張 燕,楊 彬,王林山
(1.中國(guó)海洋大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東 青島 266100;2.青島大學(xué),山東 青島 266071)
競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)是一種無監(jiān)督學(xué)習(xí)型神經(jīng)網(wǎng)絡(luò),在模式識(shí)別、信號(hào)處理、優(yōu)化計(jì)算和控制理論中有著廣泛應(yīng)用。從生物學(xué)角度出發(fā),人類記憶分為短期記憶(STM)和長(zhǎng)期記憶(LTM),STM描述網(wǎng)絡(luò)狀態(tài)瞬時(shí)變化的動(dòng)力學(xué)行為;LTM描述網(wǎng)絡(luò)受外部刺激而誘發(fā)的無師指導(dǎo)下突觸緩慢變化的動(dòng)力學(xué)行為。由此,文獻(xiàn)[1]提出如下一類具有不同時(shí)間尺度的競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò):
由于神經(jīng)網(wǎng)絡(luò)在運(yùn)行過程中,神經(jīng)元之間的突觸反應(yīng)不可避免地出現(xiàn)時(shí)間延遲效應(yīng),因此人們研究了含有離散時(shí)滯和分布時(shí)滯的競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)的動(dòng)力行為[2-4]。特別是,包含離散時(shí)滯和分布時(shí)滯的S- 分布時(shí)滯的神經(jīng)網(wǎng)絡(luò)動(dòng)力行為的研究更加引人注目[5-7]。另外,網(wǎng)絡(luò)在信號(hào)傳輸過程中易受噪聲干擾,噪音往往影響系統(tǒng)的穩(wěn)定性[8-10],因此,研究S- 分布時(shí)滯隨機(jī)競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)的動(dòng)力學(xué)行為不僅是應(yīng)用的需要,而且理論上也有重要意義。本文研究了一類S-分布時(shí)滯隨機(jī)競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)的適定性和全局指數(shù)魯棒穩(wěn)定性。給出了易于驗(yàn)證的穩(wěn)定性判據(jù),推廣了文獻(xiàn)[15-16]中的結(jié)果。
考慮如下S-分布時(shí)滯隨機(jī)競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)模型:
定義 1設(shè)x=(x1,x2,…,xN)T,φ(θ)=(φ1(t),φ2(t),…,φN(t))∈C( (- ∞,0],RN)和D=(dij)N×N,則其范數(shù)分別定義為:
定義2[12]設(shè)=(0,0)T,i=1,2,…,N為系統(tǒng)(2)的平衡點(diǎn),對(duì)于任意的有界的初始函數(shù)φ(θ)=(φ1(θ),…,φN(θ))T,ψ(θ)=(ψ1(θ),…,ψN(θ))T∈C((- ∞,0],RN),zi(t)=(xi(t),Si(t))T是系統(tǒng)(2)滿足條件(t)=(φi(t),ψi(t))T,i=1,2,…,N,-∞ <t≤0,的解。若存在常數(shù)λ>0,K>0,使得
則稱系統(tǒng)(2)的平衡點(diǎn)=(0,0)T,i=1,2,…,N是全局均方指數(shù)穩(wěn)定的。
定義3[13]如果對(duì)每個(gè)A∈Al,B∈Bl,C∈Cl,D∈Dl,M∈Ml,且系統(tǒng)(2)的平衡點(diǎn)z*=(0,0)T是全局均方指數(shù)穩(wěn)定的,則稱系統(tǒng)(2)在均方意義下是全局指數(shù)魯棒穩(wěn)定的。
引理1[14]考慮完備概率空間 (Ω,{Ft},Ρ) 上的自治泛函微分方程:
其中:
若f,G滿足Lipschitz條件:
則系統(tǒng)(5)在[t0,T]上存在唯一連續(xù)的全局解。
引理2[11](It定理)令u=u(t,x1,x2,…,xd)是定義在[t0,T]×Rd上的連續(xù)函數(shù)且存在連續(xù)偏導(dǎo)數(shù)ut,uxi,uxixj,i,j=1,2,…,d,若d維隨機(jī)過程xi(t)在[t0,T]滿足:
則隨機(jī)過程u=u(t,x1(t),x2(t),…,xd(t))的隨機(jī)微分為:
引理3[14]若系統(tǒng)的平衡點(diǎn)在均方意義下是全局指數(shù)穩(wěn)定的,那么網(wǎng)絡(luò)是幾乎必然一致指數(shù)穩(wěn)定。
定理1 假設(shè)下列條件成立:
(H1):存在常數(shù)lj>0,ξij>0,i,j=1,2,…,N,使得對(duì)任意x,y∈RN有:
(H2)存在常數(shù)μ>0,使得
為證明方便,將系統(tǒng)(1)可化為:
由條件(H1)可以證明系統(tǒng)(14)等式右端系數(shù)滿足Lipschitz條件,證明如下:
設(shè)
顯然,由條件(H1),(15)和(16)可得
由(17)和引理1知系統(tǒng)(2)存在唯一滿足初值條件xi(θ)=φi(θ),Si(θ)=ψi(θ),i=1,2,…,N,θ∈(- ∞,0]解Z(t)=(X(t),S(t))T,且以概率1連續(xù)。再證:平衡點(diǎn)z*=(0,0)T在均方意義下全局指數(shù)穩(wěn)定。
定義映射:
則由條件(H3)得:
定義Lyapunov泛函
根據(jù)引理2得:
由H(u)≥0,得
因此LV(t,x(t),S(t))≤0。
又因LV(t,x(t),S(t))≤0,所以有:
則根據(jù)定義3,系統(tǒng)(2)的平衡點(diǎn)z*=(0,0)T在均方意義下是全局指數(shù)穩(wěn)定的,并且對(duì)每個(gè)A∈Al,B∈Bl,C∈Cl,D∈Dl,M∈Ml,系統(tǒng)(1)在均方意義下是全局指數(shù)魯棒穩(wěn)定的,依據(jù)引理3,平衡點(diǎn)z*=(0,0)T也是幾乎必然指數(shù)一致穩(wěn)定的。即網(wǎng)路幾乎必然指數(shù)穩(wěn)定。注:由文獻(xiàn)[5]知,S-分布時(shí)滯的系統(tǒng)包含了離散時(shí)滯和分布時(shí)滯的系統(tǒng),反之不成立。因此,文獻(xiàn)[2-4]研究的問題是本文研究問題的特例,本文推廣了這些文獻(xiàn)中的有關(guān)結(jié)果。另外,S-分布時(shí)滯還包含了無窮分布時(shí)滯[18]的情形。
考慮如下S-分布時(shí)滯隨機(jī)競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)(N=2):
其 中fj(xj(t))=sin(xj(t)),σij(xj)=sin(xj(t)),ηj(t)=,λj>0,i,j=1,2,
取pi=1,i=1,2,則滿足定理1中的條件,從而系統(tǒng)在均方意義下是全局指數(shù)穩(wěn)定的。
取初值條件 (2,-1,-3,2) 得仿真圖像:
圖1 初值取 (2,-1,-3,2)T時(shí)系統(tǒng)的仿真結(jié)果Fig.1 The simulation results of the system at initial value (2,-1,-3,2)T
[1]Meyer-Baese A,Pilyugin S S,Chen Y.Global exponential stability of competitive neural networks with different time scale[J].IEEE Transactions on Neural Networks,2003,14:716-719.
[2]Wei Xuerui.Exponential stability of competitive neural networks with different time-varying delays[J].Journal of Biomathematics,2012,27(3):455-462.
[3]Xiaobing Nie,Jinde Cao.Multistability of competitive neural networks with time-varying and distributed delays[J].Nonlinear A-nalysis:Real World Applications,2009,26(3):928-942.
[4]Kwon O,Lee S,Park J.Improved delay-dependent exponential stability for uncertain stochastic competitive neural networks with time-varying delays[J].Phys Lett,2008(A374):219-233.
[5]王林山.時(shí)滯遞歸神經(jīng)網(wǎng)絡(luò)[M].北京:科學(xué)出版社,2008:86-96.
[6]Wang L S,Xu D Y.Global asymptotic stability of bidirectional associative memory neural networks with s-type distributed delays[J].International Journal of Systems Science,2002,33(11):869-877.
[7]張偉偉,王林山.S-分布時(shí)滯隨機(jī)區(qū)間細(xì)胞神經(jīng)網(wǎng)絡(luò)的全局指數(shù)魯棒穩(wěn)定性[J].山東大學(xué)學(xué)報(bào),2012:47(3),87-92.
[8]Qintao Gan,Renxi Hu,Yuhua Liang.Adaptive synchronization for stochastic competitive neural networks with mixed time-varying delays[J].Commun Nonlinear Sci Numer Simulat,2012,17:3708-3718.
[9]Haibo Gu,Haijun Jiang,Zhidong Teng.Existence and global ex-ponential stability of equilibrium of competitive neural networks with different time scale and multiple delays[J].Journal of Franklin Institute,2010,347:719-731.
[10]Huabin Chen.New delay-dependent stability criteria for uncertain stochastic neural networks with discrete interval and distributed delays[J].Neurocomputing,2012(101):1-9.
[11]Ludwig Arnold.Stochastic Differential Equation Theory and Applications[M].Hoboken:A wiley-interscience publication,1971:88-92.
[12]Xuerong Mao.Stochastic Differential Equation and Applications[M].Berlin:Springer-verlag,1997:149-152.
[13]Ruojun Zhang,Linshan Wang.Global exponential robust of interval cellular neural networks with s-type distributed delays[J].Mathematical and Computer Modelling,2009(50):380-385.
[14]鄭祖庥.泛函微分方程[M].合肥:安徽教育出版社,1994.
[15]鐘守銘,劉碧森,王曉梅,等.神經(jīng)網(wǎng)絡(luò)穩(wěn)定性理論[M].北京:科學(xué)出版社,2008:208-301.
[16]Tolga Ensari,Sabri Arik.New results for robust stability of dynamical neural networks with discrete time delays[J].Expert Systems with Applications,2010,37:5925-5930.
[17]Liao Wentong,Wang Linshan.Existence and global attractability of almost periodic solution for competitive neural networks with time-varying delays and different time scales[J].Advances in Neural Networks,2006,3971:297-302.
[18]Bing Li,Daoyi Xu.Mean square asymptotic behavior of stochastic neural networks with infinitely distributed delays[J].Neurocomputing,2009,72:3311-3317.