王睿[1] 汪雨冰[1]+王德宣[2]
摘 要 為了幫助學(xué)生深入理解逐次逼近型模數(shù)轉(zhuǎn)換器這一教學(xué)難點(diǎn),文中設(shè)計(jì)了逐次逼近式A/D轉(zhuǎn)換器實(shí)驗(yàn)配合理論教學(xué)。實(shí)驗(yàn)包括基礎(chǔ)和進(jìn)階兩部分內(nèi)容:基礎(chǔ)實(shí)驗(yàn)采用串行10位數(shù)模轉(zhuǎn)換器(D/A轉(zhuǎn)換器)TCL5615設(shè)計(jì)逐次逼近式A/D轉(zhuǎn)換器;在進(jìn)階實(shí)驗(yàn)中要求學(xué)生采用雙路D/A轉(zhuǎn)換器方案實(shí)現(xiàn)高精度A/D轉(zhuǎn)換器,引發(fā)學(xué)生獨(dú)立思考,在設(shè)計(jì)過(guò)程中培養(yǎng)其創(chuàng)新意識(shí)和創(chuàng)新能力。
關(guān)鍵詞 逐次逼近 A/D轉(zhuǎn)換器 單片機(jī) 創(chuàng)新實(shí)驗(yàn)
中圖分類號(hào):TN792 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.16400/j.cnki.kjdks.2015.09.033
Successive Approximation Analog-principle Experiment Scheme
WANG Rui[1], WANG Yubing[1], WANG Dexuan[2]
([1] College of Electric Science & Engineering, Jilin University, Changchun, Jilin 130012;
[2] Changchun No.48 Middle School, Changchun, Jilin 130051)
Abstract In order to help students in-depth understanding of the successive-approximation ADC difficulty of teaching, the paper designed the successive approximation A/D converter experiment with theoretical teaching. Experiments including basic and advanced two parts: basic experiments serial 10 DAC (D/A converter) TCL5615 design successive approximation type A/D converter; require students to advanced experiments using dual D/A converter program to achieve high-precision A/D converter, causing students to think independently, to develop their sense of innovation and ability to innovate in the design process.
Key words successive approximation; A/D converter; SCM; creative experiment
0 引言
模數(shù)轉(zhuǎn)換器(A/D 轉(zhuǎn)換器)是模擬電路與數(shù)字電路接口的關(guān)鍵部件,在工業(yè)控制領(lǐng)域有著廣泛的應(yīng)用。①②③根據(jù)設(shè)計(jì)原理的不同,A/D轉(zhuǎn)換器主要分為并行比較型、逐次逼近型和雙積分型等。④其中并行比較型A/D轉(zhuǎn)換器為滿足高速需求設(shè)計(jì);雙積分型A/D轉(zhuǎn)換器為滿足高精度需求設(shè)計(jì)。逐次比較型A/D轉(zhuǎn)換器具有中等速度(5 MS/s以下)、中高精度(8~16位)、低功耗和低成本的綜合優(yōu)勢(shì),使其在工業(yè)控制領(lǐng)域有著更廣泛的應(yīng)用。⑤關(guān)于A/D轉(zhuǎn)換器原理和應(yīng)用技術(shù)的內(nèi)容是數(shù)字電子技術(shù)、單片機(jī)原理與接口技術(shù)和現(xiàn)代電子技術(shù)等理論課程的教學(xué)重點(diǎn)和難點(diǎn)。該內(nèi)容實(shí)踐性較強(qiáng),以教師為主體的課堂講授方式,不利于學(xué)生理解和掌握A/D轉(zhuǎn)換器原理。因此,我們?cè)O(shè)計(jì)了包括基礎(chǔ)和進(jìn)階兩部分的逐次逼近式A/D轉(zhuǎn)換器原理實(shí)驗(yàn)。基礎(chǔ)實(shí)驗(yàn)部分采用串行10位數(shù)模轉(zhuǎn)換器(D/A轉(zhuǎn)換器)TCL5615設(shè)計(jì)逐次逼近型A/D轉(zhuǎn)換器,幫助學(xué)生理解掌握逐次逼近型A/D轉(zhuǎn)換器的設(shè)計(jì)原理;進(jìn)階實(shí)驗(yàn)部分要求學(xué)生采用雙路D/A轉(zhuǎn)換器方案實(shí)現(xiàn)更高精度A/D轉(zhuǎn)換器的設(shè)計(jì),對(duì)理論的運(yùn)用提出了更高的要求。這樣既充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的意識(shí),又在設(shè)計(jì)過(guò)程中培養(yǎng)學(xué)生的創(chuàng)新能力。
1 逐次逼近型A/D轉(zhuǎn)換器設(shè)計(jì)實(shí)驗(yàn)原理
逐次逼近型A/D轉(zhuǎn)換器主要由逐次逼近寄存器、時(shí)序控制電路、D/A轉(zhuǎn)換器和比較器構(gòu)成,其重點(diǎn)是D/A轉(zhuǎn)換器和比較器。逐次逼近型A/D轉(zhuǎn)換器采用二進(jìn)制數(shù)搜索法控制D/A轉(zhuǎn)換器的輸出電壓逼近輸入模擬電壓。以設(shè)計(jì)位逐次逼近型A/D轉(zhuǎn)換器為例,步驟為:
(1)確定A/D轉(zhuǎn)換器輸出的位,令D/A轉(zhuǎn)換器的輸出為2-1,它與輸入電壓一起輸入到比較器進(jìn)行比較,比較的結(jié)果(1或0)作為A/D轉(zhuǎn)換器輸出的第位,記作。
(2)確定A/D轉(zhuǎn)換器輸出的位,令D/A轉(zhuǎn)換器輸出2-1€?2-2,再次與輸入電壓比較,比較結(jié)果作為A/D轉(zhuǎn)換器輸出的第位,記作。
(3)以此類推,直到得到A/D轉(zhuǎn)換器的最低位。
2 實(shí)驗(yàn)內(nèi)容
實(shí)驗(yàn)以單片機(jī)為主控制器實(shí)現(xiàn)A/D轉(zhuǎn)換器內(nèi)部時(shí)序控制和D/A轉(zhuǎn)換器的控制,利用設(shè)計(jì)的逐次逼近型A/D轉(zhuǎn)換器測(cè)量模擬電壓,將轉(zhuǎn)換結(jié)果顯示在LCD上。
2.1 基礎(chǔ)實(shí)驗(yàn)
基礎(chǔ)實(shí)驗(yàn)中要求學(xué)生根據(jù)逐次逼近型A/D轉(zhuǎn)換器原理,設(shè)計(jì)具有8位分辨率的A/D轉(zhuǎn)換器,轉(zhuǎn)換時(shí)間盡量短。設(shè)計(jì)制作一個(gè)0~5 V可連續(xù)調(diào)節(jié)的信號(hào)源用來(lái)測(cè)試設(shè)計(jì)的A/D轉(zhuǎn)換器性能,最后將轉(zhuǎn)換結(jié)果顯示在串行段式液晶SMS0401上。
為了突出逐次逼近型A/D轉(zhuǎn)換器設(shè)計(jì)原理這一學(xué)習(xí)重點(diǎn),我們?cè)趯?shí)驗(yàn)中盡量減輕學(xué)生的設(shè)計(jì)負(fù)擔(dān),選用最簡(jiǎn)設(shè)計(jì)方案。D/A轉(zhuǎn)換器是設(shè)計(jì)逐次逼近型A/D轉(zhuǎn)換器的核心部件,考慮實(shí)驗(yàn)效果和成本我們選用簡(jiǎn)單易用的10位串行D/A轉(zhuǎn)換器TLC5615。顯示采用段式液晶SMS0401,僅有兩個(gè)控制引腳。設(shè)計(jì)中需要的控制端口較少,對(duì)控制速度要求很高,因此,我們選用20引腳的新型STC系列單片機(jī)STC12C5204,指令代碼完全兼容傳統(tǒng)8051,工作頻率范圍0~35 MHz,相當(dāng)于普通8051的0~420 MHz。用10位D/A轉(zhuǎn)換器設(shè)計(jì)逐次逼近型A/D轉(zhuǎn)換器,理論上A/D轉(zhuǎn)換器的分辨率可以達(dá)到10位。為了保證設(shè)計(jì)精度,我們要求學(xué)生采用基準(zhǔn)源芯片AD780提供D/A轉(zhuǎn)換器的參考電壓。
2.2 進(jìn)階實(shí)驗(yàn)
在基本實(shí)驗(yàn)的基礎(chǔ)上,我們?yōu)橛杏嗔Φ耐瑢W(xué)提出更高的要求,用10位D/A轉(zhuǎn)換器設(shè)計(jì)精度高于12位的A/D轉(zhuǎn)換電路,盡量保持高的轉(zhuǎn)換速率。新的設(shè)計(jì)任務(wù)需要學(xué)生靈活運(yùn)用理論解決實(shí)際問(wèn)題,進(jìn)而培養(yǎng)學(xué)生的工程素養(yǎng)和創(chuàng)新能力。
文中提供一個(gè)較新穎的設(shè)計(jì)方案,采用雙10位D/A轉(zhuǎn)換器設(shè)計(jì)16位D/A轉(zhuǎn)換器,替代基礎(chǔ)實(shí)驗(yàn)部分的D/A轉(zhuǎn)換器,進(jìn)而實(shí)現(xiàn)更高精度的位逐次逼近型A/D轉(zhuǎn)換器。16位D/A轉(zhuǎn)換器輸出模擬電壓模型為:
圖1 雙10位D/A轉(zhuǎn)換器實(shí)現(xiàn)A/D轉(zhuǎn)換器結(jié)構(gòu)圖
圖2 學(xué)生作品的設(shè)計(jì)測(cè)量結(jié)果
觀察發(fā)現(xiàn),整理后的16位D/A轉(zhuǎn)換器輸出電壓可以分解為兩部分,一個(gè)10位D/A轉(zhuǎn)換器與另一個(gè)10位D/A轉(zhuǎn)換器衰減64倍后的低6位的結(jié)果相加。因此,采用上述原理設(shè)計(jì)的逐次逼近型A/D轉(zhuǎn)換器結(jié)構(gòu)圖,如圖1所示。
設(shè)計(jì)過(guò)程中要提醒學(xué)生注意比較器LM393輸入端的信號(hào),根據(jù)信號(hào)噪聲特點(diǎn)加適當(dāng)無(wú)源濾波電路,可以進(jìn)一步提高測(cè)試精度。圖2是學(xué)生設(shè)計(jì)作品的測(cè)量結(jié)果,三角形離散點(diǎn)所在曲線是A/D轉(zhuǎn)換器輸出結(jié)果,測(cè)量線性度好且無(wú)明顯差異。圓形離散點(diǎn)所在曲線是A/D轉(zhuǎn)換器的絕對(duì)誤差,結(jié)果在正負(fù)0.0003 V間,滿足14位A/D轉(zhuǎn)換器精度。
3 結(jié)語(yǔ)
本文設(shè)計(jì)了配合逐次逼近型A/D轉(zhuǎn)換器原理教學(xué)的實(shí)驗(yàn)方案,包括基礎(chǔ)實(shí)驗(yàn)和進(jìn)階實(shí)驗(yàn)。文中討論了逐次逼近型A/D的設(shè)計(jì)原理,在基礎(chǔ)實(shí)驗(yàn)部分詳細(xì)論述了采用10位串行D/A轉(zhuǎn)換器TLC5615設(shè)計(jì)逐次逼近型A/D轉(zhuǎn)換器的過(guò)程,設(shè)計(jì)原則力求簡(jiǎn)潔有效,突出重點(diǎn)。在進(jìn)階實(shí)驗(yàn)中提出更高的要求,讓學(xué)生用低精度D/A轉(zhuǎn)換器實(shí)現(xiàn)高精度A/D轉(zhuǎn)換器的設(shè)計(jì),訓(xùn)練學(xué)生靈活運(yùn)用理論解決實(shí)際設(shè)計(jì)問(wèn)題的能力。在該部分我們采用兩路10位D/A轉(zhuǎn)換器TLC5615設(shè)計(jì)逐次逼近型A/D轉(zhuǎn)換器,精度達(dá)到14位。通過(guò)實(shí)驗(yàn)的方式,讓學(xué)生帶著設(shè)計(jì)需求學(xué)習(xí)理論,達(dá)到了學(xué)以致用的目的,實(shí)際教學(xué)效果好。并且在實(shí)驗(yàn)的過(guò)程中培養(yǎng)了學(xué)生的工程素養(yǎng),提高學(xué)生的創(chuàng)新能力。
注釋
① 張文義,張強(qiáng),張镠鐘,等.特定消諧變頻調(diào)速實(shí)驗(yàn)裝置的研究[J].實(shí)驗(yàn)室探究與探索,2011.30(6):24-26.
② 王睿,于永江,楊罕,等.基于FPGA的雙激光器同步控制的實(shí)現(xiàn)[J].光電子·激光,2010.21(2):204-207.
③ 花漢兵.基于MSP430F449單片機(jī)的數(shù)據(jù)采集實(shí)驗(yàn)設(shè)計(jì)[J].實(shí)驗(yàn)室研究與探索,2007.26(5):59-60,82.
④ 席德勛.現(xiàn)代電子技術(shù)[M].北京:高等教育出版社,1999.
⑤ 孫彤,李冬梅.逐次逼近A/D轉(zhuǎn)換器綜述[J].微電子學(xué),2007.37(4):523-531,547.