李田 孫景寬 劉京濤
(濱州學(xué)院 山東省黃河三角洲生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,濱州 256603)
植物啟動(dòng)子研究進(jìn)展
李田 孫景寬 劉京濤
(濱州學(xué)院 山東省黃河三角洲生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,濱州 256603)
植物啟動(dòng)子在轉(zhuǎn)錄水平上發(fā)揮著重要的調(diào)控作用,對其功能進(jìn)行研究不僅可以反映相應(yīng)基因的表達(dá)模式,還能為利用植物基因工程手段實(shí)現(xiàn)基因的高效特異性表達(dá)提供有效途徑。結(jié)合近年來的相關(guān)研究,綜述了植物啟動(dòng)子的結(jié)構(gòu)特點(diǎn)及其功能研究進(jìn)展,重點(diǎn)對與生物和非生物脅迫有關(guān)的各類誘導(dǎo)型啟動(dòng)子進(jìn)行了闡述,并展望了植物啟動(dòng)子的未來研究方向。
植物啟動(dòng)子;誘導(dǎo)型啟動(dòng)子;生物和非生物脅迫
基因工程在實(shí)現(xiàn)重要作物遺傳性狀的改良中較傳統(tǒng)植物育種具有較大的優(yōu)勢。特別是通過基因工程手段可同時(shí)引入兩個(gè)或多個(gè)基因以此實(shí)現(xiàn)植物多種性狀的改良,縮短育種時(shí)間,因此自該技術(shù)誕生以來一直被廣泛應(yīng)用于植物研究領(lǐng)域?;蚬こ碳夹g(shù)作為改良植物性狀的有效途徑,其中加強(qiáng)對植物轉(zhuǎn)錄水平的調(diào)控研究一直是該研究領(lǐng)域的熱點(diǎn)之一。
轉(zhuǎn)錄水平的調(diào)控在植物基因調(diào)控中發(fā)揮著重要作用,涉及多種順式作用元件和反式作用因子。啟動(dòng)子(Promoter)是一類與啟動(dòng)基因表達(dá)相關(guān)的順式作用元件,通過與特定的轉(zhuǎn)錄因子結(jié)合,控制基因轉(zhuǎn)錄的起始與表達(dá)?;虻谋磉_(dá)可受轉(zhuǎn)錄、翻譯等不同水平上的調(diào)控,因此,啟動(dòng)子作為轉(zhuǎn)錄水平上重要的調(diào)控元件,在基因工程領(lǐng)域開發(fā)和利用高效特異的啟動(dòng)子具有重要的研究意義和應(yīng)用價(jià)值。
啟動(dòng)子的結(jié)構(gòu)可影響它與RNA聚合酶II的識(shí)別、結(jié)合,從而影響基因表達(dá)的水平。研究表明,正是由于啟動(dòng)子中包含的各種特征性元件保證了轉(zhuǎn)錄過程的有效進(jìn)行。對于一個(gè)典型啟動(dòng)子的結(jié)構(gòu)特征通常包括轉(zhuǎn)錄起始位點(diǎn)、TATA-box、 CAAT-box、GC-box,以及位于轉(zhuǎn)錄起始點(diǎn)較遠(yuǎn)位置的增強(qiáng)子、沉默子等元件。
植物中啟動(dòng)子的轉(zhuǎn)錄起始位點(diǎn)通常位于-193--9 bp之間,其保守序列為CTCATCA,且前導(dǎo)序列富含A+T。研究發(fā)現(xiàn)水稻ZB8基因啟動(dòng)子中轉(zhuǎn)錄起始位點(diǎn)的堿基改變會(huì)影響轉(zhuǎn)錄過程[1]。此外,高等植物的轉(zhuǎn)錄起始位點(diǎn)的帽子結(jié)構(gòu)對于轉(zhuǎn)錄起始也具有關(guān)鍵作用[2]。植物啟動(dòng)子的核心元件TATA-box是絕大多數(shù)植物啟動(dòng)子正確表達(dá)所必需的,位于轉(zhuǎn)錄起始點(diǎn)上游-30--25 bp處,主要控制轉(zhuǎn)錄的精確起始,不同基因的TATA-box不僅共有序列存在差異,而且所包含的數(shù)目也不相同。除了上述核心元件,植物啟動(dòng)子中包含的一般上游元件對于啟動(dòng)子的啟動(dòng)活性也具有重要作用。CAAT-box和GC-box的作用主要是控制轉(zhuǎn)錄起始的頻率,但CAAT-box相比后者對轉(zhuǎn)錄起始頻率的影響更大。其中CAAT-box位于轉(zhuǎn)錄起始點(diǎn)上游約-100--80 bp處,除影響轉(zhuǎn)錄起始頻率外,該元件對兩個(gè)方向都有激活作用,且作用距離不定[3]。目前發(fā)現(xiàn)可與之結(jié)合的轉(zhuǎn)錄因子有CTFl、CTF2和CEBP等。對于少數(shù)無TATA-box的真核基因,其啟動(dòng)子序列通常富含GC-box。GC-box位于-110--80 bp處,其核心序列為GCCACACCC或GGGCGGG,且一般為多拷貝,其功能的發(fā)揮不受序列方向的影響,目前發(fā)現(xiàn)轉(zhuǎn)錄因子SPl與之結(jié)合后才能發(fā)揮作用。此外,在真核基因轉(zhuǎn)錄起始點(diǎn)的上游或下游,一般具有長度為100-200 bp的增強(qiáng)子序列,其核心組件10 bp左右,可增強(qiáng)轉(zhuǎn)錄的水平,如在35S啟動(dòng)子-393 bp和-90 bp之間就發(fā)現(xiàn)了具有增強(qiáng)基因表達(dá)的增強(qiáng)子序列[4]。沉默子是一段可以降低或關(guān)閉基因轉(zhuǎn)錄的啟動(dòng)子序列,其作用的發(fā)揮不受序列方向及距離遠(yuǎn)近的影響,目前有關(guān)沉默子具體作用序列的研究還很少。
組成型啟動(dòng)子的基因表達(dá)不具組織和時(shí)間特異性,外界因素對組成型啟動(dòng)子啟動(dòng)的外源基因表達(dá)幾乎沒有影響。目前常用的CaMV35S、水稻肌動(dòng)蛋白(ActinI)啟動(dòng)子、玉米泛素(Ubiquitin)啟動(dòng)子等均屬于這一類型。其中,CaMV35S啟動(dòng)子最早在煙草花葉病毒中發(fā)現(xiàn),對它的研究已經(jīng)十分清楚,不僅指出其基本結(jié)構(gòu)包括TATA-BOX、CAATBOX、反向重復(fù)序列及增強(qiáng)子核心序列,還對啟動(dòng)子不同區(qū)段的具體功能進(jìn)行了詳細(xì)劃分[5]。目前為止,CaMV35S啟動(dòng)子已成為植物表達(dá)載體構(gòu)建中最常用的啟動(dòng)子之一,由于該啟動(dòng)子在雙子葉植物中具有高效表達(dá)的特點(diǎn),且能在所有細(xì)胞和任何時(shí)候進(jìn)行轉(zhuǎn)錄,因此對于獲得大量的外源蛋白來說具有很大的優(yōu)勢,已被廣泛應(yīng)用于啟動(dòng)外源基因的表達(dá)。除了這一最為常用的CaMV35S啟動(dòng)子之外,從木爾坦棉花曲葉病毒(CLCuMV)中分離到CLCuMVC1基因啟動(dòng)子,其活性是CaMV35S啟動(dòng)子的3-5倍,且?guī)缀蹩稍谵D(zhuǎn)基因植株中的任何部位表達(dá),因此是一類極具應(yīng)用潛能的組成型強(qiáng)啟動(dòng)子[6]。
但CaMV35S啟動(dòng)子在單子葉植物中的啟動(dòng)活性很低,因此人們又開發(fā)利用了適于單子葉植物高效表達(dá)的水稻ActinI啟動(dòng)子和玉米Ubiquitin啟動(dòng)子等,其中玉米中采用Ubiquitin啟動(dòng)子啟動(dòng)CAT基因的表達(dá)比采用35S啟動(dòng)的基因表達(dá)效率高出10倍[7,8]。此外,Lu等[9]還從水稻中分離到新的rubi3啟動(dòng)子,并對該啟動(dòng)子及其5'-UTR的內(nèi)含子序列的啟動(dòng)活性進(jìn)行了研究,該啟動(dòng)子使基因在各個(gè)組織中表達(dá),且啟動(dòng)活性高于玉米中發(fā)現(xiàn)的Ubi-1啟動(dòng)子,因此是一類在單子葉植物中極具應(yīng)用價(jià)值的強(qiáng)效組成型啟動(dòng)子。
組織特異性啟動(dòng)子除包含應(yīng)有的一般啟動(dòng)子元件外,還具有增強(qiáng)子以及沉默子的特性,該類啟動(dòng)子的優(yōu)點(diǎn)在于可啟動(dòng)基因在植物組織特定部位的表達(dá),避免外源基因的不必要表達(dá),從而節(jié)約植物體的整體能量消耗。因此,通過采用不同的組織特異性啟動(dòng)子可實(shí)現(xiàn)外源基因在植物不同器官與組織中的表達(dá)。
目前已經(jīng)分離到許多可在植物營養(yǎng)器官中表達(dá)的啟動(dòng)子。例如,可在火炬松維管組織中特異性表達(dá)的啟動(dòng)子PAL,通過對特定區(qū)段的缺失突變發(fā)現(xiàn)PtaPAL啟動(dòng)子區(qū)的-897 bp--420 bp可在次生木質(zhì)部中特異表達(dá),并通過EMSA技術(shù)證明位于-897--674 bp的順式作用元件AC可與火炬樹中來源于木質(zhì)部的蛋白發(fā)生特異性結(jié)合[10]。此外,還發(fā)現(xiàn)了許多可以在植物維管組織中的韌皮部特異性表達(dá)的啟動(dòng)子,如柑橘韌皮部蛋白基因(CsPP)啟動(dòng)子、擬南芥韌皮部基因(AtPP2)啟動(dòng)子、擬南芥蔗糖運(yùn)輸基因(AtSUC2)啟動(dòng)子[11]。Zhang等[12]通過將Athspr與GUS和GFP報(bào)告基因融合表明這一啟動(dòng)子主要啟動(dòng)基因在植物維管組織中的特異性表達(dá),且通過與37個(gè)維管組織特異性表達(dá)啟動(dòng)子進(jìn)行比較發(fā)現(xiàn),這類啟動(dòng)子中均包括植物激素應(yīng)答元件、光反應(yīng)元件、生物和非生物脅迫響應(yīng)元件以及組織特異性表達(dá)元件。此外,研究表明單子葉植物水稻中的Ca2+-ATPase啟動(dòng)子全長具有維管組織表達(dá)特異性,其不同區(qū)段的缺失突變試驗(yàn)表明,該啟動(dòng)子還可對干旱、高鹽、病原菌等多種脅迫予以響應(yīng)[13]。
此外,分離獲得有效的可在植物繁殖器官特異表達(dá)的啟動(dòng)子對于以收獲果實(shí)和種子為主的作物來說具有重要意義,目前有關(guān)這類啟動(dòng)子的研究也較為廣泛。從大豆中分離得到的在果實(shí)和花組織特異性表達(dá)的Msg啟動(dòng)子主要啟動(dòng)基因在植物的蜜腺、長角果保衛(wèi)細(xì)胞以及花柄部位表達(dá),在成熟葉片中未見表達(dá),進(jìn)一步研究發(fā)現(xiàn)位于啟動(dòng)子區(qū)約650 bp的TATA區(qū)與其組織特異性表達(dá)無關(guān),這一發(fā)現(xiàn)與之前認(rèn)為組織特異性元件一般位于TATA框附近的研究結(jié)論存在差異[14]。單子葉植物中也存在大量組織特異性啟動(dòng)子,如從大麥中分離到的Lem1啟動(dòng)子,通過構(gòu)建該啟動(dòng)子的GFP融合蛋白表達(dá)載體,表明該啟動(dòng)子主要啟動(dòng)基因在大麥的外稃和內(nèi)稃中表達(dá),而在其他營養(yǎng)組織或大麥成熟期則不表達(dá)。缺失試驗(yàn)表明,這種基因組織特異性表達(dá)是由距離轉(zhuǎn)錄起始位點(diǎn)80 bp內(nèi)的一個(gè)順式作用元件決定的。除此之外,啟動(dòng)子上游還存在生長素、乙烯和赤霉素激素響應(yīng)元件[15]。近期發(fā)現(xiàn)的豇豆儲(chǔ)藏蛋白基因8SGα啟動(dòng)子驅(qū)動(dòng)下的GUS酶活活性是CaMV35s啟動(dòng)子活性的2-4倍,且該啟動(dòng)子具有種子表達(dá)特異性,因此可作為種子生物反應(yīng)器的高效特異啟動(dòng)子來應(yīng)用[16]。
植物為更好的適應(yīng)自然環(huán)境,保持正常生長,還形成了某些特異的誘導(dǎo)型啟動(dòng)子,這類啟動(dòng)子正常生長條件下啟動(dòng)活性很低甚至不啟動(dòng)轉(zhuǎn)錄,但受到外界脅迫時(shí),又可高效的啟動(dòng)轉(zhuǎn)錄。
目前發(fā)現(xiàn)的這類啟動(dòng)子有很多。其中有關(guān)鹽誘導(dǎo)型啟動(dòng)子方面,擬南芥中的rd29A是較早發(fā)現(xiàn)的一個(gè)可被鹽等非生物脅迫誘導(dǎo)的啟動(dòng)子,將該啟動(dòng)子與GFP融合表達(dá),在高鹽和干旱脅迫條件下GFP蛋白較35S驅(qū)動(dòng)下的表達(dá)要強(qiáng)[17]。CAM基因被認(rèn)為與植物的耐鹽性相關(guān),為此人們在不同物種中對這一基因的啟動(dòng)子區(qū)進(jìn)行了研究,如Schaeffer等[18]克隆了鹽生植物冰花中CAM基因的啟動(dòng)子序列,并對鹽脅迫下啟動(dòng)子區(qū)的增強(qiáng)區(qū)和沉默區(qū)進(jìn)行了研究。此外,從大豆中分離到GmCaM基因的啟動(dòng)子序列,缺失突變試驗(yàn)結(jié)果表明該啟動(dòng)子的鹽脅迫響應(yīng)順式作用元件位于-858--728 bp處,在此基礎(chǔ)上,構(gòu)建不同缺失區(qū)段的GUS報(bào)告基因表達(dá)載體,通過轉(zhuǎn)基因煙草試驗(yàn)表明在NaCl(150 mmol/L)和病原菌脅迫后GUS酶活約為35S啟動(dòng)子驅(qū)動(dòng)活性的4倍,EMSA試驗(yàn)進(jìn)一步證明啟動(dòng)子區(qū)的A2(-1207--1128 bp)和 C1(-858--728 bp)可與鹽和病原脅迫后大豆中的核蛋白形成緊密復(fù)合物,從而發(fā)揮啟動(dòng)功能[19]。甜菜堿醛脫氫酶(BADH)基因啟動(dòng)子也是一類鹽誘導(dǎo)型啟動(dòng)子,如從鹽生植物中亞濱藜(Atriplex centralasiatica)中分離到的BADH基因啟動(dòng)子,以及從遼東櫟中克隆到的BADH啟動(dòng)子均被證明是一類強(qiáng)效鹽誘導(dǎo)啟動(dòng)子,轉(zhuǎn)基因試驗(yàn)表明隨著鹽濃度的增加啟動(dòng)子各區(qū)段的GUS染色也越深[20,21]。pib基因啟動(dòng)子也被認(rèn)為具有鹽誘導(dǎo)啟動(dòng)活性,該類啟動(dòng)子含有鹽誘導(dǎo)GAAAAA元件,將其與GUS基因相連后,轉(zhuǎn)基因植株的GUS酶活在鹽脅迫后增加[22]。堿蓬和莧菜CMO基因啟動(dòng)子也可被鹽脅迫誘導(dǎo),其中堿蓬CMO基因啟動(dòng)子中的鹽誘導(dǎo)GAAAAA元件在增強(qiáng)植物耐鹽性中具有重要作用[23]。而在全長約1 600 bp的AmCMO啟動(dòng)子中,發(fā)現(xiàn)其上游區(qū)段410 bp處的啟動(dòng)子在鹽脅迫下GUS活性最強(qiáng),因此認(rèn)為AmCMO啟動(dòng)子的鹽誘導(dǎo)活性主要與該區(qū)段中的鹽響應(yīng)順式作用元件有關(guān)[24]。
在單子葉水稻中克隆到的鹽誘導(dǎo)啟動(dòng)子有Rab16A啟動(dòng)子和OsDREB1B啟動(dòng)子。其中Rab16A啟動(dòng)子只在鹽脅迫下才可被誘導(dǎo)表達(dá),而OsDREB1B啟動(dòng)子則可受鹽、ABA、PEG非生物脅迫及其他生物脅迫的誘導(dǎo)[25]。此外,在小麥和大麥中也發(fā)現(xiàn)了部分耐鹽啟動(dòng)子,其中小麥中的Ttd1a啟動(dòng)子可受NaCl和光誘導(dǎo),該啟動(dòng)子很可能通過CAAT元件與DNA結(jié)合蛋白相結(jié)合發(fā)揮作用[26],而來源于大麥HAV22基因的ABRC1啟動(dòng)子則可顯著提高轉(zhuǎn)ABRC1-CBF1番茄的耐鹽性[27]。
近期從白骨壤中克隆到AmMYB1基因的啟動(dòng)子,通過轉(zhuǎn)基因植株GUS染色證明其啟動(dòng)活性與鹽誘導(dǎo)相關(guān),序列分析發(fā)現(xiàn)該啟動(dòng)子區(qū)不僅含有脅迫響應(yīng)順式元件ABRE,還具有一個(gè)包含AtRD22-Like順式作用元件的MYB識(shí)別位點(diǎn)(MRS)。上述啟動(dòng)子序列分析表明,鹽脅迫過程中,AmMYB1轉(zhuǎn)錄因子可能通過與自身的順式作用元件結(jié)合發(fā)揮調(diào)控作用,也有可能通過植物自身的其他不同類型的MYB蛋白與MRS位點(diǎn)結(jié)合調(diào)控AmMYB1基因的表達(dá)。此外,該啟動(dòng)子區(qū)還包含一個(gè)與AtRD22相似的MYC位點(diǎn),其中MRS和MYC均可對外界脅迫刺激予以反應(yīng)[28]。結(jié)合有關(guān)AmMYB1轉(zhuǎn)基因功能驗(yàn)證試驗(yàn),表明該基因在鹽脅迫條件下主要通過調(diào)控與光合作用有關(guān)的基因表達(dá)來增強(qiáng)耐鹽性[29]。
表1 植物中的各類誘導(dǎo)型啟動(dòng)子
除上述鹽誘導(dǎo)型啟動(dòng)子外,目前發(fā)現(xiàn)的其他各類誘導(dǎo)型啟動(dòng)子具體見表1。這些轉(zhuǎn)錄因子分別在植物應(yīng)對不同環(huán)境條件(光、干旱、高溫、低溫和激素)等方面發(fā)揮著極其重要的作用。
植物中存在多個(gè)水平的基因表達(dá)調(diào)控,其中轉(zhuǎn)錄水平的調(diào)控主要受順式作用元件和轉(zhuǎn)錄因子兩方面的協(xié)同調(diào)控。因此加強(qiáng)對高效啟動(dòng)子的開發(fā)利用是目前基因工程領(lǐng)域興起的又一熱點(diǎn)[76]。目前人們得到的各類啟動(dòng)子中,由于誘導(dǎo)型啟動(dòng)子較組成型啟動(dòng)子而言,其具有在特異環(huán)境條件下表達(dá)的獨(dú)特優(yōu)勢,因此在利用基因工程手段提高植物耐逆性中具有很大的應(yīng)用前景。此外,人們還通過不斷篩選新的具有重要應(yīng)用價(jià)值的誘導(dǎo)型啟動(dòng)子以滿足某些基因的特異性表達(dá),而且通過基因改造手段,對已獲得各類型啟動(dòng)子進(jìn)行改造與組合,構(gòu)建出兼有高效表達(dá)和特異性表達(dá)的復(fù)合啟動(dòng)子,如通過將擬南芥組織特異型啟動(dòng)子p85和脅迫誘導(dǎo)型啟動(dòng)子p87聯(lián)合構(gòu)建的雙向啟動(dòng)子可顯著增加轉(zhuǎn)基因擬南芥和煙草的組織表達(dá)特異性和鹽脅迫誘導(dǎo)特異性[77]。總之,加強(qiáng)對新型啟動(dòng)子的克隆與研究不僅對了解基因的表達(dá)調(diào)控模式具有重要意義,而且對利用基因工程手段提高植物耐逆性同樣具有重要意義。且伴隨著各類啟動(dòng)子克隆方法的發(fā)展,人們克隆得到的各類啟動(dòng)子數(shù)目將會(huì)不斷增加。因此,進(jìn)一步的研究在于深入分析啟動(dòng)子中的重要作用元件的具體序列,以及明確與這些順式作用元件相作用的具體轉(zhuǎn)錄因子,從而為揭示植物耐逆等方面的調(diào)控機(jī)制以及提高外源基因的表達(dá)提供更有效的技術(shù)手段。
[1]Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR [J]. The Plant Journal, 1995, 8(3):457-463.
[2]Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes [J]. Nucleic Acids Research, 1987, 15(16):6643-6653.
[3]Bezhani S, Sherameti I, Pfannschmidt T, et al. A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter [J]. J Biol Chem, 2001, 276(26):23785-23789.
[4]Odell JT, Knowlton S, Lin W, et al. Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter [J]. Plant Mol Biot, 1988, 10:263-272.
[5]Benfey PN, Ren L, Chua NH. Ttssue-specific expression from CaMV35S enhancer subdomains in early stages of plant development[J]. EMBO J, 1990, 9(6):1677-1684.
[6]Xie Y, Liu Y, Meng M, et al. Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus [J]. Plant Molecular Biology, 2003, 53:1-14.
[7]Sohal AK, Pallas JA, Jenkins GI. The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis [J]. Plant Molecular Biology, 1999, 41:75-87.
[8]李為民, 王志興, 裴新梧, 等. 中棉光誘導(dǎo)基因Gacab啟動(dòng)子的克隆及功能分析 [J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2004, 12(3):253-257.
[9]Lu J, Sivamani E, Li X, et al. Activity of the 5’ regulatory regions of the rice poly ubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes [J]. Plant Cell Rep,2008, 27:1587-1600.
[10]Osakabe Y, Osakabe K, Chiang VL. Characterization of the tissuespecific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine(Pinus taeda) in Nicotiana tabacum [J]. Plant Cell Rep, 2009, 28:1309-1317.
[11]Miyata LY, Harakava R, Stipp LC, et al. GUS expression in sweet oranges(Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters [J]. Plant Cell Rep, 2012, 31:2005-2013.
[12]Zhang L, Yang T, Li X, et al. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue [J]. Plant Physiol Biochem, 2014, 78:88-96.
[13]Huda KM, Banu MS, Pathi KM, et al. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants [J]. PLoS One, 2013, 8(3):e57803.
[14]Str?mvik MV, Sundararaman VP, Vodkin LO. A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs [J]. Plant MolecularBiology, 1999, 41:217-231.
[15]Skadsen RW, Sathish P, Federico ML, et al. Cloning of the promoter for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea [J]. Plant Molecular Biology,2002, 49:545-555.
[16]Chen MX, Zheng SX, Yang YN, et al. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds [J]. J Biotechnol, 2014, 174:49-56.
[17]張俊蓮, 王蒂, 張金文, 等. 用綠色熒光蛋白和洋蔥表皮細(xì)胞檢測擬南芥rd29A基因啟動(dòng)子活性的方法 [J]. 植物生理學(xué)通訊, 2005, 41(6):815-819.
[18]Schaeffer HJ, Forstheoefel NR, Cushman JC. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism(CAM) genes in the facultative halophyte Mesembryanthemum crystallinum [J]. Plant Mol Biol, 1995, 28(2):205-218.
[19]Park HC, Kim ML, Kang YH, et al. Functional analysis of the stress-inducible soybean calmodulin isoform-4(GmCaM-4)promoter in transgenic tobacco [J]. Mol Cells, 2009, 27:475-480.
[20]Yin X, Zhao Y, Luo D, et al. Isolating the promoter of a stressinduced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin [J]. Biochim Biophys Acta,2002, 1577(3):452-456.
[21]Zhang Y, Yin H, Li D, et al. Functional analysis of BADH gene promoter from Suaeda liaotungensis K [J]. Plant Cell Rep, 2008,27(3):585-592.
[22]李嬋娟, 楊世湖, 武亮, 等. pib基因啟動(dòng)子及其誘導(dǎo)啟動(dòng)性初探 [J]. 遺傳, 2006, 28(6):689-694.
[23]Li Q, Yin H, Li D, et al. Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K [J]. Journal of Genetics and Genomics, 2007, 34(4):355-361.
[24]Bhuiyan NH, Hamada A, Yamada N, et al. Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor [J]. J Exp Bot, 2007, 58(15-16):4203-4212.
[25]Gutha LR, Reddy AR. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance [J]. Plant Mol Biol, 2008, 68:533-555.
[26]Woodrow P, Pontecorvo G, Ciarmiello LF, et al. Ttd1a promoter is involved in DNA-protein binding by salt and light stresses [J]. Mol Biol Rep, 2011, 38:3787-3794.
[27]Tang L, Kwon SY, Kim SH, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dis-mutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature [J]. Plant Cell Rep, 2006, 25(12):1380-1386.
[28]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell, 2003, 15:63-78.
[29]Ganesan G, Sankararamasubramanian HM, Harikrishnan M, et al. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco [J]. Journal of Experimental Botany, 2012, 63(12):4549-4561.
[30]Coca MA, Almoguera C, Thomas TL, et al. Differential regulation of small heat-shock genes in plants:analysis of a water stress inducible and developmentally activated sunflower promoter [J]. Plant Mol Biol, 1996, 31:863-876.
[31]Ralf P, Fritz S. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation [J]. Plant Mol Biol, 1996, 31:157-162.
[32]Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos:synergism between ABI3 and heat shock factors [J]. The Plant Journal,1999, 20(5):601-610.
[33] Navarre C, Sallets A, Gauthy E, et al. Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology [J]. Transgenic Res, 2011, 20:799-810.
[34] Rerksiri W, Zhang X, Xiong H, et al. Expression and promoter analysis of six heat stress-inducible genes in rice [J]. Scientific World Journal, 2013, doi:10.1155/2013/397401.
[35] Dunn MA, Whitel AJ, Vural S, et al. Identification of promoter elements in a low temperature responsive gene(blt4.9)from barley(Hordeum vulgare L.) [J]. Plant Molecular Biology, 1998, 38:551-564.
[36]Brown AP, Dunn MA, Goddard NJ, et al. Identification of a novel low-temperature response element in the promoter of the barley(Hordeum vulgare L)gene bhl01.1 [J]. Planta, 2001, 213:770-780.
[37]Zarka DG, Vogel JT, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE(inducer of CBF expression)promoter elements and a cold-regulatory circuit that is desensitized by low temperature [J]. Plant Physiology, 2003, 133:910-918.
[38]Kim HJ, Kim YK, Park JY, et al. Light signalling mediated by phytoehrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element(C/DRE) in Arabidopsis thaliana [J]. The Plant Journal, 2002,29(6):693-704.
[39]Dolferus R, Jacobs M, Peacock WJ, et al. Differential interactions of promoter stress responses of the Arabidopsis elements in Adh gene[J]. Plant Physiol, 1994, 105:1075-1087.
[40]Nordin K, Heino P, Palva ET. Separate signal pathways regulate the expression of a low-temperature induced gene in Arabidopsis thaliana(L.) [J]. Heynh Plant Mol Biol, 1991, 16:1061-1072.
[41]Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible RD29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol, 2004, 45(3):346-350.
[42]杜娟, 朱禎, 李晚忱. 植物逆境誘導(dǎo)啟動(dòng)子mwcs120的克隆及表達(dá)特性研究 [J]. 作物學(xué)報(bào), 2005, 31(10):1328-1332.
[43]Takumi S, Koike A, Nakata M, et al. Cold specific and lightstimulated expression of a wheat(Triticum aestivum L.)Cor gene Wcorl5 encoding a chloroplast targeted protein [J]. Journal of Experimental Botany, 2003, 54:2265-2274.
[44]Kovalchuk N, Jia W, Eini O, et al. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters [J]. Plant Biotechnol J, 2013, 11(6):659-670.
[45]Xu D, McElroy D, Thornburg RW, et al. Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants [J]. Plant Mol Biol, 1993, 22(4):573-588.
[46]Leung J, Girauda TJ. Abscisic acid signal transduction [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:199-222.
[47]Taylor JE, Renwick KF, Webb AA, et al. ABA-regulated promoter activity in stomatalguard cells [J]. Plant J, 1995, 7(1):129-134.
[48]Rai M, He CK, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice [J]. Transgenic Res, 2009, 18(5):787-799.
[49]Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J, 2003, 34:137-148.
[50]Xu D, Li J, Gangappa SN, et al. Convergence of Light and ABA signaling on the ABI5 promoter [J]. PLoS Genet, 2014, 10(2):e1004197.
[51]Yang YZ, Tan BC. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis [J]. PLoS One, 2014, 9(1):e87283.
[52]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol, 1999, 17:287-291.
[53]朱麗萍, 于壯, 鄒翠霞, 等. 植物逆境相關(guān)啟動(dòng)子及功能[J].遺傳, 2010, 32(3):229-234.
[54]Zahur M, Maqbool A, Irfan M, et al. Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J]. Mol Biol Rep, 2009, 36:1915-1921.
[55]Behnam B, Iuchi S, Fujita M, et al. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription [J]. DNA Res,2013, 20(4):315-324.
[56]Xiao FH, Xue GP. Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit [J]. Plant Cell Rep, 2001, 20(7):667-673.
[57]Li M, Wang X, Cao Y, et al. Strength comparison between coldinducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco [J]. Plant Physiol Biochem, 2013, 71:77-86.
[58]Ayadi M, Mieulet D, Fabre D, et al. Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response to abiotic stress in rice [J]. Plant Physiol Biochem, 2014, 79:98-108.
[59]Lamppa G, Nagy F, Chua NH. Ligh-tragulated and organ-specific expression of a wheat Cab gene in transgenic tobacco [J]. Nature,1985, 316:750-752.
[60]Tada Y, Sakamoto M, Matsuoka M, et al. Expression of a monocot LHCP promoter in transgenic rice [J]. Embo J, 1991, 10(7):1803-1808.
[61]王念捷, 程奇, 任延國, 等. 水稻4CL基因啟動(dòng)子引導(dǎo)的GUS在紫外誘導(dǎo)下的組織特異性表達(dá)[J]. 中國農(nóng)業(yè)科學(xué), 1996,29(1):73-77.
[62]Inaba T, Nagano Y, Reid JB, et al. DEl:a 12 bp cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea [J]. J Biol Chem, 2000,275:19723-19727.
[63]Welsch R, Medina J, Giuliano G, et al. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana [J]. Planta, 2003, 216:523-534.
[64]Li J, Liang D, Li M, et al. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stressinducible cis-elements in their promoters [J]. Planta, 2013, 238(3):535-547.
[65]Yoon IS, Park DH, Mori H, et al. Characterization of an auxininducible 1-aminocyclopropane-1-carboxylate synthase gene, VRACS6, of mungbean(Vigna radiata L. Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco [J]. Plant Cell Physiol, 1999, 40(4):431-438.
[66]Liu ZB, Ulmasov T, Shi X, et al. Soybean GH3 promoter contains multiple auxin-inducible elements [J]. Plant Cell, 1994, 6(5):645-657.
[67]Wang X, Replogle A, Davis EL, et al. The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding site of heterologous plan [J]. Molecular Plant Pathology,2007, 8(4):423-436.
[68]Song FM, Goodman RM. Cloning and identification of the promoter of the tobacco Sar8.2b gene, a gene involved in systemic acquired resistance [J]. Gene, 2002, 290:115-124.
[69]Li A, Chen L, Ren H, et al. Analysis of the essential DNA region for OsEBP-89 promoter in response tomethyl jasmonic acid [J]. Science in China Series C:Life Sciences, 2008, 51(3):280-285.
[70]Coutos-Thévenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stiibene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J]. J Exp Bot, 2001, 52:901-910.
[71]Peng JL, Bao ZL, Li P, et al. Hanpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis [J]. Acta Botanica Sinica, 2004, 46(9):1083-1090.
[72]Sa Q, Wang Y, Li W, et al. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fun GUS-inducible expression patterns and responds to both salicylic acid and jasmonic acid [J]. Plant Cell Rep, 2003, 22(1):79-84.
[73]李云鋒, 朱蕊, 謝龍旭, 等. 大麥 β-1, 3-葡聚糖酶基因(GIII)啟動(dòng)子在轉(zhuǎn)基因水稻中的誘導(dǎo)表達(dá) [J]. 植物生理與分子生物學(xué)學(xué)報(bào), 2005, 31(2):143-148.
[74]Gao Y, Zan XL, Wu XF, et al. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene BjCHI1 [J]. Plant Sci, 2014, 215-216:190-198.
[75]Chai C, Lin Y, Shen D, et al. Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression [J]. PLoS One, 2013, 8(6):e67670.
[76]Acharya S, Ranjan R, Pattanaik S, et al. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences [J]. Planta, 2014, 239(2):381-396.
[77]Banerjee J, Sahoo DK, Dey N, et al. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants [J]. PLoS One, 2013, 8(11):e79622.
(責(zé)任編輯 狄艷紅)
Research Advances on Plant Promoter
Li Tian Sun Jingkuan Liu Jingtao
(Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta,Binzhou University,Binzhou 256603)
Plant promoters play important regulatory roles at the transcription level, to study their functions can not only reflect the expression patterns of corresponding genes, but also provide an effective way for the use of plant genetic engineering to achieve efficient expression of specific genes. In this paper, recent studies were reviewed about their structural characteristics and functions, the various types of inducible promoters related to biotic and abiotic stress were mainly introduced, and the future research directions for plant promoters were prospected.
plant promoters;inducible promoters;biotic and abiotic stress
10.13560/j.cnki.biotech.bull.1985.2015.02.003
2014-07-19
國家自然科學(xué)基金項(xiàng)目(31400525),山東省自然科學(xué)基金項(xiàng)目(ZR2014CQ028),濱州學(xué)院博士基金項(xiàng)目(2014Y06),濱州學(xué)院科研基金項(xiàng)目(BZXYL1306)
李田,女,博士,講師,研究方向:分子生物學(xué);E-mail:912litian@163.com