互補的堿基配對決定了這個過程的特異性,miRNAs可以與不完全互補的目的mRNA3’UTR配對來抑制蛋白質(zhì)的翻譯,也可以與UTR完全互補而使目的mRNA降解[5]。
人類miR-31是由位于9p21.3的基因編碼,在一系列組織和細胞中表達,而且在脊椎動物和果蠅中,miR-31是廣泛保守的miRNA“種子家族”的成員,其擁有獨特的8個核苷酸序列而發(fā)揮miRNA的特異性靶向調(diào)控作用[6]。
miR-31在多能祖細胞和干細胞中呈差異表達并在細胞分化中發(fā)揮調(diào)控作用。研究[7]發(fā)現(xiàn),miR-31是參與成骨分化的人非限制性體干細胞中三個表達下調(diào)的miRNAs分子之一。在間充質(zhì)干細胞中加入外源性骨形態(tài)發(fā)生蛋白2(BMP-2)能夠刺激miR-31的表達,其異常表達阻斷了間充質(zhì)干細胞向脂肪細胞的分化[8]。miR-31能夠直接靶向叉頭框蛋白3 (FOXP3)轉(zhuǎn)錄因子,后者在T細胞的分化和活化中發(fā)揮主要調(diào)控作用,因此推測miR-31通過抑制FOXP3轉(zhuǎn)錄因子的表達水平而拮抗Treg細胞的表型[9]。腫瘤壞死因子(TNF)能夠增強miR-31的表達而導致內(nèi)皮黏附分子E-選擇素表達下調(diào),進而抑制內(nèi)皮細胞和中性粒細胞間的相互作用,最終觸發(fā)炎癥信號通路的負性反饋控制[10]。
在miRBase關(guān)于miR-31(MI0000089)的注釋中將miR-31定義為腫瘤抑制性miRNA,該定義的產(chǎn)生基于miR-31在轉(zhuǎn)移性乳腺癌中多重抗轉(zhuǎn)移效應的經(jīng)典研究。研究[11]發(fā)現(xiàn),miR-31表達的高低和15株乳腺癌細胞的侵襲能力以及臨床上原發(fā)性乳腺癌患者發(fā)生可測的遠處轉(zhuǎn)移灶時間的早晚呈負相關(guān)。在高侵襲性乳腺癌細胞中過表達miR-31能夠抑制腫瘤的轉(zhuǎn)移活性,而運用miRNA海綿策略則在體內(nèi)穩(wěn)定抑制了miR-31的表達,進而使非侵襲性乳腺癌細胞發(fā)生了轉(zhuǎn)移。這些表型的改變特定地歸因于miR-31介導的對轉(zhuǎn)移中包括局部侵襲、溢出、遠處灶的存活以及轉(zhuǎn)移灶的定植等多個步驟的影響,主要是因為miR-31對一系列腫瘤轉(zhuǎn)移促進基因的協(xié)同抑制,包括ras同系家族成員A(RhoA)、卷曲蛋白3(Fzd3)、整合素α5(ITGA5)、肌球蛋白磷酸酶-Rho相互作用蛋白(M-RIP)、基質(zhì)金屬蛋白酶 16 (MMP16)和根蛋白(RDX)等。通過RNAi手段證實,同時抑制RhoA、ITGA5和RDX的表達的確能夠削弱異種移植模型中侵襲性人乳腺癌細胞的轉(zhuǎn)移能力。而同時抑制RhoA、ITGA5和RDX的表達并不能模擬miR-31促進原發(fā)性乳腺癌生長的作用,提示存在其他的miR-31下游效應分子,介導了miR-31對腫瘤細胞非轉(zhuǎn)移行為的影響[12-13]。研究人員通過建立乳腺癌轉(zhuǎn)移模型評估m(xù)iR-31的治療效果,結(jié)果發(fā)現(xiàn)[14]在乳腺癌轉(zhuǎn)移模型中激活miR-31的表達能夠引起轉(zhuǎn)移灶的退化和延長實驗小鼠的生存期。侵襲性乳腺癌細胞株miR-31的表達較非侵襲性乳腺癌細胞株顯著下調(diào)[15]。miR-31還通過靶向調(diào)控α2β1、α5β1、αVβ1以及β3整合素的表達,以配體依賴的方式抑制腫瘤細胞的播散[16]。
近年來陸續(xù)有miR-31在其他腫瘤如胃癌[17-18]、膀胱癌[19]、前列腺癌[20]、胰腺癌[21]、漿液性卵巢癌[22]、間皮瘤[23]和黑素瘤[24-26]等表達下調(diào)的相關(guān)報道。以色列學者[24]報道在侵襲性黑素瘤中miR-31作為腫瘤抑制性miRNA發(fā)揮調(diào)控作用,而同期美國學者發(fā)現(xiàn)miRNA表達譜特征可以用于區(qū)分黑素瘤的亞型,和非肢端型的黑素瘤相比,肢端型黑素瘤miR-31、miR-142-3p、miR-486、miR-214、miR-218和miR-650的表達上調(diào),而miR-362的表達下降[25]。但在黑素瘤A375細胞和人表皮黑素細胞的miRNA差異表達譜比較中,miR-31在A375中的表達增高[26]。在p53野生型的細胞中,E2F2(miR-31的靶基因)的過表達能夠通過p14(ARG)誘導p53依賴的細胞凋亡。在OVCAR8、OVCA433和SKOV3等一些p53異常的卵巢癌細胞中,miR-31的過表達能夠抑制細胞增殖和誘導凋亡,而在其他一些p53正常的卵巢癌細胞中miR-31則不能發(fā)揮此類作用[22]。胸膜惡性間皮瘤亦常常發(fā)生9p21.3染色體的缺失而導致miR-31表達的下調(diào)[23],提示9p21.3染色體缺失的腫瘤可以研發(fā)基于miR-31的抗腫瘤治療藥物。
此外,miR-31還能恢復腫瘤細胞對放化療的敏感性。全miRNA芯片結(jié)果顯示miR-31在放療耐受的食管腺癌細胞中明顯下調(diào),功能獲得實驗示過表達miR-31能夠恢復放療耐受的食管腺癌細胞對放療的敏感性,其機制可能與13個涉及DNA修復的基因有關(guān),其中PARP1、SMUG1、MLH1和MMS19在放療敏感的食管癌患者的活組織檢查中是顯著下調(diào)的[27]。Bhatnagar[28]則發(fā)現(xiàn)miR-205和miR-31在高度惡性的膀胱癌WPE1-NB26細胞株中的表達顯著降低,通過靶向抑制抗凋亡基因BCL2L2(編碼Bcl-w)和E2F6的表達可促進前列腺癌細胞中化療藥物所誘導的細胞凋亡。
近年來不斷有研究揭示miR-31在很多類型腫瘤中發(fā)揮了腫瘤性miRNA的作用。Weinberg[29]的研究團隊先前的研究結(jié)果發(fā)現(xiàn),在異種移植模型中miR-31的表達能夠輕度增加原發(fā)性乳腺癌腫瘤的增殖。
目前關(guān)于miR-31發(fā)揮腫瘤性調(diào)控作用的研究很多集中在結(jié)直腸腫瘤中[30-35]。早在2006年西班牙研究者即發(fā)現(xiàn)miR-31在結(jié)直腸癌樣本中的表達較周圍正常組織增高,且表達高低與結(jié)直腸癌的臨床分期呈正相關(guān)[30],而捷克學者則觀察到結(jié)直腸癌中高表達的miR-31與腫瘤的分化級別相關(guān),而低分化腫瘤miR-31的表達最低[31]。miR-31和miR-223在遺傳性非息肉性結(jié)直腸癌綜合征(Lynch綜合征)的患者組織中表達明顯上調(diào)[32]。Olaru AV等[33]發(fā)現(xiàn)miR-31在炎癥性腸?。↖BD)間變皮損中的表達較慢性炎癥性腸道黏膜增高,且隨著從正?;蚵匝装Y到IBD相關(guān)瘤變的病理類型的進展而變化。利用芯片技術(shù)檢測原發(fā)性結(jié)直腸癌樣本和腦轉(zhuǎn)移樣本miRNA表達譜的差異時卻發(fā)現(xiàn)后者miR-31表達下調(diào)[34]。另一研究結(jié)果則顯示miR-31和miR-21作為TGF-β信號通路的下游效應分子,通過靶向T細胞淋巴瘤侵襲和轉(zhuǎn)移誘導蛋白1(TIAM1)的表達而促進結(jié)腸癌腫瘤細胞的侵襲和轉(zhuǎn)移[35]。除了觀察臨床樣本miR-31的表達差異外,Cekaite等[36]進行了miR-31功能效應的研究,發(fā)現(xiàn)在高表達miR-31的HCT-116細胞中抑制miR-31的表達能夠抑制細胞增殖和促進凋亡。Wang等[37]發(fā)現(xiàn)單一miR-31抑制劑的給藥在體外并不能影響p53野生型和突變型HCT-116結(jié)腸癌細胞增殖、細胞周期和克隆形成,而聯(lián)合5-Fu治療則能有效抑制兩種HCT-116細胞的增殖、遷移和侵襲能力。
目前已報道m(xù)iR-31呈高表達的腫瘤有甲狀腺癌[38-40]、頭頸部腫瘤[41-42]和肺癌[43-44]等。在甲狀腺乳頭狀癌的石蠟樣本中,miR-31的表達較結(jié)節(jié)性甲狀腺腫表達增高[38]。Yip等[39]則發(fā)現(xiàn)miR-31在侵襲性和非侵襲性甲狀腺乳頭狀癌中表達上調(diào);與周圍正常組織比較,冷和良性甲狀腺結(jié)節(jié)(CBTN)樣本中miR-31呈11倍下調(diào)而其靶基因CCND1呈2.6倍上調(diào)。通過HTori和FTC-133細胞模型,過表達miR-31及隨后CCND1的表達下調(diào)導致細胞周期G1期細胞增多[40]。在頭頸部鱗狀細胞癌(HNSCC)中,常氧狀態(tài)下miR-31過表達在細胞模型和動物模型增加了HNSCC細胞的致瘤性,相反阻斷miR-31的表達則抑制了腫瘤的增殖,進一步的機制分析提示與miR-31靶向抑制因子抑制低氧誘導因子(FIH)有關(guān)[41]??谇击[狀細胞癌患者血漿中miR-31的表達亦增高,而且隨著腫瘤的切除miR-31的水平顯著降低[42]。在轉(zhuǎn)基因小鼠模型中,Liu等[43]證實肺癌組織中miR-31的表達較周圍正常組織明顯增加,敲除miR-31的表達則顯著肺癌細胞的增殖。進而通過生物信息學預測和功能獲得和敲除實驗證實,miR-31通過抑制抑癌基因大腫瘤抑制子2(LATS2)和PP2A調(diào)節(jié)亞單位Bα型(PPP2A2R)的表達而發(fā)揮致瘤性miRNA的作用。值得注意的是,香煙煙霧的刺激能夠增加正常上皮呼吸道黏膜和肺癌細胞miR-31的表達和LOC554202啟動子的激活,而且此種狀態(tài)在停止香煙煙霧暴露后仍持續(xù)存在[44]。
隨著研究的深入,越來越多的miRNAs被證實與癌癥的發(fā)生有關(guān),在癌癥的形成過程中扮演著越來越重要的角色。但仍有很多問題和疑惑亟待解決:目前大多數(shù)的研究集中于miRNA如何調(diào)控其下游目的基因的表達,但其自身的表達受到哪些因素的調(diào)控亟需深入研究;miRNA作用的發(fā)揮具有組織依賴、細胞依賴和時序依賴性,其決定和影響因素有哪些,尚需進一步探討;一個miRNA可以靶向不同基因,不同的miRNA又可以靶向同一基因,究竟哪個位點在起中心調(diào)控作用,仍需充分論證。梳理出miRNA的調(diào)控網(wǎng)絡將是一項具有挑戰(zhàn)性的工作。隨著研究的深入,將來有可能根據(jù)不同腫瘤miRNAs表達情況對腫瘤進行分類,以及確定miRNAs表達水平與腫瘤預后的關(guān)系,進而研制基于miRNA的治療性藥物,對于腫瘤的診斷和臨床治療有深遠的意義和價值。
[1]He L,Thomson JM,Hemann MT,et al.A microRNA polycistron as a potential human oncogene[J].Nature,2005,435
(7043):828-833.
[2]Volinia S,Calin GA,Liu CG,et al.A microRNA expression signature of human solid tumors defines cancer gene targets [J].Proc Natl Acad Sci USA,2006,103(7):2257-2261.
[3]Denli AM,Tops BB,Plasterk RH,et al.Processing of primary microRNAs by the Microprocessor complex[J].Nature,2004,432(7014):231-235.
[4]Gregory RI,Yan KP,Amuthan G,et al.The Microprocessor complex mediates the genesis of microRNAs[J].Nature,2004,432(7014):235-240.
[5]Ambros V.The functions of animal microRNAs[J].Nature,2004,431(7006):350-355.
[6]Grimson A,F(xiàn)arh KK,Johnston WK,et al.MicroRNA targeting specificity in mammals:determinants beyond seed pairing[J].Mol Cell,2007,27(1):91-105.
[7]Rouas R,F(xiàn)ayyad-Kazan H,El Zein N,et al.Human natural Treg microRNA signature:role of microRNA-31 and microRNA-21 in FOXP3 expression[J].Eur J Immunol,2009,39(6):1608-1618.
[8]Sun F,Wang J,Pan Q,et al.Characterization of function and regulation of miR-24-1 and miR-31[J].Biochem Biophys Res Commun,2009,380(3):660-665.
[9]Rouas R,F(xiàn)ayyad-Kazan H,El Zein N,et al.Human natural Treg microRNA signature:role of microRNA-31 and microRNA-21 in FOXP3 expression[J].Eur J Immunol,2009,39(6):1608-1618.
[10]Suárez Y,Wang C,Manes TD,et al.Cutting edge:TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells:feedback control of inflammation[J].J Immunol,2010,184(1):21-25.
[11]Valastyan S,Reinhardt F,Benaich N,et al.A pleiotropically acting microRNA,miR-31,inhibits breast cancer metastasis[J].Cell,2009,137(6):1032-1046.
[12]Valastyan S,Benaich N,Chang A,et al.Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis[J].Genes Dev,2009,23(22):2592-2597.
[13]Valastyan S,Chang A,Benaich N,et al.Concurrent suppression of integrin alpha5,radixin,and RhoA phenocopies the effects of miR-31 on metastasis[J].Cancer Res,2010,70(12):5147-5154.
[14]Valastyan S,Chang A,Benaich N,et al.Activation of miR-31 function in already-established metastases elicits metastatic regression[J].Genes Dev,2011,25(6):646-659.
[15]Sossey-Alaoui K,Downs-Kelly E,Das M,et al.WAVE3,anactin remodeling protein,is regulated by the metastasis suppressormicroRNA,miR-31,duringtheinvasionmetastasis cascade[J].Int J Cancer,2011,129(6):1331-1343.
[16]Augoff K,Das M,Bialkowska K,et al.miR-31 is a broad regulator of β1-integrin expression and function in cancer cells[J].Mol Cancer Res,2011,9(11):1500-1508.
[17]Wu XM,Shao XQ,Meng XX,et al.Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells[J].Acta Pharmacol Sin,2011,32(2):259-269.
[18]Zhang Y,Guo J,Li D,et al.Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance[J].Med Oncol,2010,27(3):685-689.
[19]Wszolek MF,Rieger-Christ KM,Kenney PA,Gould JJ,et al.A microRNA expression profile defining the invasive bladder tumor phenotype[J].Urol Oncol,2011,29(6):794-801.
[20]Fuse M,Kojima S,Enokida H,et al.Tumor suppressive microRNAs(miR-222 and miR-31)regulate molecular pathways based on microRNA expression signature in prostate cancer[J].J Hum Genet,2012,57(1):691-699.
[21]Papaconstantinou IG,Manta A,Gazouli M,et al.Expression of microRNAs in patients with pancreatic cancer and its prognostic significance[J].Pancreas,2013,42(1):67-71.
[22]Creighton CJ,F(xiàn)ountain MD,Yu Z,et al.Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers[J].Cancer Res,2010,70(5):1906-1915.
[23]Ivanov SV,Goparaju CM,Lopez P,et al.Pro-tumorigenic effects of miR-31 loss in mesothelioma[J].J Biol Chem,2010,285(30):22809-22817.
[24]Greenberg E,Hershkovitz L,Itzhaki O,et al.Regulation of cancer aggressive features in melanoma cells by microRNAs[J].PLoS One,2011,6(4):e18936.
[25]Chan E,Patel R,Nallur S,et al.MicroRNA signatures differentiate melanoma subtypes[J].Cell Cycle,2011,10(11):1845-1852.
[26]Xiao D,Ohlendorf J,Chen Y,et al.Identifying mRNA,MicroRNA and Protein Profiles of Melanoma Exosomes[J]. PLoS One,2012,7(10):e46874.
[27]Lynam-Lennon N,Reynolds JV,Marignol L,et al.MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma[J].J Mol Med(Berl),2012,90 (12):1449-1458.
[28]Bhatnagar N,Li X,Padi SK,et al.Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells[J].Cell Death Dis,2010,1(12):e105.
[29]Valastyan S,Weinberg RA.miR-31:a crucial overseer of tumor metastasis and other emerging roles[J].Cell Cycle,2010,9(11):2124-2129.
[30]Bandrés E,Cubedo E,Agirre X,et al.Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues[J]. Mol Cancer,2006,5(1):29.
[31]Slaby O,Svoboda M,F(xiàn)abian P,et al.Altered expression of miR-21,miR-31,miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer[J].Oncology,2007,72(5-6):397-402.
[32]Earle JS,Luthra R,Romans A,et al.Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma[J].J Mol Diagn,2010,12(4):433-440.
[33]Olaru AV,Selaru FM,Mori Y,et al.Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation[J].Inflamm Bowel Dis,2011,17(1):221-231.
[34]Li Z,Gu X,F(xiàn)ang Y,et al.microRNA expression profiles in human colorectal cancers with brain metastases[J].Oncol Lett,2012,3(2):346-350.
[35]Cottonham CL,Kaneko S,Xu L.miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells[J].J Biol Chem,2010,285(46):35293-35302.
[36]Cekaite L,Rantala JK,Bruun J,et al.MiR-9,-31,and-182 deregulation promote proliferation and tumor cell survival in colon cancer[J].Neoplasia,2012,14(9):868-881.
[37]Wang CJ,Stratmann J,Zhou ZG,et al.Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage,and affects cell migration and invasion in HCT-116 colon cancer cells[J].BMC Cancer,2010,10:616.
[38]Tetzlaff MT,Liu A,Xu X,et al.Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues[J].Endocr Pathol,2007,18(3):163-173.
[39]Yip L,Kelly L,Shuai Y,et al.MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma[J].Ann Surg Oncol,2011,18(7):2035-2041.
[40]Ferraz C,Lorenz S,Wojtas B,et al.Inverse correlation of miRNA and cell cycle-associated genes suggests influence of miRNA on benign thyroid nodule tumorigenesis[J].J Clin Endocrinol Metab,2012,98(1):E8-16.
[41]Liu CJ,Tsai MM,Hung PS,et al.miR-31 ablates expres-sion of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma[J].Cancer Res,2010,70(4):1635-1644.
[42]Liu CJ,Kao SY,Tu HF,et al.Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer[J].Oral Dis,2010,16(4):360-364.
[43]Liu X,Sempere LF,Ouyang H,et al.MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors [J].J Clin Invest,2010,120(4):1298-1309.
[44] Xi S,Yang M,Tao Y,et al.Cigarette smoke induces C/ EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells[J].PLoS One,2010,5(10):e13764.
(收稿:2015-10-08 修回:2015-11-30)
浙江省自然科學基金項目(LY13H190002)
浙江大學醫(yī)學院附屬第一醫(yī)院皮膚科(杭州 310003)
阮黎明,Tel:13957121201