国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

白蟻內(nèi)源性纖維素酶基因資源研究進(jìn)展

2015-10-28 09:09劉小琳李志強(qiáng)張丹丹
生物技術(shù)通報 2015年12期
關(guān)鍵詞:后腸中腸唾液腺

劉小琳李志強(qiáng)張丹丹

(1. 中山大學(xué)昆蟲學(xué)研究所&有害生物控制與資源利用國家重點(diǎn)實(shí)驗(yàn)室,廣州 510275;2. 廣東省昆蟲研究所 廣東省野生動物保護(hù)與利用公共實(shí)驗(yàn)室 廣東省農(nóng)業(yè)害蟲綜合治理重點(diǎn)實(shí)驗(yàn)室,廣州 510260)

白蟻內(nèi)源性纖維素酶基因資源研究進(jìn)展

劉小琳1李志強(qiáng)2張丹丹1

(1. 中山大學(xué)昆蟲學(xué)研究所&有害生物控制與資源利用國家重點(diǎn)實(shí)驗(yàn)室,廣州 510275;2. 廣東省昆蟲研究所 廣東省野生動物保護(hù)與利用公共實(shí)驗(yàn)室 廣東省農(nóng)業(yè)害蟲綜合治理重點(diǎn)實(shí)驗(yàn)室,廣州 510260)

能源短缺是人類關(guān)注的焦點(diǎn)問題之一,而纖維素是自然界最為豐富的可再生資源。白蟻已進(jìn)化出了獨(dú)特而高效的纖維素消化系統(tǒng),具有豐富的纖維素酶及其基因資源,因而,近年來白蟻內(nèi)源性纖維素消化體系的重要性被逐漸認(rèn)識,不斷有內(nèi)源性纖維素酶基因的研究報道。為了進(jìn)一步推動有害白蟻控制新技術(shù)的研發(fā),以及纖維素生物質(zhì)新能源的應(yīng)用探索,綜述了白蟻內(nèi)源性纖維素酶基因克隆、表達(dá)等研究進(jìn)展。

白蟻;內(nèi)源性纖維素酶基因;基因克隆

纖維素是自然界中分布最廣、含量最豐富的一種可再生性生物資源,纖維素的利用與生物轉(zhuǎn)化對于解決目前世界能源危機(jī)以及糧食短缺、環(huán)境污染等問題具有十分重要的意義[1]。盡管許多微生物在纖維素類物質(zhì)降解中起到了非常重要的作用,但降解緩慢,故目前纖維素的高效生物轉(zhuǎn)化仍存在諸多亟待解決的問題。一些植食性昆蟲與纖維素能源利用密切相關(guān)而受到關(guān)注,特別是木食性昆蟲(Xylophagous insects)能通過纖維素酶高效利用纖維素類物質(zhì),從中獲取足夠營養(yǎng)維持自身生長發(fā)育的需要[2,3],如食木蜚蠊、食木白蟻、天牛和木蜂等。其中,白蟻(蜚蠊目Blattodea:白蟻總科Termitoidae)是消化纖維素最有效的昆蟲類群,其降解效率可達(dá)74%-99%[4,5],而且每年消化的纖維素類物質(zhì)總量巨大,被認(rèn)為是地球上最小的高效生物反應(yīng)器[6]。但是,白蟻被認(rèn)為是完全依靠后腸共生微生物來完成纖維素的降解,白蟻具有內(nèi)源性纖維素酶的觀點(diǎn)雖有報道卻長期受到質(zhì)疑。直到1998年,棲北散白蟻(Reticulitermes speratus)唾液腺纖維素酶基因RsEG的克?。?],人們才開始明確認(rèn)識到白蟻內(nèi)源性纖維素酶和共生微生物的外源性纖維素酶共同參與了纖維素的降解,內(nèi)源性纖維素酶基因開始受到關(guān)注,特別是在白蟻中最大的類群白蟻科(Termitidae)[8]。白蟻高效利用纖維素的腸道生境條件和豐富的纖維素酶及其基因,為人類轉(zhuǎn)化和利用生物質(zhì)能的研究提供了可借鑒的模型,在纖維素的生物能源轉(zhuǎn)化,以及環(huán)保型白蟻防治劑作用靶標(biāo)的研究開發(fā)均具有重要意義[9]。為了推動相關(guān)研究的深入,本文對白蟻內(nèi)源性纖維素酶基因克隆和表達(dá)等研究進(jìn)展進(jìn)行了綜述。

1 白蟻消化系統(tǒng)和內(nèi)源性纖維素酶

基于低等白蟻腸道纖維素酶的分布,白蟻的雙重纖維素消化系統(tǒng)(Dual cellulose-digesting system)首次被Nakashima等[10]提出,即源自白蟻?zhàn)陨淼膬?nèi)源纖維素酶的消化系統(tǒng)和基于后腸共生微生物產(chǎn)生的纖維素酶的消化系統(tǒng)。其后,有觀點(diǎn)認(rèn)為白蟻的這兩個纖維素消化系統(tǒng)其實(shí)是統(tǒng)一的,兩者是連續(xù)發(fā)生并且共同作用[11,12],反對者認(rèn)為該觀點(diǎn)的論據(jù)恰好是支持白蟻具有雙重纖維素消化系統(tǒng)[13]的觀點(diǎn)。白蟻纖維素消化應(yīng)是內(nèi)源性和共生微生物的纖維素酶協(xié)同作用,低等白蟻后腸的共生原生動物(厭氧鞭毛蟲)在吞噬、降解經(jīng)白蟻破碎的木質(zhì)纖維素顆粒發(fā)揮了重要作用[14],而為數(shù)眾多的高等白蟻則是內(nèi)源性纖維素酶發(fā)揮了重要作用[6,15],當(dāng)然在巢體內(nèi)的共生真菌[16]和白蟻后腸的共生細(xì)菌[11]分泌的外源性纖維素酶亦參與了纖維素的有效降解,以維持白蟻?zhàn)陨砗凸采⑸锏纳L。

一般認(rèn)為將纖維素分解為葡萄糖需要3類纖維素酶,包括外切-β-1,4-葡聚糖酶(exo-1,4-β-D-glucanase,CBH,EC 3.2.1.91)、內(nèi)切-β-1,4-葡聚糖酶(endo-1,4-β-glucanase,EG,EC 3.2.1.4)和β-葡萄糖苷酶(β-1,4-D-glucosidase,BG,EC 3.2.1.21)[17]。白蟻內(nèi)源性纖維素酶包括內(nèi)切-β-1,4-葡聚糖酶(EG)和β-葡萄糖苷酶(BG),主要由白蟻的唾液腺和中腸分泌產(chǎn)生。內(nèi)切-β-1,4-葡聚糖酶主要作用于纖維素分子內(nèi)部的非結(jié)晶區(qū),隨機(jī)水解β-1,4糖苷鍵,將長鏈纖維分子截斷,產(chǎn)生帶有非還原性末端的小分子纖維素和可溶性纖維寡聚糖;β-葡萄糖苷酶的主要作用是水解纖維二糖及低分子量的纖維寡糖生成葡萄糖。

2 白蟻內(nèi)源性纖維素酶基因

白蟻內(nèi)源性的EG酶cDNA全長測序顯示它們都存在一個催化結(jié)構(gòu)域,并且這個結(jié)構(gòu)域與其他動物的GHF9(糖基水解酶家族9)氨基酸序列的催化位點(diǎn)一致[10],這表明白蟻內(nèi)源性的EG酶屬于GHF9,每種白蟻都包括個別來自GHF9的EG酶基因和GHF1家族的BG酶基因,而白蟻共生微生物存在多個EG酶、BG酶和CBH酶基因,遠(yuǎn)大于白蟻的內(nèi)源性纖維素酶基因。除了山林原白蟻(Hodotermopsis sjostedti)中腸的EST分析得到一個屬于GHF3的基因外,目前報道的白蟻內(nèi)源性的BG酶均屬于GHF1[18]。美洲散白蟻(R. flavipes)的一內(nèi)源性的EG酶基因經(jīng)RNA干擾處理,白蟻甚至出現(xiàn)一定程度的死亡[19],說明內(nèi)源性纖維素酶在白蟻消化甚至生長發(fā)育中起著不可或缺的作用。

棲北散白蟻內(nèi)源性的內(nèi)切葡聚糖酶活性的發(fā)現(xiàn)[20],特別是其編碼基因RsEG的克隆[7],使得白蟻?zhàn)陨砟軌虍a(chǎn)生纖維素酶得到廣泛認(rèn)可。根據(jù)美國國家生物技術(shù)信息中心的 GenBank數(shù)據(jù),到目前為止已有4科18屬33種白蟻的內(nèi)源性纖維素酶基因克隆得到了cDNA全長序列,其中從32種白蟻中得到了62個完整的內(nèi)源性EG酶基因cDNA編碼序列,包括來自澳白蟻科和鼻白蟻科的6個低等白蟻種群,以及白蟻科的26個高等白蟻種群(表1),每個白蟻種群的內(nèi)切葡聚糖酶基因存在多個基因拷貝。

首個被克隆的β-葡萄糖苷酶基因是從恒春新白蟻(Neotermes koshunensis)中克隆的NkBG[27]。相比較于內(nèi)切葡聚糖酶基因的研究,β-葡萄糖苷酶基因的研究較少,目前有11種白蟻的β-葡萄糖苷酶基因被克隆,獲得了21個完整的內(nèi)源性β-葡萄糖苷酶cDNA全長序列(表2)。

多個基因拷貝的維持與定位被認(rèn)為能夠賦予原始基因新的功能、亞功能,同時保持每個基因拷貝功能的保守性[34]。白蟻的內(nèi)源性纖維素酶基因也同時存在多個基因拷貝,這些同源基因組成一個基因家族,基因家族的成員彼此之間僅存在個別堿基的差異。雖然,白蟻內(nèi)源性纖維素酶種內(nèi)同源基因編碼的纖維素酶共同作用于纖維素的降解,但每個種內(nèi)同源基因編碼的纖維素酶在纖維素的水解過程的功能意義仍有待研究。

表1 GenBank中收錄的白蟻EG酶基因cDNA全長序列

表2 GenBank中收錄的白蟻BG酶基因cDNA全長序列

3 白蟻內(nèi)源性纖維素酶基因的體內(nèi)表達(dá)

白蟻內(nèi)源性纖維素酶基因的表達(dá)場所主要是唾液腺和中腸。低等白蟻內(nèi)源性纖維素酶基因主要在唾液腺表達(dá),高等白蟻內(nèi)源性纖維素酶基因主要在中腸表皮表達(dá),即白蟻內(nèi)源性纖維素酶基因在進(jìn)化過程中的體內(nèi)表達(dá)位點(diǎn)從唾液腺發(fā)展至中腸,但是培菌性的高等白蟻黑翅土白蟻(Odontotermes formosanus)內(nèi)源性EG酶主要在唾液腺表達(dá)[15],木食性的高等白蟻高山象白蟻(Nasutitermes takasagoensis)內(nèi)源性BG酶在中腸和唾液腺均有明顯的表達(dá)[8,31]。

低等白蟻如格斯特乳白蟻(Coptotermes gestroi)、恒春新白蟻和棲北散白蟻等,其唾液腺和前腸的纖維素酶活力存在明顯的差異[35]。盡管前腸不是這些白蟻的分泌組織,但也存在較低的纖維素酶活力,這很有可能是在某種信號的誘導(dǎo)下,唾液腺表達(dá)分泌的纖維素酶隨唾液流入到前腸,這種信號分子包括誘食信息素[36,37]、抗生素[38]和蛋白類信息素[39]等。低等白蟻中腸纖維素酶可能由于中腸分泌的某些蛋白酶分解了一部分唾液腺分泌的纖維素酶,而導(dǎo)致較低的纖維素酶活力[40],而且在中腸內(nèi)的分布也不均。

工業(yè)上應(yīng)用于木質(zhì)纖維素生物質(zhì)能轉(zhuǎn)化最廣泛的里氏木霉菌(Trichoderma reesei)[41],是研究纖維素酶基因表達(dá)和分泌的模式系統(tǒng)。該系統(tǒng)存在多個表達(dá)調(diào)控因子,可對纖維素酶基因的表達(dá)進(jìn)行連續(xù)的嚴(yán)謹(jǐn)控制[42,43],但由于里氏木霉菌分泌的纖維素酶較為單一,其中85%都屬于葡萄糖外切酶[44],而工業(yè)生物質(zhì)能的轉(zhuǎn)化普遍需要混合酶系。因此,如果將白蟻內(nèi)源性纖維素酶在里氏木霉菌中表達(dá)將可以填補(bǔ)該系統(tǒng)中缺乏的葡萄糖內(nèi)切酶及糖苷酶成分。

4 白蟻纖維素酶基因的體外表達(dá)與活性

白蟻內(nèi)源性纖維素酶在白蟻的纖維素降解過程中起著至關(guān)重要的作用,目前白蟻內(nèi)源性纖維素酶基因在原核和真核宿主中已經(jīng)成功實(shí)現(xiàn)超表達(dá)(表3)。2004年,Lee等[45]利用昆蟲桿狀病毒表達(dá)系統(tǒng)表達(dá)出了桑天牛高活性內(nèi)切酶重組蛋白,是昆蟲纖維素酶第一次在體外表達(dá)有活性的蛋白。白蟻纖維素酶的外源表達(dá)開始很難實(shí)現(xiàn),雖然通過剛果紅平板法檢測到高山象白蟻的NtEG基因的重組蛋白存在功能性表達(dá)[22],但首次在大腸桿菌(Escherichia coli)中實(shí)現(xiàn)超表達(dá)的白蟻纖維素酶基因的是4種白蟻[棲北散白蟻、高山象白蟻、臺灣乳白蟻和短刀乳白蟻(C. acinaciformis)]的內(nèi)切酶基因突變體[46]。隨后,進(jìn)行進(jìn)一步的基因改組,又得到了PA68突變體酶,同樣在大腸桿菌中實(shí)現(xiàn)超表達(dá)[47]。近年來,多種白蟻纖維素酶基因在原核生物大腸桿菌中成功表達(dá)[9,23,33,48,49]。相較于原核生物表達(dá)系統(tǒng),真核生物表達(dá)系統(tǒng)能夠表達(dá)更高活性的白蟻纖維素酶重組蛋白,棲北散白蟻的RsEG基因和高山象白蟻的NtEG基因在米曲霉(Aspergillus oryzae)中表達(dá)出高活性的纖維素酶重組蛋白,比活性分別高達(dá)1 200 U/mg和1 392 U/mg[50]。恒春新白蟻的NkEG基因也在米曲霉中成功表達(dá)出有活性的纖維素酶重組蛋白[51],白蟻纖維素酶基因在真菌中成功表達(dá)的還有畢赤酵母(Pichia pastoris)[52,53]。與此同時,美洲散白蟻的RfBGlu-1基因在粉紋夜蛾(Trichoplusis ni)的Sf9細(xì)胞(一種昆蟲表達(dá)系統(tǒng)的宿主細(xì)胞)中成功表達(dá),并且以桿狀病毒作為載體,重組的白蟻纖維素酶基因最大活性高達(dá)638 U/mg[28]。

表3 白蟻內(nèi)源性纖維素酶基因外源表達(dá)

5 結(jié)語

近一個世紀(jì)以來,白蟻對木質(zhì)纖維素降解的高效性吸引了許多學(xué)者的注意,但長期以來人們普遍認(rèn)為白蟻完全依賴共生微生物來降解纖維素。隨著新興的高通量檢測技術(shù)的發(fā)展,白蟻纖維素酶基因的相關(guān)研究得到了極大的關(guān)注,多種白蟻的內(nèi)源性纖維素酶基因成功克隆,白蟻?zhàn)陨砟軌虍a(chǎn)生纖維素酶得到證實(shí)。低等白蟻腸道內(nèi)源性纖維素酶在分解纖維素中發(fā)揮重要作用[54],而木食性高等白蟻纖維素的降解對內(nèi)源性纖維素酶的依賴程度更高[6,8,15,55]。當(dāng)然高等白蟻后腸微生物在纖維素降解過程中也起著重要作用[56],同時高等白蟻后腸中的細(xì)菌群落的蛋白組學(xué)研究表明,相較于纖維素降解,后腸細(xì)菌產(chǎn)生的水解酶在新陳代謝(包括固氮作用、同化作用、異化作用和氨基酸的合成)中發(fā)揮更重要的作用[57]。最近的組學(xué)研究引起了關(guān)于白蟻生物學(xué)、生理學(xué)以及生物化學(xué)方面新信息的大爆炸,為生物技術(shù)進(jìn)入新的既有的領(lǐng)域創(chuàng)造了空前的機(jī)會[57]。目前,只有兩種白蟻的全基因組已經(jīng)測得,包括低等白蟻內(nèi)華達(dá)動白蟻(Zootermopsis nevadensis)[58]和高等白蟻納塔爾大白蟻(Macrotermes natalensis)[59],這兩種白蟻全基因組信息為更多白蟻基因組的組裝提供了依據(jù),以促進(jìn)進(jìn)化和生物過程相關(guān)基因的研究[60]。根據(jù)內(nèi)華達(dá)動白蟻的全基因組序列分析,從中發(fā)現(xiàn)了大量與白蟻生長發(fā)育密切相關(guān)的基因[58]。在對格斯特乳白蟻轉(zhuǎn)錄組研究中發(fā)現(xiàn)新的內(nèi)源性纖維素酶基因[61]。美洲散白蟻腸道宏轉(zhuǎn)錄組(Metatranscriptome)分析顯示,白蟻具有消化半纖維素和木質(zhì)素的漆酶基因和過氧化酶基因[62]。除了基于基因組學(xué)和轉(zhuǎn)錄組學(xué)的研究之外,利用高分辨率固體核磁13C NMR技術(shù)從代謝組學(xué)的角度分析13C標(biāo)記的纖維素在山林原白蟻腸道中的降解過程,證實(shí)了內(nèi)源性纖維素酶在纖維素消化過程中的重要性,并且表明后腸細(xì)菌主要作用于纖維糊精或纖維二糖的磷酸解作用[63]。

運(yùn)用新的生物技術(shù)發(fā)現(xiàn)更多的纖維素酶基因,并從中選取能夠在外源體系中表達(dá)高活性酶的基因,將能夠解決工業(yè)生產(chǎn)中纖維素酶體外表達(dá)活性弱,產(chǎn)量低等問題。盡管模仿白蟻消化系統(tǒng)的想法也存在已久,但將這一高效纖維素分解系統(tǒng)在工業(yè)應(yīng)用仍有諸多問題亟待解決。目前,僅有少數(shù)白蟻內(nèi)源性纖維素酶能夠在原核和真核生物表達(dá)系統(tǒng)中實(shí)現(xiàn)超表達(dá)。而對于生物質(zhì)能的轉(zhuǎn)化,需要的纖維素酶能夠是低成本的大量表達(dá),白蟻內(nèi)源性纖維素酶在大腸桿菌中的表達(dá)大多只能得到少量的不可溶無水解酶活性的包涵體,目前在大腸桿菌能夠以活性狀態(tài)進(jìn)行表達(dá)的白蟻內(nèi)源性纖維素酶基因較少。因此,篩選體外高效表達(dá)并表達(dá)出活性狀態(tài)的重組蛋白的基因克隆,一方面有必要對纖維素酶本身蛋白質(zhì)序列進(jìn)行改造以適應(yīng)原核表達(dá)系統(tǒng),同時尋求能夠過度表達(dá)白蟻纖維素酶基因的真核表達(dá)系統(tǒng),以實(shí)現(xiàn)白蟻內(nèi)源性纖維素酶在工業(yè)生產(chǎn)上的應(yīng)用。

[1] Carroll A, Somerville C. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60(1):165-182.

[2] Watanabe H, Tokuda, G. Animal Cellulases[J]. Cellular and Molecular Life Science, 2001, 58(9):1167-1178.

[3] Watanabe H, Tokuda, G. Cellulolytic systems in insects[J]. Annual Review of Entomology, 2010, 55:609-632.

[4] Prins RA, Kreulen DA. Comparative aspects of plant cell wall digestion in insects[J]. Animal Feed Science and Technology,1991, 32(1-3):101-118.

[5] Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termite[J]. Annual Review of Entomology, 1994,39:453-487.

[6] Ohkuma M. Termite symbiotic systems:efficient bio-recycling of lignocelluloses[J]. Applied Microbiology and Biotechnology,2003, 61(1):1-9.

[7] Watanabe H, Noda H, Nakamura M, et al. A cellulase gene of termite origin[J]. Nature, 1998, 394(6691):330-331.

[8] Tokuda G, Watanabe H, Hojo M, et al. Cellulolytic environment in themidgut of the wood-feeding higher termite Nasutitermes takasagoensis[J]. Journal of Insect Physiology, 2012, 58(1):147-154.

[9] Zhang D, Lax AR, Bland JM, et al. Characterization of a new endogenous endo-β-1, 4-glucanase of Formosan subterranean termite(Coptotermes formosanus)[J]. Insect Biochemistry and Molecular Biology, 2011, 41(4):211-218.

[10] Nakashima K, Watanabe H, Saitoh H, et al. Dual cellulosedigesting system of the wood-feeding termite, Coptotermes formosanus(Shiraki)[J]. Insect Biochemistry and Molecular Biology, 2002,32(7):777-784.

[11] Scharf ME, Karl ZJ, Sethi A, Boucias DG. Multiple levels of synergistic collaboration in termite lignocellulose digestion[J]. PLoS One, 2011, 6(7):e21709.

[12] Zhou X, Smith JA, Oi FM, et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes[J]. Gene, 2007, 395(1-2):29-39.

[13] Tokuda G, Watanabe H, Lo N. Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases?[J]. Gene, 2007, 401(1-2):131-134.

[14] Brune A, Friedrich M. Microecology of the termite gut:structure and function on a microscale[J]. Current Opinion in Microbiology, 2000, 3(3):263-269.

[15] Tokuda G, Lo N, Watanabe H, et al. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage[J]. Molecular Ecology, 2004, 13(10):3219-3228.

[16] Aanen DK, Eggleton P, Rouland-Lefèvré C, et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts[J]. Proceedings of the National Academy of Sciences,2002, 99(23):14887-14892.

[17] 孫建中, 陳春潤. 昆蟲與生物質(zhì)能源利用:一個新的交叉學(xué)科前沿[J]. 昆蟲知識, 2010, 47(6):1033-1042.

[18] Yuki M, Moriya S, Inoue T, et al. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut[J]. Zoological Science, 2008, 25(4):401-406.

[19] Zhou X, Wheeler MM, Oi FM, et al. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA[J]. Insect Biochemistry and Molecular Biology, 2008, 38(8):805-815.

[20] Watanabe H, Nakamura M, Tokuda G, et al. Site of secretion and properties of endogenous endo-β-1, 4-glucanase components from Reticulitermes speratus(Kolbe), a Japanese subterranean termite[J]. Insect Biochemistry and Molecular Biology, 1997, 27(4):305-313.

[21] Li L, Fr?hlich J, Pfeiffer P, et al. Termite gut symbiotic archaezoa are becoming living metabolic fossils[J]. Eukaryotic Cell, 2003,2(5):1091-1098.

[22] Tokuda G, Lo N, Watanabe H, et al. Metazoan cellulase genes from termites:intron/exon structures and sites of expression[J]. Biochimica et Biophysica Acta -Gene Structure and Expression,1999, 1447(2-3):146-159.

[23] Zhang D, Lax AR, Raina AK, et al. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. [J]. Insect Biochemistry and Molecular Biology, 2009, 39(8):516-522.

[24] Cairo JP, Oliveira LC, Uchima CA, et al. Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi[J]. Insect Biochemistry and Molecular Biology, 2013, 43(10):970-981.

[25] Scharf ME, Wu-Scharf D, Zhou X, et al. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes[J]. Insect Molecular Biology, 2005, 14(1):31-44.

[26] Ni J, Wu Y, Yun C, et al. cDNA cloning and heterologous expression of an endo-β-1,4-glucanase from the fungus-growing termite Macrotermes barneyi[J]. Archives of Insect Biochemistry and Physiology, 2014, 86(3):151-164.

[27] Tokuda G, Saito H, Watanabe H. A digestiveb-glucosidase from the salivary glands of the termite, Neotermes koshunensis(Shiraki):distribution, characterization and isolation of its precursor cDNA by 5’- and 3’-RACE amplifications with degenerate primers[J]. Insect Biochemistry and Molecular Biology, 2002, 32(12):1681-1689.

[28] Scharf ME, Kovaleva ES, Jadhao S, et al. Functional and translational analyses of a beta-glucosidase gene(glycosyl hydrolase family 1)isolated from the gut of the lower termite Reticulitermes flavipes[J]. Insect Biochemistry and Molecular Biology, 2010, 40(8):611-620.

[29] Zhang D, Lax AR, Bland JM, et al. Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus[J]. Insect Science, 2010,17(3):245-252.

[30] Zhang D, Lax AR, Henrissat B, et al. Carbohydrate-active enzymes revealed in Coptotermes formosanus(Isoptera:Rhinotermitidae)transcriptome[J]. Insect Molecular Biology, 2012a, 21(2):235-245.

[31] Tokuda G, Miyagi M, Makiya H, et al. Digestive beta-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis:Intestinal distribution, molecular characterization, and alteration in sites of expression[J]. Insect Biochemistry and Molecular Biology, 2009, 39(12):931-937.

[32] Wu Y, Chi S, Yun C, et al. Molecular cloning and characterization of an endogenous digestive beta-glucosidase from the midgut of the fungus-growing termite Macrotermes barneyi[J]. InsectMolecular Biology, 2012, 21(6):604-614.

[33] Bujang NS, Harrison NA, Su NY. Molecular cloning of five betaglucosidases from four species of higher termites(Blattodea:Termitidae)[J]. Annals of the Entomological Society of America,2014, 107(1):251-256.

[34] Hahn MW. Distinguishing among evolutionary models for the maintenance of gene duplicates[J]. Journal of Heredity, 2009,100(5):605-617.

[35] Tokuda G, Lo N, Watanabe H. Marked variations in patterns of cellulase activity against crystalline- versus carboxymethylcellulose in the digestive systems of diverse, wood-feeding termites[J]. Physiological Entomology, 2005, 30(4):372-380.

[36] Reinhard J, Kaib M. Food exploitation in termites:indication for a general feeding stimulating signal in labial gland secretion of Isoptera[J]. Journal of Chemical Ecology, 2001a, 27(1):189-201.

[37] Reinhard J, Kaib M. Thin-layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis[J]. Journal of Chemical Ecology, 2001b, 27(1):175-187.

[38] Lamberty M, Zachary D, Lanot R, et al. Insect immunity:Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect[J]. Journal of Biological Chemistry, 2001, 276(6):4085-4092.

[39] Matsuura K, Yashiro T, Shimizu K, et al. Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase[J]. Current Biology, 2009, 19(1):30-36.

[40] Fujita A, Shimizu I, Abe T. Distribution of lysozyme and protease,and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus(Kolbe):possible digestion of symbiont bacteria transferred by trophallaxis[J]. Physiological Entomology, 2001, 26(2):116-123.

[41] Xu Q, Singh A, Himmel ME. Perspectives and new directions for the productionof bioethanol using consolidated bioprocessing of lignocellulose[J]. CurrentOpinion in Biotechnology, 2009, 20(3):364-371.

[42] Seiboth B, Karimi RA, Phatale PA, et al. The putative protein methyltransferase LAE1 controlscellulase gene expression in Trichoderma reeseimmi[J]. Molecular Microbiology, 2012, 84(6):1150-1164.

[43] Portnoy T, Margeot A, Linke R, et al. The CRE1 carbon catabolite repressor of thefungus Trichoderma reesei:a master regulator of carbon assimilation[J]. BMC Genomics, 2011, 12:269.

[44] Zou G, Shi S, Jiang Y, et al. Construction of a cellulase hyperexpressionsystem in Trichoderma reesei by promoter andenzyme engineering[J]. Microbial Cell Factories, 2012, 11:21.

[45] Lee SJ, Kim SR, Yoon HJ, et al. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle,Apriona germari[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2004, 139(1):107-116.

[46] Ni J, Takehara M, Watanabe H. Heterologous overexpression of a mutant termite cellulose gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs[J]. Bioscience,Biotechnology, and Biochemistry, 2005, 69(9):1711-1720.

[47] Ni J, Tokuda G, Takehara M, et al. Heterologous expression and enzymatic characterization of β-glucosidase from the dry woodeating termite, Neotermes koshunensis[J]. Applied Entomology and Zoology, 2007b, 42(3):457-463.

[48] Zhang D, Allen AB, Lax AR. Functional analyses of the digestive β-glucosidase of Formosan subterranean termites(Coptotermes formosanus)[J]. Journal of Insect Physiology, 2012b, 58(1):205-210.

[49] Hirayama K, Watanabe H, Tokuda G, et al. Purification and characterization of termite endogenous β-1, 4-endoglucanases produced in Aspergillus oryzae[J]. Bioscience, Biotechnology,and Biochemistry, 2010, 74(8):1680-1686.

[50] Ni J, Takehara M, Miyazawa M, et al. Random exchanges of non-conserved amino acid residues among four parental termite cellulases by family shuffling improved thermostability[J]. Protein Engineering, Design and Selection, 2007a, 20(11):535-542.

[51] Uchima CA, Tokuda G, Watanabe H, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 89(6):1761-1771.

[52] Uchima CA, Tokuda G, Watanabe H, et al. Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high glucose-tolerant β-glucosidase fromthe termite Nasutitermes takasagoensis[J]. Applied and Environmental Microbiology, 2012, 78(12):4288-4293.

[53] Uchima CA, Tokuda G, Watanabe H, et al. A novel glucose-tolerant β-glucosidase from the salivary gland of the termite Nasutitermes takasagoensis[J]. The Journal of General and Applied Microbiology, 2013, 59(2):141-145.

[54] Watanabe H, Nakashima K, Saito H, et al. New endo-β-1, 4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites[J]. Cellular and Molecular Life Science, 2002, 59(11):1983-1992.

[55] Tokuda G, Watanabe H, Matsumoto T, et al. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis(Shiraki):distribution of cellulases and properties of endo-beta-1,4-glucanase[J]. Zoological Science, 1997, 14(1):83-93.

[56] Warnecke F, Luginbuhl P, Ivanova N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite[J]. Nature, 2007, 450(7169):560-565.

[57] Burnum KE, Callister SJ, Nicora CD, et al. Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome[J]. The ISME Journal,2011, 5(1):161-164.

[58] Terrapon N, Li C, Robertson HM, et al. Molecular traces of alternative social organizationin a termite genome[J]. Nature Communications, 2014, 5:3636.

[59] Poulsen M, Hu H, Li C, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite[J]. Proceedings of the National Academy of Sciences, 2014, 111(40):14500-14505.

[60] Scharf ME. Omic research in termites:an overview and aroadmap[J]. Frontiers in Genetics, 2015, 6:76.

[61] Leonardo FC, da Cunha AF, da Silva MJ, et al. Analysis of the workers headtranscriptome of the Asian subterraneantermite,Coptotermes gestroi[J]. Bulletin of Entomological Research,2011, 101(4):383-391.

[62] Tartar A, Wheeler MM, Zhou XG, et al. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes[J]. Biotechnology for Biofuels,2009, 2:25.

[63] Tokuda G, Tsuboi Y, Kihara K, et al. Metabolomic profiling of13C-labelled cellulose digestion in a lower termite:insights into gut symbiont function[J]. Proceeding B of the Royal Society, 2014,281:20140990.

(責(zé)任編輯 狄艷紅)

Research Advances on Endogenous Cellulase Gene Resources of Termites

Liu Xiaolin1Li Zhiqiang2Zhang Dandan1
(1. Institute of Entomology and State Key Laboratory of Biocontrol,Sun Yat-sen University,Guangzhou 510275;2. Guangdong Entomological Institute,Guangdong Public Laboratory of Wild Animal Conservation and Utilization,Guangdong Key Laboratory of Integrated Pest Management in Agriculture,Guangzhou 510260)

Energy shortage has become a global problem, and cellulose is the most abundant and renewable resource in nature. Termites have evolved the unique and efficient cellulose-digesting system, in which there are rich resources of cellulase and its genes. In recent years, the significance of endogenous cellulose-digesting system in termite has been recognized gradually, and the researches on the endogenous cellulase genes have been reported continuously. In order to improve the new control technologies of termite pests and to explore the cellulosic biomass for biofuels, the review provides the information for the cloning and expressions of termite endogenous cellulase genes.

termite;endogenous cellulase gene;gene cloning

10.13560/j.cnki.biotech.bull.1985.2015.12.004

2015-04-01

國家自然科學(xué)基金項(xiàng)目(31172163),廣東省昆蟲研究所創(chuàng)新人才基金項(xiàng)目(GDEI-cxrc201302)

劉小琳,女,碩士研究生,研究方向:昆蟲分子生物學(xué);E-mail:liuxiaolin.1222@163.com

張丹丹,女,副教授,研究方向:昆蟲分類與系統(tǒng)分化;E-mail:zhangdd6@mail.sysu.edu.cn

猜你喜歡
后腸中腸唾液腺
刺參腸道組織結(jié)構(gòu)及消化酶活性分析
斜紋夜蛾取食Cry1Ca蛋白后中腸組織病理變化
分析超聲在腸旋轉(zhuǎn)不良合并中腸扭轉(zhuǎn)的診斷價值
犬常見唾液腺疾病的診治分析
擬赤梢魚消化酶和免疫酶的分布與活性
分化型甲狀腺癌首次131Ⅰ治療對唾液腺功能的輻射影響*
分化型甲狀腺癌術(shù)后患者首次131I“清甲”治療后對唾液腺功能的影響
黃星天牛中腸中內(nèi)切葡聚糖酶的鑒定與酶活性測定
唾液腺動態(tài)顯像在分化型甲狀腺癌術(shù)后131I治療中的價值
胃癌全胃切除術(shù)后腸內(nèi)營養(yǎng)支持的護(hù)理效果分析