朱麗華,孫菡蕾,曹志凱,鄭進(jìn)保,張諾偉,陳秉輝
?
多活性中心協(xié)同加氫納米催化劑的設(shè)計(jì)和制備
朱麗華,孫菡蕾,曹志凱,鄭進(jìn)保,張諾偉,陳秉輝
(廈門(mén)大學(xué)化學(xué)化工學(xué)院,福建廈門(mén) 361005)
基于催化劑多活性中心分工協(xié)同作用可活化兩種或多種反應(yīng)物,本研究工作以一種新的制備策略對(duì)貴金屬-過(guò)渡金屬-過(guò)渡金屬氧化物催化劑進(jìn)行合理設(shè)計(jì),構(gòu)筑金屬與金屬氧化物雙活性中心。結(jié)果發(fā)現(xiàn),貴金屬負(fù)載于過(guò)渡金屬/過(guò)渡金屬氧化物(NM-TM/TMO)結(jié)構(gòu)的催化劑在加氫反應(yīng)中具有優(yōu)異的催化活性。同時(shí),熱處理方法可有效調(diào)控催化劑微觀結(jié)構(gòu),并對(duì)此構(gòu)效關(guān)系進(jìn)行了較為深入的研究。
納米催化劑;分工協(xié)同;加氫;構(gòu)效關(guān)系
貴金屬催化劑往往表現(xiàn)出其他金屬催化劑難以達(dá)到的優(yōu)異催化性能,但貴金屬儲(chǔ)量少,價(jià)格昂貴是目前貴金屬催化劑的重大問(wèn)題之一。因此,通過(guò)貴金屬與過(guò)渡金屬或載體之間的“協(xié)同作用”是降低催化劑成本并提高其催化性能的有效途徑之一。
單貴金屬催化劑的金屬活性位與載體往往存在協(xié)同作用[1-5]。一個(gè)典型的例子是Au/TiO2催化劑,通過(guò)Au-TiO2界面與TiO2的分工協(xié)同作用實(shí)現(xiàn)CO高效催化氧化[1]。隨著研究的深入,更多的研究者也發(fā)現(xiàn)其他過(guò)渡金屬氧化物(TMO)作為貴金屬催化劑的載體有利于催化活性的提高,這主要得益于貴金屬與過(guò)渡金屬氧化物之間的電子傳遞所帶來(lái)的協(xié)同作用,如Au/ZnO[6]、Au/Fe3O4[7]、Pt/FeO[8]、Ir/FeO[9]、Pd/Fe3O4[10]、Ag/MnO[11]等催化劑。研究也表明雙貴金屬催化劑也常存在協(xié)同作用[12-14]。如Pt-Pd催化劑通過(guò)高指數(shù)晶面與電子結(jié)構(gòu)的協(xié)同作用獲得了優(yōu)異的甲酸催化氧化活性[13]。為降低貴金屬(NM)的用量,引入過(guò)渡金屬(TM)替代部分貴金屬,在大幅降低貴金屬用量的同時(shí)保持甚至提高單一貴金屬原有的催化活性,成為研究的熱點(diǎn)之一,如Pt3Ni(111)在電化學(xué)氧還原反應(yīng)中(ORR)的活性遠(yuǎn)高于Pt(111)[15]。
圍繞NM-TM催化劑的組成、納米結(jié)構(gòu)進(jìn)行可控合成,以獲取高活性的催化劑,已多見(jiàn)報(bào)道。在此基礎(chǔ)上,本課題組在貴金屬與過(guò)渡金屬氧化物之間引入過(guò)渡金屬,以加氫反應(yīng)為對(duì)象,通過(guò)對(duì)NM-TM/TMO催化劑的合理設(shè)計(jì),開(kāi)發(fā)了低貴金屬用量、高活性及穩(wěn)定性好的加氫催化劑,并可應(yīng)用于多個(gè)加氫反應(yīng)。
1.1 催化劑的設(shè)計(jì)思路
多活性位的協(xié)同效應(yīng)在多相催化中扮演著重要角色。貴金屬基加氫催化劑往往存在多活性中心的協(xié)同作用,如Pt、Rh、Pd與Ru基催化劑,以及雙(多)金屬基催化劑,如Pt-Pd[16]及Au-Pd[17]等。Han等[18]利用胍類(lèi)離子液體(TMGL)將Pd納米顆粒固定于分子篩上,通過(guò)Pd納米顆粒、TMGL離子液體與分子篩的協(xié)同作用顯著提高了其催化環(huán)己烯、己烯與環(huán)己二烯加氫的活性與穩(wěn)定性。
對(duì)于更為復(fù)雜的芳烴加氫過(guò)程,實(shí)現(xiàn)不同活性位的協(xié)同作用則更具有挑戰(zhàn)性。Song等[19]發(fā)現(xiàn)苯加氫制環(huán)己烷反應(yīng)在Pd/C與氯代1-甲基-3-丁基咪唑-三氯化鋁(Lewis酸離子液體)復(fù)合催化劑中進(jìn)行時(shí),氫氣在Pd活性位上吸附與活化,富含電子的苯分子容易受親電試劑進(jìn)攻,因此在Lewis酸離子液體的作用下,苯容易被吸附活化。利用Pd/C與Lewis酸離子液體之間的協(xié)同作用顯著地提高了其催化苯加氫性能。類(lèi)似地,可認(rèn)為苯分子也將較易吸附在帶有正電荷的固體表面,如具有正電荷空位的p型半導(dǎo)體NiO,而氫氣易于在貴金屬如Ru上吸附與活化。
基于此,本研究以苯加氫反應(yīng)為例,提出了一種多活性位分工協(xié)同作用的催化劑的設(shè)計(jì)理念(圖 1)[20-21]。
以Ru、Pt、Pd、Rh等為貴金屬,Ni、Cu、Fe、Co等為過(guò)渡金屬,將NM納米顆粒負(fù)載于TM/TMO催化劑上,形成新型的NM-TM/TMO催化劑。該催化劑具有優(yōu)異的芳烴加氫性能,這歸結(jié)于多活性中心(貴金屬、過(guò)渡金屬與過(guò)渡金屬氧化物)的分工協(xié)同作用。其中,貴金屬如Ru含量很低且粒徑相對(duì)較小,將優(yōu)先吸附與活化氫氣;帶有正電荷空穴的NiO等過(guò)渡金屬氧化物有可能起著活化富含π電子的芳烴化合物作用;而過(guò)渡金屬如Ni物種則可作為氫溢流作用的“橋梁”。
圖1 新型含協(xié)同多活性中心NM-TM/TMO催化劑設(shè)計(jì)圖
1.2 催化劑的制備
NM-TM/TMO/C催化劑的制備主要采用水合肼還原法及化學(xué)置換法,制備流程簡(jiǎn)述如下。過(guò)渡金屬前驅(qū)體溶液在PVP保護(hù)下,與氫氧化鈉反應(yīng)生成過(guò)渡金屬氫氧化物;同時(shí),根據(jù)所生成過(guò)渡金屬氫氧化物的解離性質(zhì),采用水合肼不斷還原解離的過(guò)渡金屬離子??刂七^(guò)渡金屬離子的還原速率,以使所還原物種可迅速被保護(hù)劑PVP所包裹,并負(fù)載于過(guò)渡金屬氫氧化物;由于原溶液有添加載體如炭黑,因此,易得到TM/TMOH/C催化劑;隨后,將貴金屬還原在TM/TMO/C表面,經(jīng)熱處理,即可得NM-TM/TMO/C或NM-TM/C催化劑。圖2為Ru-Ni/NiO/C與Ru-Ni/C催化劑的制備過(guò)程。
1.3 催化劑的表征
樣品的XRD測(cè)試在Rigaku UltimaⅣ X射線(xiàn)衍射儀上進(jìn)行。儀器的工作參數(shù)為:以Cu Kα為X射線(xiàn)源(= 0.15406 nm),工作電壓為35 kV、電流為20 mA。采用荷蘭FEI公司的Tecnai F30(Tecnai F20)型號(hào)和日本電子株式會(huì)社的JEOL JEM 2100F透射電子顯微鏡獲得催化劑納米顆粒的大小、形貌與高分辨像(HRTEM),加速電壓為300 kV(200 kV)。采用Tecnai G2 F30(20)透射電子顯微鏡對(duì)催化劑進(jìn)行高角度環(huán)形暗場(chǎng)掃描透射(HAADF STEM)分析及EDS元素面掃與線(xiàn)掃分析,加速電壓為300 kV(200 kV)。催化劑的表面原子種類(lèi)和組成采用高靈敏低能離子散射(high-sensitivity low-energy ion scattering spectroscopy,HS-LEIS)測(cè)試。儀器,IonTOF Qtac100。實(shí)驗(yàn)條件為:采用初始動(dòng)能5 keV20Ne+離子束為濺射離子源,樣品電流為1.6 nA。
圖2 Ru-Ni/NiO/C與Ru-Ni/C催化劑的合成過(guò)程示意圖[20]
2.1 催化劑的結(jié)構(gòu)表征
下面以Ru-Ni/NiO/C與Ru-Ni/C催化劑為例,介紹催化劑的結(jié)構(gòu)特征?;谏鲜鲋苽浞椒?,室溫下以水合肼還原法合成Ni/Ni(OH)2/C;將貴金屬負(fù)載于Ni/Ni(OH)2/C表面得Ru-Ni/Ni(OH)2/C催化劑,在N2或N2+H2混合氣氣氛下380℃焙燒后分別得Ru-Ni/NiO/C和Ru-Ni/C催化劑。
由HRTEM表征[圖3(a)]可知,Ru-Ni/NiO/C催化劑存在fcc結(jié)構(gòu)的NiO(111)晶面與hcp結(jié)構(gòu)的Ru(002)(晶格條紋間距分別為0.240和0.214 nm)。結(jié)果表明Ru主要是以納米顆粒、團(tuán)簇或單原子的形式存在。而Ru-Ni/C催化劑可能以Ru-Ni合金的形式存在,一個(gè)較明顯的證據(jù)是金屬物種的晶格條紋間距(0.210 nm)介于Ru(100)及Ni(111)之間[圖3 (b)],同時(shí)發(fā)現(xiàn)在Ru-Ni/C催化劑中也存在著Ru/Ni相分離的結(jié)構(gòu)。因此,HRTEM結(jié)果表明Ru-Ni/C主要存在Ru-Ni合金與Ru/Ni相分離納米顆粒。
為了確定催化劑最表層的原子種類(lèi)和組成,采用Ne+為濺射源對(duì)樣品進(jìn)行低能離子散射(HS-LEIS)測(cè)試,結(jié)果如圖4所示。由圖可知,在Ru-Ni/NiO/C催化劑中Ru主要在催化劑的最表層;同時(shí),最表層也有少量Ni的信號(hào)峰,這表明Ru可能是以小島狀的形式負(fù)載于Ni/NiO納米顆粒上,但未完全包裹住Ni/NiO納米顆粒。
圖3 Ru-Ni/NiO/C (a)和Ru-Ni/C (b)催化劑的HRTEM圖[20]
圖4 Ru-Ni/NiO/C催化劑的5 keV20Ne+低能離子散射譜圖[20]
因此,結(jié)合以上表征結(jié)果可知,Ru-Ni/NiO/C催化劑中Ru將主要以小島的形式負(fù)載于Ni/NiO納米顆粒上,而Ru-Ni/C催化劑主要以Ru-Ni合金和Ru/Ni相分離的形式存在。
2.2 Ru-Ni/NiO/C催化劑的芳烴加氫活性
上述所制催化劑的苯加氫制環(huán)己烷性能如表1所示。Ru-Ni/NiO/C(Ru質(zhì)量分?jǐn)?shù)1.25%、總Ni質(zhì)量分?jǐn)?shù)1.40%)催化劑對(duì)環(huán)己烷的產(chǎn)率為100%,TOF(轉(zhuǎn)化頻率)高達(dá)18210.3 h-1,為Ru-Ni/C催化劑的55倍(TOF327.8 h-1)。而Ru-Ni/Ni(OH)2/C催化劑的活性很低(TOF25.4 h-1),原因是催化劑未經(jīng)焙燒,未分解的PVP阻止了反應(yīng)物擴(kuò)散到催化劑表面。為了與Ru-Ni/NiO/C催化劑性能形成對(duì)比,分別評(píng)價(jià)了Ru/C和Ni/NiO/C催化劑催化苯加氫制環(huán)己烷性能,結(jié)果為:Ru/C的TOF為1706.0 h-1,環(huán)己烷產(chǎn)率為9.4%;Ni/NiO/C催化劑和碳載體在相同反應(yīng)條件下,基本沒(méi)有任何催化活性。
表1 各催化劑催化苯加氫制環(huán)己烷性能[20]
Note: Reaction conditions, benzene 10 ml, H2pressure 5.3 MPa; reaction time, 1 h; reaction temperature, 60℃.
表2 其他文獻(xiàn)中非負(fù)載型與負(fù)載型金屬催化劑催化苯加氫制環(huán)己烷性能[20]
此外,與現(xiàn)有文獻(xiàn)所報(bào)道的負(fù)載型及非負(fù)載型Ru基、Pd基、Rh基或雙金屬催化劑相比,本研究中的Ru-Ni/NiO/C催化劑在相似反應(yīng)條件下具有更優(yōu)越的苯加氫性能(表2)。
Ru-Ni/NiO/C催化劑具有優(yōu)異催化活性,這與其所特有的納米結(jié)構(gòu)密切相關(guān)。小島狀Ru納米顆粒負(fù)載于Ni/NiO納米顆粒有利于實(shí)現(xiàn)多活性位的分工協(xié)同作用。尺寸較小的Ru納米顆粒優(yōu)先活化氫氣,與之相鄰的Ni物種可傳輸所活化的氫物種;而與Ni緊挨的NiO物種一般帶有正電荷,這將有利于活化芳烴,最終已活化的H物種使芳烴加氫生成烷烴。而Ru-Ni/C與Ru/C催化劑不存在這種多活性位的分工協(xié)同作用,相應(yīng)地,其催化芳烴加氫性能相對(duì)較低。此外,根據(jù)本組之前工作,Ru-Ni雙金屬催化劑在苯加氫反應(yīng)中具有較高的穩(wěn)定性[35-36]。
Ru-Ni/NiO/C催化劑也可應(yīng)用于甲苯、對(duì)二甲苯等其他芳烴加氫的反應(yīng),結(jié)果見(jiàn)表3, Ru-Ni/NiO/C催化劑在溫和反應(yīng)條件下(反應(yīng)溫度30℃與反應(yīng)壓力5.3 MPa)仍具有較高的加氫性能。這說(shuō)明Ru-Ni/NiO/C催化劑可適用于多種芳烴化合物的加氫反應(yīng)。
表3 低溫下Ru-Ni/NiO/C催化劑對(duì)其他芳烴的加氫性能
① Yield to methyl cyclohexane.② Yield to dimethylcyclohexane.
Note: Reaction conditions, substrate 10 ml, H2pressure 5.3 MPa; reaction temperature, 30℃; catalyst, 0.05 g.
2.3 其他NM-TM/TMO/C催化劑的加氫性能
應(yīng)用上述同樣的設(shè)計(jì)方法,以Pd、Rh、Pt等替代Ru,或者以Co替代Ni,制備了一系列相應(yīng)的催化劑。催化活性見(jiàn)表4,在一定的反應(yīng)條件下,Pd-Ni/NiO/C、Rh-Ni/NiO/C、Pt-Ni/NiO/C及Ru-Co/ Co3O4/C催化劑的苯加氫制環(huán)己烷的TOF分別為2606.7、4071.8、3022.1及91051 h-1,均(遠(yuǎn))高于其相應(yīng)的Pd-Ni/C、Rh-Ni/C、Pt-Ni/C與Ru-Co/C催化劑性能??傊琋M-TM/TMO/C催化劑催化苯加氫制環(huán)己烷的性能高于NM-TM/C,這歸因于NM、TM與TMO的分工協(xié)同作用,側(cè)面說(shuō)明了TMO的重要性。同時(shí)說(shuō)明本研究中催化劑設(shè)計(jì)與制備方法可用于其他貴金屬-過(guò)渡金屬催化劑體系中。
大量研究表明,雙金屬催化劑結(jié)構(gòu)對(duì)其性能有著重要的影響[37]。為了提高雙金屬催化劑的活性、選擇性與穩(wěn)定性,眾多科研工作者設(shè)計(jì)并制備了各種不同結(jié)構(gòu)的催化劑(如合金、核殼或顆粒負(fù)載于顆粒結(jié)構(gòu)等),如Enache等[37]合成了Au-Pd合金負(fù)載于TiO2的納米催化劑,該催化劑在醇選擇性氧化制醛的反應(yīng)中比單金屬催化劑具有非常優(yōu)異的活性。
表4 NM-TM/TMO/C與NM-TM/C催化劑催化苯加氫制環(huán)己烷性能
Note: Reaction conditions: reaction pressure, 5.3 MPa H2; catalyst, 0.05 g; reaction temperature, 60℃; reaction time, 1 h; benzene, 10 ml.
合成不同納米結(jié)構(gòu)的Ru-Ni納米顆粒已有報(bào)道,如Chen等[38]采用種子生長(zhǎng)法成功制備了具有雙功能磁性Ni@Ru核殼結(jié)構(gòu)納米顆粒,并用于氨硼烷氫解反應(yīng),其催化性能高于單金屬Ni或Ru催化劑。另外,該研究小組又采用溶膠化學(xué)合成法制備了Ru-Ni合金納米顆粒,同樣是較好的氨硼烷氫解制氫催化劑[39]。Li等[40]采用CTAB為導(dǎo)向劑自組裝合成了Ru-Ni雙金屬催化劑,并用于乙酰丙酮加氫反應(yīng)。而本文重點(diǎn)闡述Ru-Ni納米結(jié)構(gòu)的演變規(guī)律及其與催化性能之間的內(nèi)在關(guān)系[35]。
3.1 催化劑的結(jié)構(gòu)調(diào)控
以Ru0.04Ni0.96/C(Ru質(zhì)量分?jǐn)?shù)1.25%、總Ni質(zhì)量分?jǐn)?shù)15.57%)為催化劑,Ru0.04Ni0.96/C催化劑前驅(qū)體Ru-Ni/Ni(OH)2/C在N2+H2中經(jīng)不同熱處理?xiàng)l件可調(diào)控Ru0.04Ni0.96催化劑納米結(jié)構(gòu)-Ru-Ni合金、小島狀Ru負(fù)載于Ni納米顆粒與Ru@Ni核殼結(jié)構(gòu)-殼較厚[35]。催化劑的XRD表征結(jié)果如圖5所示,從圖中可知,Ru-Ni/Ni(OH)2/C催化劑經(jīng)230或280℃處理后,Ni(100)、Ni(200)的衍射峰均發(fā)生左移,表明Ru原子融入Ni晶格中形成了Ru-Ni鍵(Ru-Ni合金),導(dǎo)致晶格膨脹。隨著處理溫度繼續(xù)升高至380℃,微弱的Ru(100)晶面特征衍射峰出現(xiàn)。當(dāng)處理溫度為480℃時(shí),Ru與Ni金屬衍射峰強(qiáng)度增強(qiáng)。焙燒溫度繼續(xù)升高(580或680℃),Ni與Ru的特征衍射峰均向較低的2方向移動(dòng),表明高溫處理易導(dǎo)致晶格膨脹[41];且隨著催化劑焙燒溫度的升高,各衍射峰的強(qiáng)度增強(qiáng),半峰寬減小,表明熱處理溫度的升高使得Ru-Ni雙金屬納米顆粒的結(jié)晶度變好,尺寸變大。
圖5 Ru-Ni/Ni(OH)2/C催化劑不同溫度熱處理后的XRD圖[35]
(a) 16.84%Ni/C pretreated at 380℃, Ru-Ni/Ni(OH)2/C pretreated at (b) 230℃, (c) 280℃, (d) 380℃, (e) 480℃, (f) 580℃, (g) 680℃,(h) 2.5%Ru/C pretreated at 600℃
圖6 Ru-Ni/Ni(OH)2/C催化劑經(jīng)不同溫度熱處理后的HS-LEIS圖[35]
為了研究催化劑最表層的原子種類(lèi)和組成,采用Ne+為濺射源對(duì)樣品進(jìn)行了低能離子散射(HS-LEIS)測(cè)試,結(jié)果如圖6所示。從圖中可知,Ru0.04Ni0.96/C-230催化劑表面Ru與Ni原子同時(shí)存在,結(jié)合其XRD結(jié)果可知,該催化劑中Ru0.04Ni0.96納米合金顆粒;Ru0.04Ni0.96/C-480催化劑的最表層僅有Ni原子,且其XRD結(jié)果表明Ru與Ni發(fā)生相分離,說(shuō)明Ru0.04Ni0.96納米顆??赡転镽u@Ni核殼結(jié)構(gòu);Ru0.04Ni0.96/C-680的HS-LEIS譜圖[圖6 (c)]顯示催化劑的最表層同時(shí)存在Ru與Ni原子,結(jié)合其XRD結(jié)果可認(rèn)為小島狀Ru納米顆粒負(fù)載于Ni納米顆粒。
3.2 催化劑的活性
催化活性的測(cè)試結(jié)果(圖7)表明Ru0.04Ni0.96/C催化劑在N2+H2中的熱處理溫度影響著其催化苯加氫制環(huán)己烷性能。Ru0.04Ni0.96/C-230催化劑對(duì)環(huán)己烷的產(chǎn)率為9.25%,活性相對(duì)較高,TOF約為Ru0.04Ni0.96/C-480催化劑的18倍。同樣地,Ru0.04Ni0.96/C-680催化劑具有相對(duì)較高的活性,但仍比Ru0.04Ni0.96/C-230催化劑低,其環(huán)己烷的收率為6.77%。從以上結(jié)果可知,Ru0.04Ni0.96/C-催化劑催化苯加氫制環(huán)己烷活性順序?yàn)椋篟u0.04Ni0.96/C-230(Ru-Ni合金)>Ru0.04Ni0.96/C-680(小島狀Ru負(fù)載于Ni納米顆粒)Ru0.04Ni0.96/C-480(Ru@Ni核殼結(jié)構(gòu)-殼較厚)。
圖7 Ru0.04Ni0.96/C催化劑的催化苯加氫制環(huán)己烷性能[35]
因此,綜上所述,不同的熱處理?xiàng)l件可調(diào)控Ru0.04Ni0.96/C-催化劑金屬顆粒的納米結(jié)構(gòu),并進(jìn)一步?jīng)Q定其催化性能。
針對(duì)特定的催化反應(yīng)科學(xué)設(shè)計(jì)催化劑是值得挑戰(zhàn)的難題?;诖呋瘎┒嗷钚灾行牡姆止f(xié)同作用,本研究合理設(shè)計(jì)了用于加氫反應(yīng)的貴金屬-過(guò)渡金屬-過(guò)渡金屬氧化物(NM-TM/TMO)催化劑,通過(guò)XRD、HRTEM、HS-LEIS等表征手段,證實(shí)了具有優(yōu)異加氫活性的NM-TM/TMO催化劑原因是:較小尺寸的貴金屬顆粒有利于活化氫氣,且過(guò)渡金屬可作為氫溢流作用的媒介;而芳香化合物可在具有空穴的NiO等過(guò)渡金屬氧化物上實(shí)現(xiàn)活化。該催化劑設(shè)計(jì)理念可拓展至其他反應(yīng)。同時(shí),研究還發(fā)現(xiàn),在不同熱處理?xiàng)l件下可實(shí)現(xiàn)雙金屬催化劑的納米結(jié)構(gòu)的有效調(diào)控并影響其催化性能,從而建立催化劑的“構(gòu)效關(guān)系”。
[1] Green I X, Tang W, Neurock M, Yates Jr J T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2catalyst [J]., 2011, 333 (6043): 736-739.
[2] Li H, Bian Z F, Zhu J, Huo Y, Li H, Lu Y F. Mesoporous Au/TiO2nanocomposites with enhanced photocatalytic activity [J]....., 2007, 129 (15): 4538-4539.
[3] Fujitani T, Nakamura I. Mechanism and active sites of the oxidation of CO over Au/TiO2[J]....., 2011, 50 (43): 10144-10147.
[4] Bennett R A, Stone P, Bowker M. Pd nanoparticle enhanced re-oxidation of non-stoichiometric TiO2: STM imaging of spillover and a new form of SMSI [J]..., 1999, 59 (2/4): 99-105.
[5] Baker L R, Kennedy G, Van Spronsen M, Kennedy G, Spronsen M V, Hervier A, Cai X, Chen S, Wang L L, Somorjai G A. Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions [J]....., 2012, 134 (34): 14208-14216.
[6] Li P, Wei Z, Wu T, Peng Q, Li Y. Au-ZnO hybrid nanopyramids and their photocatalytic properties [J]....., 2011, 133 (15): 5660-5663.
[7] Wang C, Yin H, Dai S, Sun S. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation [J]..., 2010, 22 (10): 3277-3282.
[8] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt/FeO[J]..., 2011, 3 (8): 634-641.
[9] Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T. Remarkable performance of Ir/FeOsingle-atom catalyst in water gas shift reaction [J]....., 2013, 135 (41): 15314-15317.
[10] Chen S, Si R, Taylor E, Janzen J, Chen J. Synthesis of Pd/Fe3O4hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation [J]...., 2012, 116 (23): 12969-12976.
[11] Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X. Catalytically active single-atom sites fabricated from silver particles [J]....., 2012, 51 (17): 4198-4203.
[12] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure [J]..., 2012, 3: 1157-1161.
[13] Wang A Q, Liu X Y, Mou C Y, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts [J]..., 2013, 308: 258-271.
[14] Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Chen J M, Lee J F, Lin T S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]....., 2012, 134 (24): 10251-10258.
[15] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni (111)increased surface site availability [J]., 2007, 315 (5811): 493-497.
[16] Pawelec B, La Parola V, Navarro R M, Murcia-Mascarós S, Fierro J L G. On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics [J]., 2006, 44 (1): 84-98.
[17] Venezia A M, Parola V L, Pawelec B, Fierro J L G. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3catalysts: support acidity effect [J]...:., 2004, 264 (1): 43-51.
[18] Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation [J]....., 2004, 43 (11): 1397-1399.
[19] Deshmukh R R, Lee J W, Shin U S, Lee J Y, Song C E. Hydrogenation of arenes by dual activation: reduction of substrates ranging from benzene to C60fullerene under ambient conditions [J]....., 2008, 47 (45): 8615-8617.
[20] Zhu L, Jiang Y, Zheng J, Zhang N, Yu C, Li Y, Pao C W, Chen J L, Jin C, Lee J F, Zhong C J, Chen B H. Ultrafine nanoparticle-supported Ru-nanoclusters with ultrahigh catalytic activity [J].,2015. DOI: 10.1002/smll.201500654.
[21] Zhu L, Yang Z, Zheng J, Hu W, Zhang N, Li Y, Zhong C J, Ye H, Chen B H. Decoration of Co/Co3O4nanoparticles with Ru nanoclusters: a new strategy for design of highly-active hydrogenation [J]...., 2015, 3 (22): 124-132. DOI: 10.1039/C5TA02452H.
[22] Miao S, Liu Z, Han B, Huang J, Sun Z, Zhang J, Jiang T. Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene [J]....., 2006, 45 (2): 266-269.
[23] Zahmakiran M, ?zkar S. Intrazeolite ruthenium(0) nanoclusters: a superb catalyst for the hydrogenation of benzene and the hydrolysis of sodium borohydride [J]., 2008, 24 (14): 7065-7067.
[24] Dyson P J, Ellis D J, Welton T, Thomas W. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst [J]..., 1999, (1): 25-26.
[25] Su F, Lv L, Lee F Y, Liu T, Cooper A I, Zhao X S. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics [J]....., 2007, 129 (46): 14213-14223.
[26] Niembro S, Donnici S, Shafir A, Vallribera A, Buil M L, Esteruelas M A, Larramona L. Perfluoro-tagged rhodium and ruthenium nanoparticles immobilized on silica gel as highly active catalysts for hydrogenation of arenes under mild conditions [J]..., 2013, 37 (2): 278-282.
[27] Yao K X, Liu X, Li Z,Li C C, Zeng H C, Han Y. Preparation of a Ru-nanoparticles/defective-graphene composite as a highly efficient arene-hydrogenation catalyst [J]., 2012, 4 (12): 1938-1942.
[28] Domínguez-Quintero O, Martínez S, Henríquez Y, D’Ornelas L, Krentzien H, Osuna J. Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity [J]....:., 2003, 197 (1/2): 185-191.
[29] Schulz J, Roucoux A, Patin H. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system [J]...., 2000, 6 (4): 618-624.
[30] Pan H B, Wai C M. Sonochemical one-pot synthesis of carbon nanotube-supported rhodium nanoparticles for room-temperature hydrogenation of arenes [J]...., 2009, 113 (46): 19782-19788.
[31] Barbaro P, Bianchini C, Dal Santo V, Meli A, Moneti S, Pirovano C, Psaro R, Sordelli L, Vizza F. Benzene hydrogenation by silica-supported catalysts made of palladium nanoparticles and electrostatically immobilized rhodium single sites [J]., 2008, 27 (12): 2809-2824.
[32] Yoon B, Pan H B, Wai C M. Relative catalytic activities of carbon nanotube-supported metallic nanoparticles for room-temperature hydrogenation of benzene [J]...., 2009, 113 (4): 1520-1525.
[33] Duan H, Wang D, Kou Y, Li Y. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation [J]..., 2013, 49 (3): 303-305.
[34] Zhu L, Sun H, Fu H, Zheng J, Zhang N, Li Y, Chen B H. Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane [J]....., 2015, 499 (25): 124-132. DOI: 10.1016/j.apcata.2015.04.016.
[35] Zhu L, Cao M, Li L, Tang Y, Zhang N, Zheng J, Zhou H, Li Y, Yang L, Zhong C J, Chen B H. Synthesis of different ruthenium nickel bimetallic nanostructures and an investigation of the structure-activity relationship for benzene hydrogenation to cyclohexane [J]., 2014, 6 (7): 2039-2046.
[36] Zhu L, Zheng L, Du K, Fu H, Li Y, You G, Chen B H. An efficient and stable Ru-Ni/C nano-bimetallic catalyst with a comparatively low Ru loading for benzene hydrogenation under mild reaction conditions [J].., 2013, 3 (3): 713-719.
[37] Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2catalysts [J]., 2006, 311 (5759): 362-365.
[38] Chen G, Desinan S, Nechache R, Rosei R, Rosei F, Ma D. Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles [J]..., 2011, 47 (22): 6308-6310.
[39] Chen G, Desinan S, Rosei R, Rosei F, Ma D. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane [J]...., 2012, 18 (25): 7925-7930.
[40] Yang Y, Gao G, Zhang X, Li F. Facile fabrication of composition- tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation [J].., 2014,4 (5): 1419-1425.
[41] Solliard C, Flueli M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum [J]..., 1985, 156 (1): 487-494.
Design and synthesis of hydrogenation nanocatalyst with synergetic multiple catalytic sites
ZHU Lihua, SUN Hanlei, CAO Zhikai, ZHENG Jinbao, ZHANG Nuowei, CHEN Binghui
Department of Chemical and Biochemical EngineeringCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujianChina
As synergic multiple active sites catalysts can theoretically activate two or more reactant or substrates simultaneously resulting in significantly increase of activity and stability of catalysts, we herein develop a novel catalysts preparation strategy to design and construct noble metal-transition metal-transition metal oxide (NM-TM/TMO) to form bi-active catalytic sites. The experimental results show that such a catalyst has excellent performance in catalytic hydrogenation,.. aromatic compounds hydrogenation as the case studies. It was also found that the nanostructure of catalyst can be tunedthermal treatments, which are investigated and the relationship between structure and activity is explored to some extent.
nanocatalyst; synergistic; hydrogenation; relationship of nanostructure-activity
2015-05-26.
Prof.CHEN Binghui, chenbh@xmu.edu.cn
10.11949/j.issn.0438-1157.20150702
O 643.38
A
0438—1157(2015)08—3091—07
陳秉輝。
朱麗華(1987—),男,博士研究生。
國(guó)家自然科學(xué)基金項(xiàng)目(20973140,201106118,21303140)。
2015-05-26收到初稿,2015-06-10收到修改稿。
supported by the National Natural Science Foundation of China (20973140, 201106118, 21303140).