李以貴, 顏 平, 黃 遠(yuǎn), 祝 寧
(上海應(yīng)用技術(shù)學(xué)院理學(xué)院,上海 201418)
基于特殊X射線光刻技術(shù)的空心微針制備技術(shù)
李以貴, 顏 平, 黃 遠(yuǎn), 祝 寧
(上海應(yīng)用技術(shù)學(xué)院理學(xué)院,上海 201418)
介紹了2種基于特殊X射線光刻技術(shù)的空心微針制備方法.一種為基于2次不同X射線光刻技術(shù)的制備方法,即第1次為通常意義的帶掩膜板光刻,第2次為無(wú)掩膜板光刻;另一種為基于2次移動(dòng)掩膜板光刻加1次通常意義的帶掩膜板光刻技術(shù)的制備空心微針?lè)椒?結(jié)果表明:在面積為5 mm×5 mm的聚合物基板上制備了25根空心微針陣列.
空心微針;X射線光刻;對(duì)準(zhǔn)
LIGA(Lithographic,Galvanogormung,Abformung)技術(shù)是微細(xì)加工的一種,它是將X射線刻蝕電鑄成型及塑鑄等技術(shù)有機(jī)結(jié)合的微細(xì)加工技術(shù).由于LIGA能夠制造出厚度近1 mm,深寬比大于100的高深寬比微結(jié)構(gòu)而廣受關(guān)注[1-5].空心微針陣列可應(yīng)用于透皮給藥系統(tǒng).微細(xì)加工的微針一直是一個(gè)有吸引力的研究,因?yàn)榭招奈⑨樣糜谒幬镒⑸鋾r(shí),比常規(guī)的皮下注射痛苦少[6-8].醫(yī)用級(jí)空心微針應(yīng)符合下列要求:足夠的高度(150~300μm),尖端約幾微米,足夠插入強(qiáng)度,可生物降解[9-10].本文研究了X射線光刻制備空心微針結(jié)構(gòu)的2種制備技術(shù),即雙X射線曝光和移動(dòng)掩模加對(duì)準(zhǔn)的X射線曝光.
首先,圓柱空心微針陣列是由X射線光刻制成.掩膜板圖案是同心圓.1 mm厚聚甲基丙烯酸甲酯(PMMA)基底被用作標(biāo)準(zhǔn)正膠X射線光刻膠. PMMA基板通過(guò)掩模照射X射線后,顯影后得到一個(gè)具有垂直側(cè)壁的中空?qǐng)A柱形微針陣列,如圖1所示.然后進(jìn)行無(wú)掩膜板的X射線曝光.最后,形成了尖端空心微針陣列,如圖2所示.尖端形成機(jī)制參見(jiàn)文獻(xiàn)[3].
圖1 X射線通過(guò)掩模在PMMA基底上形成空心圓柱微針陣列Fig.1 A hollow cylindrical micro needle array with vertical sidewall formed after irradiated by X-ray through the X-ray mask
圖2 無(wú)掩膜X射線曝光后,形成尖端空心微針陣列Fig.2 A hollow micro needle array formed after irradiated by X-ray without the X-ray mask
第1次曝光用X射線掩模板,其掩模圖形為在38μm的聚酰亞胺薄膜上電鍍3.5μm厚的金(Au)吸收層構(gòu)成.X射線曝光時(shí),光刻膠(此處為1 mm厚的PMMA高分子聚合物板)與掩模之間間隙為2 mm.X射線光源利用日本立命館大學(xué)的同步輻射光源AURORA 13號(hào)線束.X射線光刻線束的窗口大小為1.3 mm(水平)×0.14 mm(垂直).13號(hào)線束可以移動(dòng)曝光.曝光室可在真空或充入氦氣下工作.所制造的圓柱狀空心微針陣列的SEM圖像如圖3(a)所示.圖3(b)為無(wú)掩膜X射線曝光后形成的尖端空心微針陣列.該方法只用一塊掩模板,通過(guò)2次X射線曝光方法制造出空心微針.該微針高度超過(guò)150μm,尖銳尺寸約為10μm,外直徑為100 μm,內(nèi)徑為30μm.
通過(guò)移動(dòng)曝光方法進(jìn)行2次正交移動(dòng)曝光,即掩膜板進(jìn)行第1次移動(dòng)曝光后,再將掩膜板旋轉(zhuǎn)90°,進(jìn)行第2次移動(dòng)曝光,其細(xì)節(jié)參見(jiàn)文獻(xiàn)[3].該方法因其所得樣品的橫截面圖形與掩模圖形類似,被稱為平面圖案的截面轉(zhuǎn)移技術(shù).此方法為常規(guī)光刻方法的延伸技術(shù),可用于形成三維微結(jié)構(gòu).曝光期間,X射線掩膜板上下移動(dòng),PMMA的加工高度取決于X射線的曝光劑量,例如300μm高度的實(shí)心微針陣列,需要照在PMMA基板上的X射線劑量為0.42 A·h,PMMA基板表面粗糙度約為30 nm.
圖3 制造的空心微針陣列Fig.3 SEM images of the fabricated hollow micro needle arrays
X射線對(duì)準(zhǔn)曝光技術(shù)為實(shí)心微針陣列制備空心微針陣列的關(guān)鍵工藝技術(shù).由于X射線掩模板使用了透明的聚酰亞胺為其金吸收體的支撐層,易于實(shí)現(xiàn)掩膜板上的金孔圖形與PMMA實(shí)心微針陣列的對(duì)準(zhǔn).對(duì)準(zhǔn)裝置包括1個(gè)數(shù)字顯微鏡(KEYENCE,VH-8000)、XYZ調(diào)節(jié)定位臺(tái)、X射線掩模板和帶有實(shí)心微針陣列的PMMA光刻膠基板.X射線掩模板由200μm厚的聚酰亞胺支持膜、3.5μm厚的金X射線吸收體、帶10.16 cm圓形孔的12.7 cm鋁制方形框組成.
數(shù)字顯微鏡可透過(guò)掩膜板觀察固體微針陣列,一旦PMMA基板上的圖形與X射線掩模圖形對(duì)齊,則X射線掩模板和帶有實(shí)心微針陣列的PMMA光刻膠基板同時(shí)被鎖定,以確保其精確度.對(duì)準(zhǔn)裝置的誤差為±3μm.日本立命館大學(xué)同步輻射光源AURORA發(fā)出的X射線波長(zhǎng)為0.15~0.73 nm,曝光環(huán)境為充滿101 k Pa(1 atm)的氦氣.X射線的電子能量為575 MeV,工作電流為300 m A.圖4為制備空心微針的曝光示意圖.在對(duì)準(zhǔn)之后,固定好的對(duì)準(zhǔn)裝置整體放入曝光室中進(jìn)行X射線曝光,如圖5所示.
X射線曝光后進(jìn)行顯影.顯影液的成分比(體積比)為20%六原子環(huán)化合物、5%胺、60%乙二醇醚和15%水.因?yàn)閿嚢杷俣冗^(guò)快會(huì)破壞微結(jié)構(gòu),所以顯影在200 r/min轉(zhuǎn)速的攪拌下進(jìn)行.又因?yàn)檩^高或較低的溫度會(huì)引起PMMA內(nèi)部應(yīng)力過(guò)大,所以顯影液溫度控制在37°C,顯影時(shí)間為3 h.圖6(a)為得到的貫通孔微針芯片包含5×5根微針陣列.圖6(b)所示的微針總高度約為400μm,實(shí)際高度約為300μm,外徑為100μm,內(nèi)徑為30μm.
圖4 空心微針曝光示意圖Fig.4 Schematic diagram of exposure configuration for hollow micro needle
圖5 對(duì)準(zhǔn)裝置整體放入曝光室的情況Fig.5 Alignment stage in the exposure chamber
圖6 空心微針陣列SEM圖像(a)及其放大圖(b)Fig.6 SEM images of the hollow micro needle array with alignment(a)and its close-up image(b)
基于特殊X射線光刻技術(shù)制備2種PMMA空心微針陣列.一種方法是先制備圓柱形空心微針,再利用無(wú)掩膜板光刻技術(shù)把圓柱形微針變成針尖型微針,使其有足夠的強(qiáng)度和尖度.另一種方法是通過(guò)移動(dòng)X射線先制備實(shí)心微針,再利用X射線光刻對(duì)準(zhǔn)裝置開(kāi)孔.這兩種X射線制備空心微針?lè)椒ǘ急粚?shí)驗(yàn)所證實(shí).所制造的微針陣列芯片尺寸為5 mm× 5 mm,共25根微針.單根微針直徑為100μm,高度為400μm,可用于藥物注射或血液提取的場(chǎng)合.
[1] Chen Y T,Hsu C C,Tsai C H,et al.Fabrication of microneedles[J].Journal of Marine Science and Technology,2010,18(2):243-248.
[2] Moon S J,Lee S S.A novel fabrication method of a microneedle array using inclined deep X-ray exposure[J].Jounal of Micromechanics and Micronengineering,2005,15(5):903-911.
[3] Sugiyama S,Khumpuang S,Kawaguchi G.Planepattern to cross-section transfer(PCT)technique for deep X-ray lithography and applications[J].J Micromec Microeng,2004,14(10):1394-1404.
[4] Teo A L,Shearwood C,Ng K C,et al.Transdermal microneedles for drug delivery applications[J].Materials Science and Engineering B,2006,132(1/2):151-154.
[5] Mcallister D V,Wang P M S,Davis S P,et al.Microfabricated needles for transdermal delivery of macromolecules and nanaparticles:fabrication methods and transport studies[J].Proceedings of the National Academy of Sciences,2003,100(24):13755-13760.
[6] Held J,Gaspar J,Ruther P,et al.Design of experiment characterization of microneedle fabrication processes based on dry silicon etching[J].Journal of Micomechanics and Microengineering,2010,20(2):1-12.
[7] Ji J,Tay E H,Miao J M,et al.Microfabricated sillicon microneedle array for tansdermal drug delivery[J].Journal of Physics:Conference Seires,2006,34(1):1127-1131.
[8] Chio S O,Kim Y C,Park J H,et al.An electrically active microneedle array for electroporation[J]. Biomed Microdevices,2010,12(2):263-273.
[9] Park J H,Allen M G,Prausnitz M P.Biodegradable polymer microneedles:fabrication,mechanics and transdermal drug delivery[J].Journal of Controlled Release,2005,104(1):51-66.
[10] Xu B J,Zhu D F,Yin D F,et al.Pyramid-shaped tips based polymer microneedles for tansdermal drug or nanoparticle delivery[C]//Proceedings of the 7th IEEE International Conference on Nanotechnology. Shanghai:IEEE Xplore,2007:287-290.
(編輯 俞紅衛(wèi))
Fabrication of Hollow Micro Needle Array Based on Special X-ray Lithography
LI Yigui, YAN Ping, HUANG Yuan, ZHU Ning
(School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
Two methods for fabricating hollow micro needle arrays were introduced.One method was that fabricating hollow micro needle array based on double X-ray exposures,namely,one was normal X-ray exposure with X-ray mask and the other was X-ray exposure without X-ray mask.The other fabrication method was that hollow micro needle was fabricated by using moving mask X-ray exposures and an alignment X-ray exposure.The feasibilities for the hollow micro needle arrays were demonstrated by fabricating 25 micro needles in a 5 mm×5 mm polymer chip.
hollow micro needle;X-ray lithography;alignment
TN 305.7
A
1671-7333(2015)04-0384-03
10.3969/j.issn.1671-7333.2015.04.015
2015-03-16
上海應(yīng)用技術(shù)學(xué)院人才引進(jìn)基金資助項(xiàng)目(YJ2014-03);上海應(yīng)用技術(shù)學(xué)院重點(diǎn)學(xué)科平臺(tái)資助項(xiàng)目(10210Q140005)
李以貴(1965-),男,教授,博士生導(dǎo)師,主要研究方向?yàn)槲⒓?xì)加工技術(shù).E-mail:ygli@sit.edu.cn