王珊珊 王佳堃劉建新(浙江大學(xué)奶業(yè)科學(xué)研究所,動物分子營養(yǎng)學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,杭州310058)
腸道微生物對宿主免疫系統(tǒng)的調(diào)節(jié)及其可能機(jī)制
王珊珊 王佳堃?劉建新
(浙江大學(xué)奶業(yè)科學(xué)研究所,動物分子營養(yǎng)學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,杭州310058)
摘 要:動物腸道是一個(gè)開放的生態(tài)系統(tǒng),棲息著大量的微生物,這些微生物與宿主免疫系統(tǒng)之間協(xié)同進(jìn)化,在維持腸道穩(wěn)態(tài)方面發(fā)揮著重要的作用。建立和維持腸道微生物與宿主免疫系統(tǒng)之間有益的相互作用是保障機(jī)體健康的關(guān)鍵。為此,本文綜述了腸道微生物區(qū)系的組成及影響因素、腸道微生物促進(jìn)宿主免疫系統(tǒng)的發(fā)育及調(diào)節(jié)機(jī)體免疫系統(tǒng)的可能機(jī)制。
關(guān)鍵詞:腸道微生物;宿主;免疫系統(tǒng)發(fā)育;免疫平衡
胃腸道是機(jī)體與外界接觸最為廣泛的器官之一。它不僅是消化吸收營養(yǎng)物質(zhì)的場所,而且是機(jī)體阻止腸道細(xì)菌移位的一道重要防線。腸道是一個(gè)開放的生態(tài)系統(tǒng),其中棲居著大量的微生物。歷經(jīng)長期進(jìn)化,這些微生物與宿主之間建立了穩(wěn)定的共生關(guān)系,直接影響著宿主的健康。正常生理狀態(tài)下,腸道微生物可以促進(jìn)宿主免疫系統(tǒng)的發(fā)育,并可通過脂多糖(LPS)、脂蛋白以及代謝產(chǎn)物等特定組分調(diào)控宿主的免疫反應(yīng),形成一道腸道生物屏障。目前,腸道微生物對宿主免疫系統(tǒng)的影響受到越來越多的關(guān)注。為此,本文在介紹腸道微生物區(qū)系組成的基礎(chǔ)上,就腸道微生物促進(jìn)宿主免疫系統(tǒng)發(fā)育、調(diào)節(jié)宿主免疫反應(yīng)進(jìn)行了探討。
動物腸道內(nèi)微生物區(qū)系組成豐富且多樣,除細(xì)菌外,還包括古細(xì)菌、病毒、真菌和原蟲。腸道細(xì)菌90.0%~99.9%是厭氧菌,它們有的是有益菌,有的是有害菌,也有的是中性菌,構(gòu)成了腸道的正常菌群。腸道細(xì)菌種群多達(dá)500種(spe?cies),但這些種僅歸屬于少數(shù)幾個(gè)門[1-2]。其中,人類和小鼠腸道中以厚壁菌門(Firmicutes)和擬桿菌門(Bacteroidetes)為主;雞腸道中主要以Firmi?cutes為主,其次為變形菌門(Proteobacteria)、Bacteroidetes和放線菌門(Actinobacteria)[3];Firm?icutes在反芻動物腸道中占主導(dǎo)地位,Bacteroidetes 和Proteobacteria次之[4]。由于消化道不同部位蠕動速度和微環(huán)境明顯不同,所以其中定植的細(xì)菌數(shù)量與組成存在著顯著差異。從消化道的近端到遠(yuǎn)端,細(xì)菌的數(shù)量和多樣性逐漸遞增[5-6]。
胎兒的腸道是無菌的,出生之后,細(xì)菌開始快速定植。在胎兒生長早期,盡管分娩和喂養(yǎng)方式均會影響腸道微生物區(qū)系的組成[7-8],但腸桿菌(Enterobacteria)和雙歧桿菌(Bifidobacteria)仍然是最早定植的細(xì)菌[9];接下來的生長階段,許多因素都會影響腸道微生物區(qū)系的組成?;蛐褪菦Q定腸道微生物區(qū)系組成的首要因素。Ley等[10]研究后發(fā)現(xiàn)小鼠后代與母親的腸道微生物區(qū)系組成密切相關(guān)。Turnbaugh等[11]研究發(fā)現(xiàn),與非親緣關(guān)系的個(gè)體相比,來自同一個(gè)家族的個(gè)體(雙胞胎之間和雙胞胎與母親之間)具有更相似的細(xì)菌結(jié)構(gòu)和功能。飼糧和生活環(huán)境等也會影響腸道微生物區(qū)系組成。Turnbaugh等[12]研究飼喂低脂高糖和高脂高糖飼糧對成年小鼠盲腸內(nèi)容物中微生物的影響時(shí)發(fā)現(xiàn),2種飼糧下其盲腸內(nèi)容物中細(xì)菌多樣性不同,飼喂低脂高糖飼糧小鼠的盲腸菌群組成以Firmicutes為主,而飼喂高脂高糖飼糧小鼠的盲腸菌群組成以柔膜菌門(Mollicutes)為主。這一研究結(jié)果與Duncan等[13]得出的人類膳食中隨碳水化合物含量的減少,腸道細(xì)菌中羅氏菌屬(Rose?buria)所占比例減少的研究結(jié)果一致。生活在不同環(huán)境下的近交系小鼠,其ASF(altered Schaedler flora)豐度存在顯著差異[14]。除了人類和小鼠,以上因素也會對反芻動物和單胃動物的腸道微生物區(qū)系組成產(chǎn)生影響。對于分別飼喂代乳料、代乳料加開食料的斷奶前犢牛,其腸道細(xì)菌的種系組成明顯不同[15]。Lunedo等[16]利用熒光定量PCR技術(shù)對飼喂不同飼糧的肉雞腸道微生物進(jìn)行了分析,發(fā)現(xiàn)從7~42日齡,飼喂玉米飼糧的肉雞回腸黏膜中腸球菌(Enterococcus)數(shù)量逐漸減少,而飼喂高粱飼糧的肉雞卻沒有發(fā)生任何變化。此外,斷奶應(yīng)激會改變仔豬腸道的菌群結(jié)構(gòu)[17]。因此,在動物個(gè)體發(fā)育的過程中,基因型、飼糧和環(huán)境等因素相互作用使得腸道菌群具有多樣性和宿主特異性。
2.1 刺激杯狀細(xì)胞分泌黏蛋白,保障黏液層完整
腸道黏液層由杯狀細(xì)胞分泌的黏蛋白組成,覆蓋于上皮細(xì)胞之上。黏蛋白-2(MUC2)是小鼠和人類腸道主要的糖基化黏蛋白[18]。黏液層不僅具有潤滑劑功效,有利于腸道蠕動,而且其網(wǎng)狀結(jié)構(gòu)可有效阻止細(xì)菌穿過腸黏膜上皮,經(jīng)淋巴管到達(dá)腸系膜淋巴結(jié),再進(jìn)入其他臟器和血液循環(huán),為宿主提供保護(hù)屏障。胃和結(jié)腸的黏液層由內(nèi)、外2層構(gòu)成,外層為疏松的黏液層,內(nèi)層為緊質(zhì)的黏液層[19]。正常生理情況下,僅可在外黏液層檢測到細(xì)菌[20],而MUC2缺失或黏蛋白糖基化異常時(shí),腸屏障功能受損、通透性增加,可觀察到細(xì)菌在黏液層過度增殖,其結(jié)果可觸發(fā)全身性反應(yīng)和多系統(tǒng)器官功能衰竭[21-23]。
黏液層的存在可有效防止細(xì)菌移位(bacterial translocation,BT),而腸道微生物的存在則可激發(fā)杯狀細(xì)胞分泌黏蛋白,保障黏液層結(jié)構(gòu)的完整,從而發(fā)揮屏障作用。很多無菌動物的腸黏膜均會變薄,例如,在無菌雞中,腸道黏蛋白的產(chǎn)生和分泌下降導(dǎo)致小腸黏膜發(fā)育不成熟[24];無菌小鼠的結(jié)腸杯狀細(xì)胞減少,黏液層變薄[25],而受細(xì)菌LPS或肽聚糖(PGN)刺激后,杯狀細(xì)胞分泌黏蛋白,使黏液層恢復(fù)到普通小鼠厚度[26]。
2.2 誘導(dǎo)淋巴組織發(fā)育
集合淋巴小結(jié)[又稱派伊爾淋巴結(jié)(Peyer’s patches,PP)]、孤立淋巴濾泡(isolated lymphoid follicles,ILF)和腸系膜淋巴結(jié)(mesenteric lymph nodes,MLN)共同組成腸道黏膜相關(guān)淋巴組織(gut?associated lymphoid tissues,GALT)[27]。PP 和MLN的發(fā)育起始于出生前,由形成于胎兒肝臟的淋巴組織誘導(dǎo)細(xì)胞(lymphoid tissue inducer,LTi)誘導(dǎo)[28]。而出生后兩者的發(fā)育則要依賴于腸道微生物的定植[29-30]。腸道菌群是一種重要的抗原,可刺激GALT的發(fā)育成熟,而GALT產(chǎn)生的免疫反應(yīng)又受控于腸道菌群組成及其代謝活性。
細(xì)菌刺激GALT發(fā)育主要是通過樹突狀細(xì)胞(dendritic cells,DC)識別細(xì)菌及其代謝產(chǎn)物而實(shí)現(xiàn)[31]。DC對細(xì)菌的識別主要有3條途徑:1)通過PP腸腔面的M細(xì)胞(microfold cell)吞飲,傳遞給PP內(nèi)的DC;2)彌散分布于整個(gè)腸道上皮黏膜固有層(lamina propria,LP)的DC從腸腔上皮細(xì)胞間伸出突觸與細(xì)菌接觸;3)細(xì)菌代謝產(chǎn)物直接經(jīng)細(xì)胞旁途徑進(jìn)入腸黏膜固有層,進(jìn)而與DC反應(yīng)。這一識別過程中,DC表面的Toll樣受體(Toll?like receptors,TLR)是微生物成分引發(fā)DC活化的橋梁。TLR4可以識別革蘭氏陰性菌LPS;TLR2的配體較TLR4的廣泛,包括脂蛋白、脂多肽、脂壁酸(LTA)、阿拉伯甘聚糖(LAM)及酵母多糖等;TLR3特異識別病毒復(fù)制的中間產(chǎn)物雙鏈RNA(ds?RNA);TLR9識別細(xì)菌的胞嘧啶-磷酸-鳥嘌呤二核苷酸(CpG?DNA)。TLR識別細(xì)菌及其代謝產(chǎn)物后,進(jìn)一步激活髓樣分化蛋白88(MYD88)接頭蛋白樣蛋白(MAL)-MYD88和含Toll/白細(xì)胞介素-1受體(TIR)結(jié)構(gòu)域能誘導(dǎo)β型干擾素(IFN?β)的接頭分子(TRIF)相關(guān)接頭分子(TRAM)-TRIF信號通路(圖1),使DC活化?;罨蟮腄C誘導(dǎo)PP生發(fā)中心的T細(xì)胞增殖,促使B細(xì)胞分泌免疫球蛋白(Ig)A;通過傳入淋巴血管遷移至MLN,誘導(dǎo)效應(yīng)T細(xì)胞增殖,使MLN發(fā)育成熟;刺激B細(xì)胞和募集T細(xì)胞,導(dǎo)致隱窩小結(jié)發(fā)育成為成熟的ILF。Hamada等[32]報(bào)道無菌小鼠中的ILF發(fā)育不完全,而革蘭氏陰性菌的PGN可以誘導(dǎo)無菌小鼠ILF的形成[33]。與此相似,淋巴組織(如PP)以及分泌IgA的漿細(xì)胞在無菌仔豬中的發(fā)育也不成熟[34],但ASF定植無菌仔豬腸道后,導(dǎo)致大部分ASF菌株形成,從中篩選出Bristol微生物,它們可以提高血清IgA和IgM水平,為進(jìn)一步研究微生物定植對宿主腸道黏膜和免疫系統(tǒng)的發(fā)育提供了一種生物模型[35]。
圖1 TLR信號通路Fig.1 TLR signaling pathway[36]
T細(xì)胞是維持腸道免疫穩(wěn)態(tài)的重要執(zhí)行者。DC通過TLR識別腸道細(xì)菌的過程中,不同類型的細(xì)菌被不同家族的TLR識別,激活MAL?MYD88和TRAM?TRIF信號通路,產(chǎn)生不同的細(xì)胞因子,進(jìn)而調(diào)節(jié)T細(xì)胞向不同亞群分化,實(shí)現(xiàn)細(xì)菌耐受與免疫的平衡。T細(xì)胞對腸黏膜免疫屏障的調(diào)節(jié)主要表現(xiàn)在輔助性T(helper T,Th)細(xì)胞和調(diào)節(jié)性T(regulatory T,Treg)細(xì)胞的調(diào)節(jié)。Th細(xì)胞前體細(xì)胞在白細(xì)胞介素-12(IL?12)作用下定向分化為Th1細(xì)胞;白細(xì)胞介素-4(IL?4)作用下定向分化為Th2細(xì)胞;白細(xì)胞介素-6(IL?6)、白細(xì)胞介素-23(IL?23)和β型轉(zhuǎn)化生長因子(TGF?β)作用下定向分化為Th17細(xì)胞。Th1和Th2細(xì)胞合成淋巴因子的種類不同,兩者分別介導(dǎo)遲發(fā)型和速發(fā)型超敏反應(yīng)。白細(xì)胞介素-17(IL?17)是Th17細(xì)胞的主要效應(yīng)因子,能有效介導(dǎo)機(jī)體的炎癥反應(yīng)和自身免疫性疾病,如實(shí)驗(yàn)性自身免疫性腦炎(EAE)、哮喘、類風(fēng)濕性關(guān)節(jié)炎等。研究發(fā)現(xiàn),Th1和Th2細(xì)胞分別產(chǎn)生的γ型干擾素(IFN?γ)和IL?4可共同下調(diào)Th17細(xì)胞反應(yīng)[37]。白細(xì)胞介素-27(IL?27)是一種新的IL?12家族細(xì)胞因子,可以通過下調(diào)IL?6和TGF?β的表達(dá)對Th17細(xì)胞的分化起到抑制作用,但Th1細(xì)胞釋放的TNF可增強(qiáng)Th17細(xì)胞的發(fā)育(圖2)。Th細(xì)胞前體細(xì)胞在TGF?β單獨(dú)誘導(dǎo)下分化為Treg細(xì)胞,分泌TGF?β并表達(dá)轉(zhuǎn)錄因子叉頭/翼狀螺旋轉(zhuǎn)錄因子3(Foxp3),抑制Th17和Th1細(xì)胞的促炎反應(yīng)[38]。
分節(jié)絲狀菌(segmented filamentous bacteria,SFB)已被證實(shí)是Th17細(xì)胞強(qiáng)有力的誘導(dǎo)者[39]。SFB定植可以上調(diào)SAA的表達(dá),刺激CD11c+DC產(chǎn)生IL?6和IL?23,促進(jìn)Th17細(xì)胞分化[40]。而有害菌鼠傷寒沙門氏菌(Salmonella typhimunum)能誘導(dǎo)T細(xì)胞分化為產(chǎn)生IFN?γ的Th1細(xì)胞。脆弱型擬桿菌(Bacteroides fragilis)產(chǎn)生的多糖A(pol?ysaccharide A,PSA)能刺激Treg細(xì)胞分化,分泌白細(xì)胞介素-10(IL?10),對抗Th17和Th1細(xì)胞反應(yīng)(圖3)。此外,梭狀芽孢桿菌(Clostridium)Ⅳ簇和ⅪⅤa簇能刺激結(jié)腸上皮細(xì)胞產(chǎn)生TGF?β,誘導(dǎo)T細(xì)胞分化為Treg細(xì)胞[41],與Bacteroides fragilis具有相似的調(diào)控效應(yīng)。因此,正常情況下,腸道菌群的存在并不誘發(fā)機(jī)體出現(xiàn)炎癥反應(yīng)。
圖2 Th細(xì)胞分化與調(diào)節(jié)Fig.2 Cell differentiation and regulation of helper T cell[37]
除了細(xì)菌的直接調(diào)節(jié)外,腸道細(xì)菌產(chǎn)生的代謝產(chǎn)物,如短鏈脂肪酸(SCFA)等,也可從腸腔轉(zhuǎn)位到腸黏膜固有層中,影響宿主免疫相關(guān)基因的表達(dá)(表1)。
雖然腸道微生物在宿主免疫系統(tǒng)的成熟過程中扮演著重要角色,并且可通過LPS、脂蛋白以及代謝產(chǎn)物等特定組分調(diào)節(jié)宿主的免疫反應(yīng),影響腸道內(nèi)環(huán)境的穩(wěn)定,但腸道微生物調(diào)控宿主免疫反應(yīng)的確切機(jī)制仍有待進(jìn)一步研究。其次,腸道內(nèi)病毒、噬菌體等與宿主免疫系統(tǒng)之間的相互作用也越來越成為研究的熱點(diǎn),也值得深入探究。
正常情況下,動物體內(nèi)的腸道微生物區(qū)系結(jié)構(gòu)相對恒定,而當(dāng)外環(huán)境發(fā)生變化時(shí),腸道微生物區(qū)系的組成也會隨之改變。腸道菌群一旦失調(diào),就會引發(fā)宿主免疫系統(tǒng)的功能紊亂,導(dǎo)致炎癥性腸道疾病的發(fā)生,如急性結(jié)腸炎、克羅恩?。–rohn’s disease)等。因此,研究腸道微生物的免疫調(diào)控機(jī)制,為治療免疫相關(guān)疾病提供了新的思路,對維護(hù)動物健康具有重要的意義。
圖3 共生細(xì)菌驅(qū)動的免疫穩(wěn)態(tài)Fig.3 The commensal microbiota drives immune homeostasis[40]
表1 常見的腸道細(xì)菌代謝產(chǎn)物及其免疫調(diào)節(jié)作用Table 1 Common gut bacteria metabolites and their immunoregulatory functions
續(xù)表1
參考文獻(xiàn):
[1] The Human Microbiome Project Consortium.Struc?ture,function and diversity of the healthyhuman mi?crobiome[J].Nature,2012,486(7402):207-214.
[2] QIN J J,LI R Q,RAES J,et al.A human gut microbi?al gene catalogue established by metagenomic sequen?cing[J].Nature,2010,464(7285):59-65.
[3] CHOI J H,KIM G B,CHA C J.Spatial heterogeneity and stability of bacterial community in the gastrointes?tinal tracts of broiler chickens[J].Poultry Science,2014,93(8):1942-1950.
[4] DURSO L M,HARHAY G P,SMITH P L,et al.Ani?mal?to?animal variation in fecal microbial diversity a?mong beef cattle[J].Applied and Environmental Mi?crobiology,2010,76(14):4858-4862.
[5] DAVE M,HIGGINS P D,MIDDHA S,et al.The hu?man gut microbiome:current knowledge,challenges,and future directions[J].Translational Research,2012,160(4):246-257.
[6] SEKIROV I,RUSSELL S L,ANTUNES L C,et al.Gut microbiota in health and disease[J].Physiological Reviews,2010,90(3):859-904.
[7] DOMINGUEZ?BELLO M G,COSTELLO E K,CON?TRERAS M,et al.Delivery mode shapes the acquisi?tion and structure of the initial microbiota across mul?tiple body habitats in newborns[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(26):11971-11975.
[8] MOUNTZOURIS K C,MCCARTNEY A L,GIBSON G R.Intestinal microflora of human infants and current trends for its nutritional modulation[J].British Journal of Nutrition,2002,87(5):405-420.
[9] XU J,GORDON J I.Honor thy symbionts[J].Pro?ceedings of the National Academy of Sciences of the United States of America,2003,100(18):10452-10459.
[10] LEY R E,B?CKHED F,TURNBAUGH P,et al.Obe? sity alters gut microbial ecology[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(31):11070-11075.
[11] TURNBAUGH P J,HAMADY M,YATSUNENKO T,et al.A core gut microbiome in obese and lean twins[J].Nature,2009,457(7228):480-484.
[12] TURNBAUGH P J,B?CKHED F,F(xiàn)ULTON L,et al.Diet?induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J].Cell Host&Microbe,2008,3(4):213-223.
[13] DUNCAN S H,BELENGUER A,HOLTROP G,et al.Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate?producing bacteria in feces[J].Applied and Environmental Microbiology,2007,73(4):1073-1078.
[14] ORCUTT R P,GIANNI F J,JUDGE R J.Develop?ment of an“altered Schaedler flora”for NCI gnotobi?otic rodents[J].Microecology Therapeutics,1987,17:5-9.
[15] NILUSHA M,MEIJU L,LAKSIRI A G,et al.Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune respon?ses and tight junctions in dairy calves during weaning transition[J].Journal of Dairy Science,2013,96(5):3189-3200.
[16] LUNEDO R,F(xiàn)ERNANDEZ?ALARCON M F,CAR?VALLHO F M,et al.Analysis of the intestinal bacteri?al microbiota in maize?or sorghum?fed broiler chick?ens using real?time PCR[J].British Poultry Science,2014,55(6):795-803.
[17] 朱偉云,姚文,毛勝勇.變性梯度凝膠電泳法研究斷奶仔豬糞樣細(xì)菌區(qū)系變化[J].微生物學(xué)報(bào),2003,43(4):503-508.
[18] JOHANSSON M E V,LARSSON J M,HANSSON G C.The two mucus layers of colon are organized by the MUC2 mucin,whereas the outer layer is a legislator of host?microbial interactions[J].Proceedings of the Na?tional Academy of Sciences of the United States of A?merica,2011,108(Suppl.1):4659-4665.
[19] ATUMA C,STRUGALA V,ALLEN A,et al.The ad?herent gastrointestinal mucus gel layer:thickness and physical state in vivo[J].American Journal of Physiol?ogy Gastrointest and Liver Physiology,2001,280:G922-G929.
[20] JOHANSSON M E,PHILLIPSON M,PETERSSON J,et al.The inner of the two Muc2 mucin?dependent mucus layers in colon is devoid of bacteria[J].Pro?ceedings of the National Academy of Sciences of the United States of America,2008,105(39):15064-15069.
[21] AN G Y,WEI B Y,XIA B,et al.Increased suscepti?bility to colitis and colorectal tumors in mice lacking core 3?derived O?glycans[J].Journal of Experimental Medicine,2007,204(6):1417-1429.
[22] FU J X,WEI B,WEN T,et al.Loss of intestinal core 1?derived O?glycans causes spontaneous colitis in mice [J].Journal of Clinical Investigation,2011,121(4):1657-1666.
[23] HEAZLEWOOD C K,COOK M C,ERI R,et al.Ab?errant mucin assembly in mice causes endoplasmic re?ticulum stress and spontaneous inflammation resemb?ling ulcerative colitis[J].PLoS Medicine,2008,5 (3):e54.
[24] CHELED?SHOVAL S L,GAMAGE N S,AMIT?RO?MACH E,et al.Differences in intestinal mucin dynam?ics between germ?free and conventionally reared chickens after mannan?oligosaccharide supplementa?tion[J].Poultry Science,2014,93(3):636-644.
[25] SHARMA R,SCHUMACHER U,RONAASEN V,et al.Rat intestinal mucosal responses to a microbial flora and different diets[J].Gut,1995,36(2):209-214.
[26] PETERSSON J,SCHREIBER O,HANSSON G C,et al.Importance and regulation of the colonic mucus bar?rier in a mouse model of colitis[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2011,300(2):G327-G333.
[27] KOBOZIEV I,KARLSSON F,GRISHAM M B.Gut?associated lymphoid tissue,T cell trafficking,and chronic intestinal inflammation[J].Annals of the New York Academy of Sciences,2010,1207(Suppl.1):e86-e93.
[28] MEBIUS R E.Organogenesis of lymphoid tissues[J].Nature Reviews Immunology,2003,3(4):292-303.
[29] ROUND J L,MAZMANIAN S K.The gut microbiota shapes intestinal immune responses during health and disease[J].Nature Reviews Immunology,2009,9 (5):313-323.
[30] RENZ H,BRANDTZAEG P,HORNEF M.The im?pact of perinatal immune development on mucosal ho?meostasis and chronic inflammation[J].Nature Re?views Immunology,2012,12(1):9-23.
[31] MAYNARD C L,ELSON C O,HATTON R D,et al.Reciprocal interactions of the intestinal microbiota and immune system[J].Nature,2012,489(7415):231-241.
[32] HAMADA H,HIROI T,NISHIYAMA Y,et al.Identi?fication of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine[J].The Journal of Immunology,2002,168(1):57-64.
[33] BOUSKRA D,BRéZILLON C,BéRARD M,et al.Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J].Nature,2008,456:507-510.
[34] BUTLER J E,LAGER K M,SPLICHAL I,et al.The piglet as a model for B cell and immune system devel?opment[J].Veterinary Immunology and Immunopa?thology,2009,128(1/2/3):147-170.
[35] LAYCOCK G,SAIT L,INMAN C,et al.A defined intestinal colonization microbiota for gnotobiotic pigs [J].Veterinary Immunology and Immunopathology,2012,149(3/4):216-224.
[36] O’Neill L A J,GOLENBOCK D,BOWIE A G.The history of Toll?like receptors?redefining innate immu?nity[J].Nature Reviews Immunology,2013,13(6):453-460.
[37] STEINMAN L.A brief history of TH17,the first major revision in the TH1/TH2 hypothesis of T cell?mediated tissue damage[J].Nature Medicine,2007,13(2):139-145.
[38] JOLLER N,LOZANO E,BURKETT P R,et al.Treg cells expressing the coinhibitory molecule TIGIT se?lectively inhibit proinflammatory Th1 and Th17 cell responses[J].Immunity,2014,40(4):569-581.
[39] GABORIAU?ROUTHIAU V,RAKOTOBE S,LèCUYER E,et al.The key role of segmented fila?mentous bacteria in the coordinated maturation of gut helper T cell responses[J].Immunity,2009,31(4):677-689.
[40] IVANOV I I,ATARASHI K,MANEL N,et al.Induc?tion of intestinal Th17 cells by segmented filamentous bacteria[J].Cell,2009,139(3):485-498.
[41] ATARASHI K,TANOUE T,SHIMA T,et al.Induc?tion of colonic regulatory T cells by indigenous Clos?tridium species[J].Science,2011,331(6015):337-341.
[42] NICHOLSON J K,HOLMES E,KINROSS J,et al.Host?gut microbiota metabolic interactions[J].Sci?ence,2012,336(6086):1262-1267.
[43] ARPAIA N,CAMPBELL C,F(xiàn)AN X Y,et al.Metabo?lites produced by commensal bacteria promote periph?eral regulatory T?cell generation[J].Nature,2013,504 (7480):451-455.
[44] FURUSAWA Y,OBATA Y,F(xiàn)UKUDA S,et al.Com?mensal microbe?derived butyrate induces the differen?tiation of colonic regulatory T cells[J].Nature,2013,504(7480):446-450.
[45] MASLOWSKI K M,VIEIRA A T,NG A,et al.Regu?lation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J].Nature,2009,461(7268):1282-1286.
[46] INAN M S,RASOULPOUR R J,YIN L,et al.The lu?minal short?chain fatty acid butyrate modulates NF?κB activity in a human colonic epithelial cell line[J].Gastroenterology,2000,118(4):724-734.
[47] VAVASSORI P,MENCARELLI A,RENGA B,et al.The bile acid receptor FXR is a modulator of intestinal innate immunity[J].The Journal of Immunology,2009,183(10):6251-6261.
[48] MYSZKA M,KLINGER M.The immunomodulatory role of vitamin D[J].Postepy higieny imedycyny doswiadczalnej(Online),2014,68:865-878.
[49] REYES?BECERRIL M,ASCENCIO?VALLE F,TO?VAR?RAMíREZ D,et al.Effects of polyamines on cellular innate immune response and the expression of immune?relevant genes in gilthead seabream leuco?cytes[J].Fish Shellfish Immunology,2011,30(1):248-254.
(責(zé)任編輯 菅景穎)
[50] FENG T,WANG L F,SCHOEB T R,et al.Microbiota innate stimulation is a prerequisite for T cell spontane?ous proliferation and induction of experimental colitis [J].The Journal of Experimental Medicine,2010,207 (6):1321-1332.
[51] DRAPER E,DECOURCEY J,HIGGINS S C,et al.Conjugated linoleic acid suppresses dendritic cell acti?vation and subsequent Th17 responses[J].The Journal of Nutritional Biochemistry,2014,25(7):741-749.
Regulation of Host Immune System by Gut Microbiota and Its Possible Mechanisms
WANG Shanshan WANG Jiakun?LIU Jianxin
(Key Laboratory of Molecular Animal Nutrition of Ministry of Education,Institute of Dairy Sciences,Zhejiang University,Hangzhou 310058,China)
?Corresponding author,associate professor,E?mail:jiakunwang@zju.edu.cn
Abstract:An animal gut is an open ecological system that is colonized by large numbers and variety of micro?organisms.The microbiota has coevolved relationship with the host immune system and plays an important role in maintaining intestinal homeostasis.Establishing and maintaining beneficial interactions between gut microbio?ta and host immunity are key requirements for host health.Therefore,this article reviewed the composition of gut microbiota,the development of the host immune system under regulation of gut microbes and the possible mechanisms of gut microbiota regulating immune system.[Chinese Journal of Animal Nutrition,2015,27 (2):375?382]
Key words:gut microbiota;host;immune system development;immune homeostasis
通信作者:?王佳堃,副教授,博士生導(dǎo)師,E?mail:jiakunwang@zju.edu.cn
作者簡介:王珊珊(1990—),女,山東濟(jì)南人,碩士研究生,從事腸道屏障功能發(fā)育研究。E?mail:shanlan1128@163.com
基金項(xiàng)目:中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(2014QNA6027)
收稿日期:2014-09-22
doi:10.3969/j.issn.1006?267x.2015.02.007
文章編號:1006?267X(2015)02?0375?08
文獻(xiàn)標(biāo)識碼:A
中圖分類號:S811.2