雷麗霞, 南華, 張軍*
( 1.延吉市第七中學(xué), 吉林 延吉 133000; 2.延邊大學(xué)理學(xué)院 數(shù)學(xué)系, 吉林 延吉 133002 )
內(nèi)積空間中的互不偏基
雷麗霞1, 南華2, 張軍2*
( 1.延吉市第七中學(xué), 吉林 延吉 133000; 2.延邊大學(xué)理學(xué)院 數(shù)學(xué)系, 吉林 延吉 133002 )
將量子信息理論中的互不偏基概念進(jìn)行了代數(shù)化,在內(nèi)積空間中引進(jìn)和推廣了互不偏基的概念,討論了歐氏空間中的相關(guān)性質(zhì),并分別在歐氏空間和酉空間中給出互不偏基的例子.
內(nèi)積空間; 標(biāo)準(zhǔn)正交基; 互不偏基; 正交矩陣
若內(nèi)積空間有多組標(biāo)準(zhǔn)正交基,且任意兩組標(biāo)準(zhǔn)正交基都是(廣義)互不偏基,則稱其為(廣義)互不偏基組.
顯然,當(dāng)定義2中的k取1時(shí),即得定義1的條件和結(jié)論.
例1 設(shè)F2為2維內(nèi)積空間,即?α=(x1,x2), β=(y1,y2)∈F2, 定義內(nèi)積為
例2 設(shè)C3為3維酉空間,即?α=(x1,x2,x3), β=(y1,y2,y3)∈C3, 定義內(nèi)積為
取酉空間C3的四組標(biāo)準(zhǔn)正交基[7]:
ε1=(1,0,0), ε2=(0,1,0), ε3=(0,0,1);
故酉空間C3的四組標(biāo)準(zhǔn)正交基{ε1,ε2,ε3}, {α1,α2,α3}, {β1,β2,β3}, {γ1,γ2,γ3}是互不偏基組.
將酉空間C6看成C3×2時(shí),有廣義互不偏基組:
ε11=(1,0,0,0,0,0), ε21=(0,1,0,0,0,0), ε12=(0,0,1,0,0,0),
ε22=(0,0,0,1,0,0), ε13=(0,0,0,0,1,0), ε23=(0,0,0,0,0,1);
將酉空間C6看成C2×3時(shí),有廣義互不偏基組:
ε11=(1,0,0,0,0,0), ε21=(0,1,0,0,0,0), ε31=(0,0,1,0,0,0),
α12=(0,0,0,1,0,0), α22=(0,0,0,0,1,0), α32=(0,0,0,0,0,1);
廣義互不偏基組的構(gòu)成有多種組合形式,例3中僅給出了其中一種組合.
定理1 2m維歐氏空間中存在互不偏基.
證明 (數(shù)學(xué)歸納法)當(dāng)m=0時(shí),歐氏空間為1維空間,有1階正交矩陣A0=(1), 命題顯然成立.
故m=k+1時(shí),命題也成立.
由歸納法知, 2m維歐氏空間中存在互不偏基.
例4 歐氏空間R4中的互不偏基.
顯然,矩陣A2的4個(gè)行向量構(gòu)成R4的標(biāo)準(zhǔn)正交基,記為α1,α2,α3,α4.
[1] Brierley S, Weigert S. All mutually unbiased bases in dimensions two to five[J]. Quantum Info Comp, 2010,10:803-820.
[2] CHEN Bin, FEI Shaoming. Unextendible maximally entangled bases and mutually unbiased bases [J]. Phys Rev A, 2013,88(3):034301(4).
[3] Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105(3):030406(4).
[4] Fernández-Pérez A, Klimov A B, Saavedra C. Quantum process reconstruction based on mutually unbiased basis[J]. Phys Rev A, 2011,83(5):052332(6).
[5] YU I C, Lin F L, Huang C Y. Quantum secret sharing with multilevel mutually (un)biased bases[J]. Phys Rev A, 2008,78(1):012344(5).
[6] 同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系.高等代數(shù)與解析幾何[M].北京:高等教育出版社,2005.
Mutually unbiased bases in inner product space
LEI Lixia1, NAN Hua2, ZHANG Jun2*
( 1.TeachingandGuidingOfficeYanjiNo.7MiddleSchool,Yanji133000,China; 2.DepartmentofMathematics,CollegeofScience,YanbianUniversity,Yanji133002,China)
The concept of mutually unbiased bases in quantum information theory is expressed as algebraic form in this paper, which is defined and extended in inner product space. And the related properties are discussed in Euclidean space. Moreover the examples of mutually unbiased basis are given in Euclidean space and unitary space separately.
inner product space; standard orthogonal bases; mutually unbiased bases; orthogonal matrix
2014-10-20 *通信作者: 張軍(1957—),男,教授,研究方向?yàn)榇鷶?shù)及量子信息理論.
國(guó)家自然科學(xué)基金資助項(xiàng)目(11361065);吉林省自然科學(xué)基金資助項(xiàng)目(201215239)
1004-4353(2015)01-0017-04
O151.2
A