国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪氧合酶結(jié)構(gòu)、分子改造與發(fā)酵研究進(jìn)展

2015-10-28 09:09:18劉松陸信曜周景文堵國(guó)成陳堅(jiān)
生物技術(shù)通報(bào) 2015年12期
關(guān)鍵詞:發(fā)酵法異構(gòu)體底物

劉松陸信曜周景文堵國(guó)成陳堅(jiān),2

(1.江南大學(xué)工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,無(wú)錫 214122;2.江南大學(xué)糧食發(fā)酵工藝與技術(shù)國(guó)家工程實(shí)驗(yàn)室,無(wú)錫 214122)

脂肪氧合酶結(jié)構(gòu)、分子改造與發(fā)酵研究進(jìn)展

劉松1陸信曜1周景文1堵國(guó)成1陳堅(jiān)1,2

(1.江南大學(xué)工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,無(wú)錫 214122;2.江南大學(xué)糧食發(fā)酵工藝與技術(shù)國(guó)家工程實(shí)驗(yàn)室,無(wú)錫 214122)

脂肪氧合酶(EC 1.13.11.12)能專一催化氧化含有Z,Z-1,4-戊二烯結(jié)構(gòu)的多元不飽和脂肪酸,形成具有共軛雙鍵的脂肪酸氫過(guò)氧化物,廣泛應(yīng)用于食品加工、化工、醫(yī)藥等領(lǐng)域。1932年首次在大豆中發(fā)現(xiàn)脂肪氧合酶以來(lái),人們已在多種動(dòng)植物組織和微生物中檢測(cè)到脂肪氧合酶。廣泛的來(lái)源使脂肪氧合酶結(jié)構(gòu)亦呈現(xiàn)多樣性,包括經(jīng)典結(jié)構(gòu)、融合結(jié)構(gòu)、無(wú)N端β-折疊結(jié)構(gòu)及含錳離子結(jié)構(gòu)等。為提高應(yīng)用性能,定點(diǎn)突變和融合自組裝雙親短肽等分子改造技術(shù)已用于提高脂肪氧合酶比酶活和熱穩(wěn)定性。基于發(fā)酵法的天然優(yōu)勢(shì),構(gòu)建高產(chǎn)脂肪氧合酶的重組菌成為近年研究的熱點(diǎn)??偨Y(jié)了典型脂肪氧合酶的結(jié)構(gòu)、分子改造及發(fā)酵法生產(chǎn)研究進(jìn)展,旨為后續(xù)研究提供參考。

脂肪氧合酶;結(jié)構(gòu)與功能;分子改造;發(fā)酵

脂肪氧合酶(Lipoxygenase,LOX,EC1.13.11.12)是一類含有非血紅素鐵,能夠?qū)R淮呋趸衂,Z-1,4-戊二烯結(jié)構(gòu)的多元不飽和脂肪酸,形成具有共軛雙鍵的脂肪酸氫過(guò)氧化物的雙加氧酶[1]。LOX的催化反應(yīng)過(guò)程如下:(1)連接共軛雙鍵的C原子發(fā)生脫氫作用;(2)自由電子發(fā)生重排向+2或者-2位轉(zhuǎn)移,同時(shí)在此過(guò)程中產(chǎn)生變位異構(gòu)體;(3)在帶有自由電子的C原子發(fā)生雙加氧反應(yīng),并在此過(guò)程中產(chǎn)生手性異構(gòu)體(圖1)。一般情況下,LOX的天然底物為亞油酸、亞麻酸和花生四烯酸,不同來(lái)源LOX對(duì)于同種底物的催化效率存在的差異[2]。

圖1 LOX催化的反應(yīng)過(guò)程[3]

LOX來(lái)源多樣,在生物體內(nèi)參與多種重要生命活動(dòng)。1932年,Andre等[4]首次在大豆中發(fā)現(xiàn)了LOX,是不飽和脂肪酸氧化引起豆腥味形成的關(guān)鍵酶。LOX催化形成的脂肪酸氫過(guò)氧化物進(jìn)一步酶解成茉莉酸等信號(hào)分子,調(diào)節(jié)破損植物細(xì)胞的程序性死亡、細(xì)胞性別、生長(zhǎng)和發(fā)育及抵御外界脅迫等[5,6]。LOX還分布于鼠[7]、兔[8]和人[9]等哺乳動(dòng)物中,參與白細(xì)胞三烯等信號(hào)分子的合成,影響炎癥、細(xì)胞程序性死亡、哮喘和心臟病等生理或病理過(guò)程[10,11]。藻類[12]、真菌[13]及酵母[14]等真核微生物也是LOX的重要來(lái)源。在這些生物體中,LOX參與細(xì)胞間信號(hào)傳導(dǎo)過(guò)程及具有抑菌作用的細(xì)菌內(nèi)酯合成等[15,16]。最近,人們?cè)谀钪樵澹∟ostoc punctiforme)[17,18]和銅綠假單胞菌(Pseudomonas aeruginosa)[19]等原核生物中發(fā)現(xiàn)了LOX,但其生理功能尚不清楚[20]。

基于特殊的催化作用,LOX已在食品、化工、醫(yī)藥和造紙等工業(yè)應(yīng)用或展現(xiàn)了較大的應(yīng)用前景。LOX催化產(chǎn)生的脂肪酸氫過(guò)氧化物能夠破壞β-胡蘿卜素的雙鍵結(jié)構(gòu),從而提高面粉白度。隨著溴酸鉀和過(guò)氧化苯甲酰化學(xué)增白劑的禁用,無(wú)毒、無(wú)害的LOX成為其最具競(jìng)爭(zhēng)力的替代產(chǎn)品[21]。LOX合成的部分不飽和脂肪酸氫過(guò)氧化物經(jīng)酶解等可生成不同香味化合物,較化學(xué)合成香料具有更高的商業(yè)價(jià)值[22]。LOX催化產(chǎn)生的不飽和脂肪酸氫過(guò)氧化物可用于涂料、洗滌劑、聚氯乙烯、染料等化工產(chǎn)品的生產(chǎn)。LOX將花生四烯酸轉(zhuǎn)化為能抑制淋巴細(xì)胞增殖的前列腺素E2、D2和F2α等[23]。LOX能夠降低造紙沉積物中的瀝青含量,對(duì)紙漿進(jìn)行漂白和脫墨[24]。

隨著LOX應(yīng)用領(lǐng)域的拓展,獲得應(yīng)用性能優(yōu)良的LOX并實(shí)現(xiàn)其高效生產(chǎn)成為國(guó)內(nèi)外相關(guān)研究的重要方向。對(duì)各來(lái)源LOX結(jié)構(gòu)與功能的解析,是理性改造LOX的重要前提。目前,商品化的LOX主要來(lái)源于大豆提取,其批次穩(wěn)定性易受大豆產(chǎn)地和同工酶的影響,不利于其應(yīng)用推廣[25]?;谫|(zhì)量穩(wěn)定性、生產(chǎn)周期和成本方面的優(yōu)勢(shì),發(fā)酵法生產(chǎn)是LOX工業(yè)化生產(chǎn)的首選方法。本文簡(jiǎn)要總結(jié)了典型LOX的結(jié)構(gòu)、分子改造及發(fā)酵法生產(chǎn)的研究進(jìn)展,旨為其后續(xù)應(yīng)用性能改造及生產(chǎn)提供參考。

1 脂肪氧合酶的結(jié)構(gòu)

1.1 脂肪氧合酶結(jié)構(gòu)類型

LOX廣泛分布于動(dòng)植物和原核生物,其分子結(jié)構(gòu)類型多樣?;诮Y(jié)構(gòu)域組成,大致分為四類:(1)經(jīng)典結(jié)構(gòu)(圖2-A):LOX分子N端為多個(gè)反向平行的β-折疊組成的桶狀結(jié)構(gòu)域,分子量在25-30 kD;C端由α-螺旋組成的催化結(jié)構(gòu)域,在催化活性中心含有一個(gè)非血紅素鐵,分子量在55-65 kD;植物和哺乳動(dòng)物L(fēng)OX一般為此類結(jié)構(gòu)。(2)融合結(jié)構(gòu)(圖2-B):具有該類結(jié)構(gòu)的LOX的末端融合了其他酶分子。如珊瑚LOX N端融合一個(gè)丙二烯氧合酶分子,魚腥藻LOX N端融合了具有過(guò)氧化氫酶特征的結(jié)構(gòu)域[26]。(3)無(wú)N端β-折疊結(jié)構(gòu)(圖2-C):已發(fā)現(xiàn)細(xì)菌LOX具有該類結(jié)構(gòu)。如P. aeruginosa 42A2 LOX分子僅由α-螺旋組成,其N端α-螺旋形成“蓋子”狀結(jié)構(gòu),覆蓋在底物結(jié)合區(qū)域上方(圖2-C)。(4)含錳離子結(jié)構(gòu):禾頂囊殼(Gaeumannomyces graminis)等少數(shù)真菌LOX催化活性中心含有一個(gè)錳離子[27]。目前尚無(wú)這類酶晶體結(jié)構(gòu)的報(bào)道。

1.2 脂肪氧合酶結(jié)構(gòu)域的功能

關(guān)于結(jié)構(gòu)域功能的研究主要集中于具有經(jīng)典結(jié)構(gòu)的LOX。研究人員分別對(duì)該類LOX的N端β-折疊結(jié)構(gòu)域與C端催化結(jié)構(gòu)域的功能進(jìn)行了深入分析。

LOX N端β-折疊結(jié)構(gòu)與胰脂肪酶的C2結(jié)構(gòu)域(亦稱為PLAT結(jié)構(gòu)域)相似,表明該β-折疊可能同樣參與了酶與膜的結(jié)合[31,32]。事實(shí)上,缺失或定點(diǎn)突變大豆[33]、兔子[34]、珊瑚[35]和人[36]等來(lái)源LOX的β-折疊結(jié)構(gòu)域,不僅能改變酶與生物膜的結(jié)合能力,還能引起底物親和力、轉(zhuǎn)化數(shù)、結(jié)構(gòu)穩(wěn)定性、活性中心鐵離子的可逆結(jié)合能力發(fā)生變化。這些結(jié)果表明,N端β-折疊結(jié)構(gòu)域盡管對(duì)LOX催化活性是非必需的,但能一定程度上調(diào)節(jié)酶整體結(jié)構(gòu)與催化活性中心。研究還發(fā)現(xiàn),兔LOX可能通過(guò)N端β-折疊結(jié)構(gòu)域隨溶劑環(huán)境變化產(chǎn)生“擺動(dòng)”來(lái)調(diào)節(jié)酶結(jié)構(gòu)和活性[37]。軟珊瑚(Gersemia fruticosa)LOX的晶體結(jié)構(gòu)顯示,β-折疊結(jié)構(gòu)域保守序列FPCYRW中Trp107與其C端催化結(jié)構(gòu)域中的Lys172之間存在一個(gè)陽(yáng)離子-芳環(huán)作用,進(jìn)而影響催化結(jié)構(gòu)域底物結(jié)合口袋的構(gòu)象[38]。上述研究從分子水平上揭示了N端β-折疊結(jié)構(gòu)域調(diào)節(jié)LOX結(jié)構(gòu)與活性的機(jī)制。

圖2 LOX的結(jié)構(gòu)

已知晶體結(jié)構(gòu)的LOX中,催化活性中心均位于C端α-螺旋結(jié)構(gòu)域,非血紅素鐵參與構(gòu)成催化活性中心。由于LOX底物為疏水性不飽和脂肪酸,各來(lái)源酶的底物結(jié)合通道主要由亮氨酸、異亮氨酸、纈氨酸和苯丙氨酸等具有疏水性側(cè)鏈的氨基酸殘基組成[20]。但不同LOX的底物結(jié)合通道各具特點(diǎn)(圖3):兔子12/15-LOX底物結(jié)合區(qū)域呈較淺的“靴形”;柳珊瑚8R-LOX存在一個(gè)兩頭通透的“U形”底物結(jié)合通道;大豆LOX-1則形成“T形”底物結(jié)合通道。由于無(wú)法得到結(jié)合氧分子的LOX晶體結(jié)構(gòu),目前僅通過(guò)定點(diǎn)突變預(yù)測(cè)氧分子入口。兔12/15-LOX L367突變?cè)黾拥目臻g位阻降低了氧分子擴(kuò)散,表明該位點(diǎn)是可能的氧分子入口[39];大豆LOX-1中的氧分子擴(kuò)散通道則受到Ile553調(diào)控[28];柳珊瑚8R-LOX的氧分子通道尚不清楚。

1.3 脂肪氧合酶結(jié)構(gòu)與產(chǎn)物特異性的關(guān)系

基于LOX催化反應(yīng)的特點(diǎn),其產(chǎn)物特異性主要包括位置異構(gòu)體特異性和手性異構(gòu)體特異性[40]。盡管尚無(wú)理論能夠解釋所有LOX的產(chǎn)物特異性,但針對(duì)真核生物L(fēng)OX的相關(guān)研究已取得一定進(jìn)展。

通過(guò)結(jié)構(gòu)模擬確定了黃瓜LOX分子影響產(chǎn)物特異性的H608,將該氨基酸突變?yōu)槔i氨酸后,催化產(chǎn)物由亞油酸13位氫過(guò)氧化物變?yōu)?位氫過(guò)氧化物[41]。序列比對(duì)分析揭示了哺乳動(dòng)物L(fēng)OX分子中存在與產(chǎn)物位置異構(gòu)體特異性相關(guān)特征區(qū)域,如人體15-LOX 417-418位氨基酸等[42]。底物結(jié)合研究顯示,哺乳動(dòng)物15-LOX通過(guò)分子內(nèi)底物結(jié)合口袋與底物(甲酯化的不飽和脂肪酸)疏水端結(jié)合,酶分子表面與底物親水端的堿性氨基酸殘基結(jié)合,進(jìn)而控制位置異構(gòu)體的比例[43]。因此,LOX催化產(chǎn)物的位置異構(gòu)體類型可能受底物進(jìn)入催化活性中心方式的影響,單點(diǎn)氨基酸可改變?cè)摦a(chǎn)物特異性。目前,已在真核LOX的C端發(fā)現(xiàn)了與產(chǎn)物手性異構(gòu)體相關(guān)的保守序列,命名為“coffa site”。LOX分子在該位點(diǎn)的保守氨基酸為丙氨酸和甘氨酸時(shí),產(chǎn)物的手性異構(gòu)體分別為S型和R型[44-46]。隨著不同來(lái)源LOX底物通道的深入解析[20],其產(chǎn)物手性異構(gòu)體特異性的分子機(jī)制將被進(jìn)一步闡明。

圖3 LOX底物通道和氧分子通道示意圖[20]

近年來(lái),部分結(jié)合底物或底物類似物的LOX晶體結(jié)構(gòu)被解析,如來(lái)源于哺乳動(dòng)物的15-LOX2與底物類似物[47]和8R-LOX與底物[48]的復(fù)合物晶體結(jié)構(gòu)等,為L(zhǎng)OX催化機(jī)制及產(chǎn)物特異性的研究提供了更精確的結(jié)構(gòu)信息。

2 脂肪氧合酶的分子改造

多數(shù)真核生物L(fēng)OX具有較高的熱穩(wěn)定性,分子改造主要以提高酶催化效率為目標(biāo)。如前所述,大豆等植物L(fēng)OX的C端結(jié)構(gòu)域?yàn)榇呋钚詤^(qū)域,N端β-折疊結(jié)構(gòu)域?qū)OX活性有重要調(diào)控作用。研究顯示,缺失N端β-折疊區(qū)域能使大豆LOX疏水區(qū)域的暴露增多、酶分子柔性增加,比酶活提高3倍,但熱穩(wěn)定性下降[49,50]。在橄欖LOX-1的C端結(jié)構(gòu)域中,分別將底物結(jié)合位點(diǎn)Phe277和Tyr280突變?yōu)閭?cè)鏈體較小的丙氨酸和異亮氨酸殘基后,LOX-1突變體比酶活提高93倍[51]。

作者對(duì)P. aeruginosa BBE LOX熱穩(wěn)定性和比酶活進(jìn)行了改造。結(jié)構(gòu)分析顯示,P. aeruginosa LOX N端30個(gè)氨基酸殘基及分子內(nèi)部201-206位氨基酸殘基均為高柔性的loop結(jié)構(gòu)(圖2-C)。通過(guò)缺失了N端前30個(gè)氨基酸,P. aeruginosa LOX 于50℃的半衰期較野生酶提高2.1倍,比酶活亦保持90%以上[52]。將該Gly201和Gly206之間的序列替換為剛性更強(qiáng)的PT linker,LOX熱穩(wěn)定性有進(jìn)一步提高[52]。由于LOX底物主要為疏水性的不飽和脂肪酸,作者將疏水較強(qiáng)的自組裝雙親短肽(圖4-A)融合至P. aeruginosa LOX N端,使其比酶活及50℃半衰期分別提高2.8倍和3.6倍,并指出寡聚化是融合酶熱穩(wěn)定性提高的重要原因之一[53](圖4-B)。

3 脂肪氧合酶的發(fā)酵法生產(chǎn)

目前,商品化的LOX主要從大豆中提取。由于大豆中存在多種LOX同工酶,其含量和種類隨大豆的批次變化,導(dǎo)致LOX的產(chǎn)品質(zhì)量不穩(wěn)定[25]。與傳統(tǒng)提取法相比,微生物發(fā)酵法能保證LOX產(chǎn)品批次穩(wěn)定性的同時(shí),產(chǎn)量更高、生產(chǎn)成本更低。由于產(chǎn)量極低或致病性等原因,自然環(huán)境中篩選得到的LOX生產(chǎn)菌,如寄生水霉(Saprolegnia parasitica)[54]、G. graminis[55]和P. aeruginosa[56]等,不適合工業(yè)生產(chǎn)。因此,構(gòu)建高產(chǎn)重組菌成為發(fā)酵法生產(chǎn)LOX的關(guān)鍵。

圖4 融合自組裝雙親短肽提高LOX熱穩(wěn)定的機(jī)制

真核生物L(fēng)OX異源表達(dá)已有大量報(bào)道,但總體產(chǎn)酶水平不高。其中,大豆LOX在大腸桿菌(Escherichia coli)中的表達(dá)量最高(4.5 U/mL),但為胞內(nèi)表達(dá)[57]。通過(guò)融合不同分泌信號(hào)肽,豌豆[58]、豬白細(xì)胞[59]和G. graminis[55]等來(lái)源的LOX可被釀酒酵母或畢赤酵母分泌至培養(yǎng)基中,但產(chǎn)量極低,遠(yuǎn)不能滿足工業(yè)化生產(chǎn)要求。原核生物來(lái)源LOX的異源表達(dá)同樣面臨表達(dá)量低、難分泌至胞外等問(wèn)題。盡管N. punctiforme[17]、P. aeruginosa[60]等多個(gè)原核生物L(fēng)OX在大腸桿菌中表達(dá),但未見(jiàn)產(chǎn)量的相關(guān)報(bào)道。最近報(bào)道顯示,魚腥藻(Anabaena sp. PCC 7120)LOX在枯草芽孢桿菌(Bacillus subtilis)168 nprB介導(dǎo)下可被B. subtilis WB800分泌至胞外,實(shí)現(xiàn)了LOX在食品級(jí)宿主中表達(dá)的突破[61]。但按標(biāo)準(zhǔn)酶活定義計(jì)算[57],其胞外LOX產(chǎn)量?jī)H為0.01 U/mL,產(chǎn)酶水平有待進(jìn)一步提高。作者的研究發(fā)現(xiàn),P. aeruginosa LOX的天然信號(hào)肽可促進(jìn)其在E. coli BL21(DE3)中分泌[40],經(jīng)3 L罐表達(dá)條件優(yōu)化,胞外LOX酶活達(dá)到8.3 U/mL[62]。然而,較低的產(chǎn)酶溫度(20℃)是LOX的工業(yè)化生產(chǎn)亟待解決問(wèn)題[62]。

由于發(fā)酵法產(chǎn)LOX的總體水平不高,從發(fā)酵液中提取LOX的報(bào)道較少。目前尚需多步柱純化才能獲得較高純度的LOX,且酶活收率低,純化技術(shù)仍停留于研究階段。重組B. subtilis WB800分泌的LOX需經(jīng)DEAE-Sephacel、Sephadex G-100和Ni-NTA agarose三步柱純化才能達(dá)到電泳純,酶活收率僅為5%[61]。在重組E. coli 中獲得13.5倍純化的LOX需經(jīng)Q High Performance和Mono Q兩步柱純化,酶活收率也僅達(dá)到10%[40]。導(dǎo)致收率低的重要原因之一,可能是上述重組LOX的穩(wěn)定性不佳[40]。因此,進(jìn)一步提高LOX的穩(wěn)定性,壓縮純化工藝流程是實(shí)現(xiàn)工業(yè)規(guī)模純化LOX的關(guān)鍵。

4 結(jié)論

隨著應(yīng)用研究的深入,LOX在食品加工、化工、醫(yī)藥等領(lǐng)域展現(xiàn)良好的應(yīng)用前景。在此背景下,如何獲得具有良好應(yīng)用性能的LOX并實(shí)現(xiàn)其高效發(fā)酵生產(chǎn),將是LOX后續(xù)研究的重點(diǎn)。由于目前尚無(wú)可供工業(yè)化生產(chǎn)的野生菌株,基于食品級(jí)表達(dá)系統(tǒng)(枯草芽孢桿菌、解脂亞洛酵母和米曲霉等)構(gòu)建高效分泌LOX的重組菌是實(shí)現(xiàn)發(fā)酵法生產(chǎn)LOX最緊迫的任務(wù)之一?;诜置谛实膬?yōu)勢(shì),原核生物來(lái)源的LOX較真核生物來(lái)源的LOX更適于通過(guò)基因工程菌進(jìn)行工業(yè)化生產(chǎn)。然而,與大豆脂肪氧合酶相比,原核生物來(lái)源(如P. aeruginosa BBE和P. aeruginosa 42A2等)LOX的熱穩(wěn)定較差[40]。因此,加強(qiáng)對(duì)原核LOX熱穩(wěn)定性改造同樣應(yīng)引起足夠重視。

[1]Nyyssola A, Heshof R, Haarmann T, et al. Methods for identifying lipoxygenase producing microorganisms on agar plates[J]. AMB Express, 2012, 2:17.

[2]Coffa G, Brash AR. A single active site residue directs oxygenation stereospecificity in lipoxygenases:stereocontrol is linked to the position of oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44):15579-15584.

[3]Liavonchanka A, Feussner I. Lipoxygenases:occurrence, functions and catalysis[J]. Journal of Plant Physiology, 2006, 163(3):348-357.

[4]Andre E, Hou KW. The presence of a lipid oxidase in soybean,Glycine soya[J]. Compte Rendu Acad Sci(Paris), 1932, 194:645-647.

[5] Howe GA, Jander G. Plant immunity to insect herbivores[J]. Annual Review of Plant Biology, 2008, 59:41-66.

[6] Mosblech A, Feussner I, Heilmann I. Oxylipins:structurally diverse metabolites from fatty acid oxidation[J]. Plant Physiol Biochem,2009, 47(6):511-517.

[7] Yu Z, Crichton I, Tang SY, et al. Disruption of the 5-lipoxygenase pathway attenuates atherogenesis consequent to COX-2 deletion in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17):6727-6732.

[8] Aggarwal NT, Gauthier KM, Campbell WB. Endothelial nitric oxide and 15-lipoxygenase-1 metabolites independently mediate relaxation of the rabbit aorta[J]. Vascul Pharmacol, 2012, 56(1-2):106-112.

[9] Skrzypczak-Jankun E, Jankun J, Al-Senaidy A. Human lipoxygenase:developments in its structure, function, relevance to diseases and challenges in drug development[J]. Current Medicinal Chemistry,2012, 19(30):5122-5127.

[10]Hersberger M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis:leukotrienes, lipoxins and resolvins[J]. Clinical Chemistry and Laboratory Medicine, 2010,48(8):1063-1073.

[11]Wymann MP, Schneiter R. Lipid signalling in disease[J]. Nature Reviews Molecular Cell Biology, 2008, 9(2):162-176.

[12]Weinberger F, Lion U, Delage L, et al. Up-regulation of lipoxygenase, phospholipase, and oxylipin-production in the induced chemical defense of the red alga Gracilaria chilensis against epiphytes[J]. Journal of Chemical Ecology, 2011, 37(7):677-686.

[13]Brodhun F, Feussner I. Oxylipins in fungi[J]. FEBS Journal,2011, 278(7):1047-1063.

[14]Shechter G, Grossman S. Lipoxygenase from baker’s yeast:purification and properties[J]. International Journal of Biochemistry, 1983, 15(11):1295-1304.

[15]Joo YC, Oh DK. Lipoxygenases:Potential starting biocatalysts for the synthesis of signaling compounds[J]. Biotechnology Advances, 2012, 30(6):1524-1532.

[16]Hughes DT, Sperandio V. Inter-kingdom signalling:communication between bacteria and their hosts[J]. Nature Reviews Microbiology, 2008, 6(2):111-120.

[17]Koeduka T, Kajiwara T, Matsui K. Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Eschelichia coli[J]. Current Microbiology, 2007, 54(4):315-319.

[18]Lang I, Gobel C, Porzel A, et al. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120[J]. Biochemical Journal, 2008, 410(2):347-357.

[19]Vance R, Hong S, Gronert K, et al. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7):2135.

[20]Ivanov I, Heydeck D, Hofheinz K, et al. Molecular enzymology of lipoxygenases[J]. Archives of Biochemistry and Biophysics,2010, 503(2):161-174.

[21]Casey R, West SI, Hardy D, et al. New frontiers in food enzymology:recombinant lipoxygenases[J]. Trends In Food Science & Technology, 1999, 10(9):297-302.

[22]Buchhaupt M, Guder JC, Etschmann MM, et al. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase[J]. Applied Microbiology and Biotechnology, 2012, 93(1):159-168.

[23]Noverr MC, Toews GB, Huffnagle GB. Production of prostaglandins and leukotrienes by pathogenic fungi[J]. Infection and Immunity, 2002, 70(1):400-402.

[24] 林影. 生物酶在造紙工業(yè)綠色制造中的應(yīng)用[J]. 生物工程學(xué)報(bào), 2014, 30(1):83-89.

[25]Casey R, Hughes RK. Recombinant lipoxygenases and oxylipin metabolism in relation to food quality[J]. Food Biotechnology,2004, 18(2):135-170.

[26]Schneider C, Niisuke K, Boeglin WE, et al. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein lipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48):18941-18945.

[27]Cristea M, Oliw EH. A G316A mutation of manganese lipoxygenase augments hydroperoxide isomerase activity:mechanism of biosynthesis of epoxyalcohols[J]. Journal of Biological Chemistry, 2006, 281(26):17612-17623.

[28]Minor W, Steczko J, Boguslaw Stec O, et al. Crystal structure of soybean lipoxygenase L-1 at 1. 4 ? resolution[J]. Biochemistry,1996, 35(33):10687-10701.

[29]Gilbert NC, Niebuhr M, Tsuruta H, et al. A covalent linker allowsfor membrane targeting of an oxylipin biosynthetic complex[J]. Biochemistry, 2008, 47(40):10665-10676.

[30] Garreta A, Carpenai Vilella X, Busquets Abió M, et al. Crystallization and resolution of the lipoxygenase of Pseudomonas aeruginosa 42A2 and phylogenetic study of the subfamilies of the lipoxygenases[M]// Mu?oz-Torrero D. Recent Advances in Pharmaceutical Sciences, India:Transworld Research Network, 2011:247-273.

[31]Corbin JA, Evans JH, Landgraf KE, et al. Mechanism of specific membrane targeting by C2 domains:localized pools of target lipids enhance Ca2+affinity[J]. Biochemistry, 2007, 46(14):4322-4336.

[32]Chahinian H, Sias B, Carriere F. The C-terminal domain of pancreatic lipase:functional and structural analogies with C2 domains[J]. Current Protein and Peptide Science, 2000, 1(1):91-103.

[33]Dainese E, Angelucci CB, Sabatucci A, et al. A novel role for iron in modulating the activity and membrane-binding ability of a trimmed soybean lipoxygenase-1[J]. FASEB Journal, 2010, 24(6):1725-1736.

[34]Walther M, Anton M, Wiedmann M, et al. The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding[J]. Journal of Biological Chemistry, 2002, 277(30):27360-27366.

[35]Oldham ML, Brash AR, Newcomer ME. Insights from the X-ray crystal structure of coral 8R-lipoxygenase:calcium activation via a C2-like domain and a structural basis of product chirality[J]. Journal of Biological Chemistry, 2005, 280(47):39545-39552.

[36]Kulkarni S, Das S, Funk CD, et al. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase[J]. Journal of Biological Chemistry, 2002, 277(15):13167.

[37]Hammel M, Walther M, Prassl R, et al. Structural flexibility of the N-terminal beta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering. Functional consequences for activity regulation and membrane binding[J]. Journal of Molecular Biology, 2004, 343(4):917-929.

[38]Eek P, J?rving R, J?rving I, et al. Structure of a calcium-dependent 11R-Lipoxygenase suggests a mechanism for Ca2+regulation[J]. Journal of Biological Chemistry, 2012, 287(26):22377-22386.

[39]Saam J, Ivanov I, Walther M, et al. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels[J]. Proceedings of the National Academy of Sciences of of the United States Of America, 2007, 104(33):13319.

[40]Lu X, Zhang J, Liu S, et al. Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2013, 97(13):5793-5800.

[41]Hornung E, Walther M, Kuhn H, et al. Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by sitedirected mutagenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):4192-4197.

[42]Sloane DL, Leung R, Craik CS, et al. A primary determinant for lipoxygenase positional specificity[J]. Nature, 1991, 354(6349):149-152.

[43]Gillmor SA, Villasenor A, Fletterick R, et al. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity[J]. Nature Structural Biology, 1997, 4(12):1003-1009.

[44]Schneider C, Pratt DA, Porter NA, et al. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis[J]. Chemistry & biology, 2007, 14(5):473-488.

[45]Coffa G, Brash A. A single active site residue directs oxygenation stereospecificity in lipoxygenases:stereocontrol is linked to the position of oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44):15579.

[46]Coffa G, Schneider C, Brash AR. A comprehensive model of positional and stereo control in lipoxygenases[J]. Biochemical and Biophysical Research Communications, 2005, 338(1):87-92.

[47]Kobe MJ, Neau DB, Mitchell CE, et al. The structure of human 15-Lipoxygenase-2 with a substrate mimic[J]. Journal of Biological Chemistry, 2014, 289(12):8562-8569.

[48]Neau DB, Bender G, Boeglin WE, et al. Crystal structure of a lipoxygenase in complex with substrate the arachidonic acidbinding site of 8R-lipoxygenase[J]. Journal of Biological Chemistry, 2014, 289(46):31905-31913.

[49]Maccarrone M, Salucci ML, van Zadelhoff G, et al. Tryptic digestion of soybean lipoxygenase-1 generates a 60 kDa fragment with improved activity and membrane binding ability[J].Biochemistry, 2001, 40(23):6819-6827.

[50]Di Venere A, Salucci ML, van Zadelhoff G, et al. Structure-tofunction relationship of mini-lipoxygenase, a 60-kDa fragment of soybean lipoxygenase-1 with lower stability but higher enzymatic activity[J]. Journal of Biological Chemistry, 2003, 278(20):18281-18288.

[51]Palmieri-Thiers C, Alberti JC, Canaan S, et al. Identification of putative residues involved in the accessibility of the substratebinding site of lipoxygenase by site-directed mutagenesis studies[J]. Archives of Biochemistry and Biophysics, 2011, 509(1):82-89.

[52]Lu X, Liu S, Feng Y, et al. Enhanced thermal stability of Pseudomonas aeruginosa lipoxygenase through modification of two highly flexible regions[J]. Applied Microbiology and Biotechnology, 2013, 97(21):9419-9427.

[53]Lu X, Liu S, Zhang D, et al. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides[J]. Applied Microbiology and Biotechnology, 2013, 97(21):9419-9427.

[54]Herman RP, Hamberg M. Properties of the soluble arachidonic acid 15-lipoxygenase and 15-hydroperoxide isomerase from the oomycete Saprolegnia parasitica[J]. Prostaglandins, 1987, 34(1):129-139.

[55]Cristea M, Engstrom K, Su C, et al. Expression of manganese lipoxygenase in Pichia pastoris and site-directed mutagenesis of putative metal ligands[J]. Archives of Biochemistry and Biophysics, 2005, 434(1):201-211.

[56]Bae JH, Hou CT, Kim HR. Thermostable lipoxygenase is a key enzyme in the conversion of linoleic acid to trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3[J]. Biotechnology and Bioprocess Engineering, 2010, 15(6):1022-1030.

[57]Steczko J, Donoho GA, Dixon JE, et al. Effect of ethanol and lowtemperature culture on expression of soybean lipoxygenase L-1 in Escherichia coli[J]. Protein Expression and Purification, 1991, 2(2-3):221-227.

[58]Knust B, Wettstein D. Expression and secretion of pea-seed lipoxygenase isoenzymes in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1992, 37(3):342-351.

[59] Reddy RG, Yoshimoto T, Yamamoto S, et al. Expression, purification, and characterization of porcine leukocyte 12-lipoxygenase produced in the methylotrophic yeast, Pichia pastoris[J]. Biochemical and Biophysical Research Communications, 1994, 205(1):381-388.

[60]Vidal-Mas J, Busquets M, Manresa A. Cloning and expression of a lipoxygenase from Pseudomonas aeruginosa 42A2[J]. Antonie Van Leeuwenhoek International Journal, 2005, 87(3):245-251.

[61]Zhang C, Tao T, Ying Q, et al. Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein[J]. Applied Microbiology and Biotechnology, 2012, 94(4):949-958.

[62]陸信曜, 徐智, 劉松, 等. 重組大腸桿菌生產(chǎn)脂肪氧合酶的發(fā)酵優(yōu)化[J]. 食品科技, 2013, 5:31-36.

(責(zé)任編輯 狄艷紅)

Research Advance on the Structure,Molecular Modification,and Fermentation of Lipoxygenases

Liu Song1Lu Xinyao1Zhou Jingwen1Du Guocheng1Chen Jian1,2
(1. Key Laboratory of Industrial Biotechnology of Ministry of Education,Jiangnan University,Wuxi 214122;2. National Engineering Laboratory for Cereal Fermentation Technology,Jiangnan University,Wuxi 214122)

Lipoxygenases(EC1.13.11.12)catalyze and oxidize the polyunsaturated fatty acids containing Z, Z-1, 4-pentadiene structures to form the conjugated hydroperoxides of fatty acid, and they are widely used in food industry, chemical industry and pharmaceutical industry. Since lipoxygenase was firstly discovered in soybean in 1932, it has been detected in many animal and vegetable tissues as well as microorganisms. Broad sources led to various structure types of lipoxygenase, including classic, fusing, β-sheet deleted, and Mn2+-containing structures. To improve the application performance, molecular modification techniques, such as site-directed mutagenesis and fusing with selfassembling amphiphilic peptides, have been used to enhance the specific activity and thermal stability of lipoxygenase. Considering the natural advantages of fermentation method, the construction of recombinant strains producing high-yield lipoxygenase has become the research hotspot recently. The advances on the structure, molecular modification, and fermentation of classic lipoxygenases were briefly summarized for providing a reference for further studies.

lipoxygenase;structure and function;molecular modification;fermentation

10.13560/j.cnki.biotech.bull.1985.2015.12.005

2015-04-21

國(guó)家自然科學(xué)基金項(xiàng)目(31401638),國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(2011AA100905)

劉松,男,博士,研究方向:酶工程;E-mail:liusong@jiangnan.edu.cn

堵國(guó)成,男,博士,研究方向:發(fā)酵工程;E-mail:gcdu@jiangnan.edu.cn

猜你喜歡
發(fā)酵法異構(gòu)體底物
跨域異構(gòu)體系對(duì)抗聯(lián)合仿真試驗(yàn)平臺(tái)
抽氣負(fù)壓發(fā)酵法對(duì)丁酸梭菌生長(zhǎng)及芽孢形成的影響
兩種品牌大腸菌群酶底物法檢測(cè)試劑性能的比較
云南化工(2021年6期)2021-12-21 07:30:56
簡(jiǎn)析旋光異構(gòu)體平面分析和構(gòu)象分析的一致性
云南化工(2021年8期)2021-12-21 06:37:38
解析參與植物脅迫應(yīng)答的蛋白激酶—底物網(wǎng)絡(luò)
科學(xué)(2020年2期)2020-08-24 07:57:00
探討不同發(fā)酵法對(duì)面包品質(zhì)的影響
快速酶解發(fā)酵法制備豆醬時(shí)酶解條件的優(yōu)化
利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
CPU+GPU異構(gòu)體系混合編程模式研究
體外發(fā)酵法評(píng)定不同茬次和生長(zhǎng)年限苜蓿的營(yíng)養(yǎng)價(jià)值
德化县| 梧州市| 定远县| 通辽市| 江口县| 巨野县| 长寿区| 德州市| 宁河县| 徐汇区| 仁怀市| 麻阳| 卢龙县| 菏泽市| 连州市| 汉源县| 西吉县| 嘉义市| 宝鸡市| 洛隆县| 饶阳县| 和顺县| 麟游县| 巴东县| 星子县| 新昌县| 五峰| 万源市| 衡水市| 达日县| 舟山市| 朝阳区| 孟津县| 行唐县| 古田县| 太白县| 偏关县| 鄂州市| 蕉岭县| 云南省| 大兴区|