国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

變系數(shù)zakharov-Kuznetsov方程的三層線性隱式差分格式

2015-10-17 04:01盛秀蘭馮美嬌吳宏偉
關(guān)鍵詞:收斂性步長差分

盛秀蘭,馮美嬌,吳宏偉

(1.東南大學(xué)數(shù)學(xué)系,南京210096;2.江蘇開放大學(xué),南京210036)

變系數(shù)zakharov-Kuznetsov方程的三層線性隱式差分格式

盛秀蘭1,2*,馮美嬌1,吳宏偉1

(1.東南大學(xué)數(shù)學(xué)系,南京210096;2.江蘇開放大學(xué),南京210036)

利用有限差分法逼近變系數(shù)廣義ZK(Zakharov-Kuznetsov)方程的初邊值問題,建構(gòu)一個三層線性化隱式差分格式.利用離散能量估計方法,討論差分格式解的唯一性以及x方向的一階差商在L∞模意義下的收斂性、穩(wěn)定性和收斂階數(shù),并通過數(shù)值算例驗證理論分析的結(jié)果.

Zakharov-Kuznetsov方程;隱式差分格式;收斂性;穩(wěn)定性

本文研究下列Zakharov-Kuznetsov方程初邊值問題的數(shù)值解法:

其中Ω=(L,R)×(L,R);g(u,t)=α(t)u+β(t)u2,式中α(t),β(t)和γ(t)是關(guān)于t的任意函數(shù);φ1(x,t),φ2(x,t),φ(x,y)是已知光滑函數(shù),且滿足相容性條件.Abdou等[1]用映射的方法給出了ZK方程的周期解.Ganjavi等[2]用同倫攝動法及變分迭代法給出了ZK方程的解.Yan等[3]結(jié)合李對稱群給出了ZK方程的對稱相似解.Wang[4],Bustamante[5],Ribaud[6]等從理論上研究了ZK方程解的存在唯一性.Ma等[7]給出了一種借助輔助方程求ZK方程精確解的方法.然而,利用有限差分法求ZK方程問題數(shù)值解的研究很少.考慮到ZK方程的特點,可從色散方程方面探討其數(shù)值解法.Darvishi[8]和 Haq[9]等分別利用譜配置方法、Darvishi預(yù)條件法和無網(wǎng)格方法研究了 Kdv-Burgers方程的數(shù)值解法.Nishiyama等[10]研究了二維廣義ZK方程的守恒有限差分格式及數(shù)值穩(wěn)定性.本文主要利用有限差分法研究問題(1)~(3)式,對非線性項g(u,t)ux文獻(xiàn)[11]給出了一種兩層線性化的差分格式,其他相關(guān)方法可參考文獻(xiàn)[12].

1 記號及差分格式

設(shè)存在常數(shù)C0,且有如下假設(shè):

2 差分格式解的唯一性和收斂性

C0+S,即當(dāng)l=k+1時,由歸納法證得定理2成立.

3 差分格式解的穩(wěn)定性

差分格式(4)~(6)式在實際運算過程中以時間逐層計算,誤差是不可避免的,從而直接影響差分格式的穩(wěn)定性.類似差分格式收斂性的驗證,可得到其穩(wěn)定性.

4 數(shù)值試驗

利用差分格式計算了一個實例,計算結(jié)果見表1.表中列出了不同步長時數(shù)值解的最大誤差和誤差比,其中

其中f(x,y,t)=ey+tsin(2πx){1+[1+ ey+tsin(2πx)]·2πey+tcos(2πx)},該問題的精確解為u(x,y,t)=ey+tsin(2πx).

從表1可以看出,當(dāng)步長縮小為原來的1/2時,誤差約縮小為原來的1/4,同時數(shù)值解也很好地逼近精確解.這與本文分析的結(jié)果吻合,即差分格式的解在L∞模下的收斂階數(shù)為O(h2+τ2).

表1 差分解在不同步長下的最大誤差和誤差比Tab.1 Errors and convergence rate

[1]ABDOU M A,ABD EIGAWAD S S.New periodic wave solutions for nonlinear evolution equations with variable coefficients via maping method[J].Numer Methods Partial Differ Eqs,2010,26(6):1608-1623.

[2]GANJAVI B,MOHAMMADI H,GANJI D D,et al.Homotopy perturbation method and variational iteration method for solving Zakharov-Kuznetsov equation[J].Am J Appl Sci,2008,5(7):811-817.

[3]YAN Zhilian,LIU Xiqiang.Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuznetsov equation[J].Appl Math Comput,2006,180(1):288-294.

[4]WANG Chuntian.The existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain[J].Discrete Contin Dyn Syst,2014,34(11):4897-4910.

[5]BUSTAMANTE E,ISAZA P,MEJIA J.On uniqueness properties of solutions of the Zakharov-Kuznetsov equation[J].J Funct Anal,2013,264(11):2529-2549.

[6]RIBAUD F,VENTO S.Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation[J]. SIAM J Math Anal,2012,44(4):2289-2304.

[7]MA Hongcai,YU Yaodong,GE Dongjie.The auxiliary equation method for solving the Zakharov-Kuznetsov(ZK)equation[J].Comput Appl,2009,58(11/12):2523-2527.

[8]DARVISHI M T,KHANI F,KHEYBARI S.A numerical solution of the Kdv-Burgers’equation by spectral collocation method and Darvishi’s preconditionings[J].Int J Contemp Math Sci,2007,2(22):1085-1095.

[9]HAQ S,ISLAM S,UDDIN M.A mesh-free method for the numerical solution of the Kdv-Burgers equation[J].Appl Math Model,2009,33(8):3442-3449.

[10]NISHIYAMA H,NOI T,OHARU S.Conservative finite difference schemes for the generalized Zakharov-Kuznetsov equations[J].J Comput Appl Math,2012,236(12):2998-3006.

[11]盛秀蘭,吳宏偉.Kdv-Burgers方程的兩層線性化隱式差分格式[J].揚州大學(xué)學(xué)報:自然科學(xué)版,2013,16(1):17-21.

[12]吳宏偉.一類半線性拋物方程的差分格式及收斂性和穩(wěn)定性[J].工程數(shù)學(xué)學(xué)報,2008,25(3):551-554.

A three-level difference scheme for zakharov-Kuznetsov equation

SHENG Xiulan1,2*,F(xiàn)ENG Meijiao1,WU Hongwei1
(1.Dept of Math,Southeast Univ,Nanjing 210096,China;2.Jiangsu Open Univ,Nanjing 210036,China)

In this paper,by using finite difference method,an implicit difference scheme is constructed to approximate the initial-boundary value problem of ZK equation.The proposed scheme is a three-level linearization scheme.Using the method of discrete energy estimates,existence uniqueness of difference scheme is proved.With the method of the discrete energy estimate,it is shown that the difference scheme is convergent in maximum norm.The convergence order is second-order in both space and time.Some numerical experiments are conducted to illustrate the theoretical results of the proposed difference scheme.

Zakharov-Kuznetsov equation;implicit difference scheme;convergence;stability

O241.82

A

1007-824X(2015)02-0031-04

(責(zé)任編輯 何青玉)

2014-07-14.*聯(lián)系人,E-mail:113525336@qq.com.

國家自然科學(xué)基金資助項目(11271068);江蘇開放大學(xué)“十二五”規(guī)劃課題(13SEW-C-076).

盛秀蘭,馮美嬌,吳宏偉.變系數(shù)Zakharov-Kuznetsov方程的三層線性隱式差分格式[J].揚州大學(xué)學(xué)報:自然科學(xué)版,2015,18(2):31-34,39.

猜你喜歡
收斂性步長差分
一種基于局部平均有限差分的黑盒對抗攻擊方法
一類分?jǐn)?shù)階q-差分方程正解的存在性與不存在性(英文)
基于Armijo搜索步長的BFGS與DFP擬牛頓法的比較研究
一種改進(jìn)的變步長LMS自適應(yīng)濾波算法
基于變步長梯形求積法的Volterra積分方程數(shù)值解
一個求非線性差分方程所有多項式解的算法(英)
董事長發(fā)開脫聲明,無助消除步長困境
基于差分隱私的數(shù)據(jù)匿名化隱私保護(hù)方法
西部地區(qū)金融發(fā)展水平的收斂性分析
我國省域經(jīng)濟(jì)空間收斂性研究
贞丰县| 宜宾市| 峨眉山市| 海淀区| 莱州市| 仪陇县| 浠水县| 会同县| 韶山市| 任丘市| 炎陵县| 汽车| 湖北省| 油尖旺区| 晋州市| 招远市| 厦门市| 德兴市| 余姚市| 康保县| 新源县| 清新县| 龙川县| 莱西市| 繁峙县| 波密县| 舟山市| 商洛市| 临沭县| 肃南| 类乌齐县| 永康市| 甘德县| 土默特左旗| 东丰县| 英山县| 金堂县| 丹凤县| 深圳市| 宜黄县| 四子王旗|