国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

2015-10-13 01:59:49TingtingZhengandPeixinZhang
Journal of Mathematical Study 2015年3期
關(guān)鍵詞:狀態(tài)變量工序動(dòng)態(tài)

Tingting Zheng and Peixin Zhang

1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

Tingting Zheng1and Peixin Zhang2,?

1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

.We study the existence ofglobalstrong solution to an initial–boundary value(or initial value)problem for the 3D nonhomogeneous incompressible Navier-Stokes equations.In this study,the initial density is suitably small(or the viscosity coefficient suitably large)and the initial vacuumis allowed.Results show thatthe unique solution of the Navier-Stokes equations can be found.

AMS subject classifications:35B65,35Q35,76N10

Incompressible Navier-Stokes equations,strong solutions,vacuum.

1 Introduction

The motion of a nonhomogeneous incompressible viscous fluid in a domain ? ofR3is governed by the Navier-Stokes equations

the initial and boundary conditions(1.1)with the following conditions:

Here we denote the unknown density,velocity and pressure fields of the fluid byρ,uandP,respectively.fis a given external force driving the motion.? is either a bounded domain inR3with smooth boundary or the whole spaceR3.

It is interesting to studing the regularity criterion for strong solution of(1.1).Many people devote to researching these kind of results.In particular,Kim[1]proved that ifT?was the blowup time of a local strong solution,then

whereLrwdenoted the weakLr?space.In[1],Kim also proved that the unique strong solution existed globally when ‖?u0‖L2was small enough.

For the case the initial density is away from zero,the nonhomogeneous equations(1.1)have been studied by many people,see[2–4]and their references therein.In these papers,the authors proved the existence and uniqueness of the local strong solution for general initial data and they also got global well-posedness results for small solutions in 3D(or higher dimensional)space,while for 2D space they established the existence of large strong solutions.In[5–7],the authors obtained the global well-posedness results for initial data belonging to certain scale invariant space.

In this paper,base on Kim’s work,we are interested in the existence of global strong solution with general initial data.The main result of this paper can be stated as follows:

Theorem 1.1.Assume that(ρ0,u0,f)satisfies

and the compatibility condition

誤差傳遞建模的研究將多工序系統(tǒng)作為動(dòng)態(tài)時(shí)序過程,零件特征作為動(dòng)態(tài)過程的狀態(tài)變量,不同工序作為動(dòng)態(tài)過程的不同時(shí)間點(diǎn)。零件特征隨工序變化而變化的過程,視為狀態(tài)變量隨時(shí)間變化而變化的過程。狀態(tài)空間方程描述了狀態(tài)變量在狀態(tài)空間中隨時(shí)間變化的過程,可利用狀態(tài)空間方法解決多工序制造誤差傳遞問題。

Throughout this paper,we denote

1<r<∞,kis a positive constant,the standard Sobolev space is described as follows:

We will give the proof of Theorem 1.1 in Section 2.

2 Proof of Theorem 1.1

Before the proof,we recall the local existence result.In[10],Choe and Kim gave the following local strong solution existence theorem.

Theorem 2.1.Under the conditions of(1.3)and(1.4),there exists a time T>0and a unique strong solution(ρ,u,P)to the initial boundary problem(1.1)–(1.2)satisfying

To extend the local classical solution guaranteed by Theorem 2.1,we prove it by contradiction.

Now,we establish priori estimates for smooth solutions to the initial boundary problems(1.1)-(1.2).LetT>0 be the fixed time and(ρ,u,P)be the smooth solution to(1.1)-(1.2)on ?×(0,T]in the class(2.1)with smooth initial data(ρ0,u0,P0)satisfying with(1.3),(1.4).

Lemma 2.1.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Then

where,the letter C denotes a generic positive constant depending on the constants in some Sobolev inequalities.

Remark 2.1.If ? is a bounded domain,the constantCmust depend on ? comparing to the unbounded domain.

Proof.Multiplying(1.1)1bypρp?1(p≥2)then integratingxover ?,one gets

Integrating(2.4)on[0,T]and takingp→∞,we obtain(2.2).Multiplying(1.1)2byu,integratingxover ? and using Sobolev inequalities,we have

By applying the H¨older and Sobolev inequalities,we have

whereCis dependent of the constants in the Sobolev inequalities.From this and(2.5),using Young’s inequality,we have

then by integrating(2.6)on[0,T],we have(2.3).

We define

Lemma 2.2.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Ifˉρ is suitably small orμis suff iciently large,then

provided A(T)≤2M.

Proof.Multiplying(1.1)2byutand integrating over ?,one gets

With the H¨older and Sobolev inequalities,one has

for someδ∈(0,1)and for any(r,s)satisfying2s+3r=1,3<r<∞.Takingv=|u|,w=|?u|ands=4,r=6 in(2.9),with Sobolev inequality,one has

On the other hand,since(u,P)is a solution of the stationary Stokes equations

whereF=ρf?ρut?ρu·?u,it follows from the classical regularity theory that

where we assumeμ≥1.Then from(2.10)and(2.11),one deduces

By integrating the last inequlity on[0,T],it yields that

Proof of Theorem 1.1.To prove the global existence,we argue by contradiction.Assume that(ρ,u)blows up at some finite timeT?,0 <T?< ∞.Since(ρ,u)satisfies the regularity(2.1)for anyT<T?,in view of Sobolev embedding again,we conclude that

which contradicts Theorem 1.3 in[1].This completes the proof of Theorem 1.1.

[1]H.Kim.A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J.Math.Anal.,37:1417–1434,2006.

[2]S.A.Antontesv,A.V.Kazhikov and V.N.Monakhov.Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland,Amsterdam,1990.

[3]A.V.Kazhikov.Resolution ofboundary value problems for nonhomogeneous viscous fluids.Dokl.Akad.Nauk.,216:1008–1010,1974.

[4]O.Ladyzhenskaya and V.A.Solonnikov.Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids.J.Soviet Math.,9:697–749,1978.

[5]H.Abidi and M.Paicu.Existence globale pour un fluide inhomog′ene.Ann.Inst.Fourier(Grenoble),57:883–917,2007.

[6]R.Danchin.Density-dependent incompressible viscous fluids in critical spaces.Proc.Roy.Soc.Edinburgh Sect.A,133:1311–1334,2003.

[7]G.L.Gui,J.C.Huang and P.Zhang.Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable.J.Funct.Analysis,261:3181–3210,2011.

[8]R.J.DiPerna and P.L.Lions.Equations diff′erentielles ordinaires et′equations de transport avec des coefficients irr′eguliers.S′eminaire EDP Ecole Polytechnique,Palaiseau,1988–1989,1989.

[9]P.L.Lions.Mathematical Topics in Fluid Mechanics,Vol.I:Incompressible Models.Oxford Univ.Press,New York,1996.

[10]H.J.Choe and H.Kim.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Comm.Partial Diff.Eqs.,28:1183–1201,2003.

[11]W.Craig,X.D.Huang and Y.Wang.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations.J.Math.Fluid Mech.,2013,DOI:10.1007/s00021-013-0133-6.

[12]J.U.Kim.Weak solutions ofan initialboundary value problemfor an incompressible viscous fluid with nonnegative density.SIAM J.Math.Anal.,18:89–96,1987.

[13]Y.Cho and H.Kim.Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal.,59:465–489,2004.

15 June,2014;Accepted 23 March,2015

?Corresponding author.Email addresses:nljj2011@126.com(T.Zheng),zhpx@hqu.edu.cn(P.Zhang).

猜你喜歡
狀態(tài)變量工序動(dòng)態(tài)
一階動(dòng)態(tài)電路零狀態(tài)響應(yīng)公式的通用拓展
基于TwinCAT3控制系統(tǒng)的YB518型小盒透明紙包裝機(jī)運(yùn)行速度的控制分析
國(guó)內(nèi)動(dòng)態(tài)
120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實(shí)踐
昆鋼科技(2022年2期)2022-07-08 06:36:14
國(guó)內(nèi)動(dòng)態(tài)
國(guó)內(nèi)動(dòng)態(tài)
基于嵌套思路的飽和孔隙-裂隙介質(zhì)本構(gòu)理論
大理石大板生產(chǎn)修補(bǔ)工序詳解(二)
石材(2020年4期)2020-05-25 07:08:50
動(dòng)態(tài)
土建工程中關(guān)鍵工序的技術(shù)質(zhì)量控制
涡阳县| 定兴县| 义乌市| 泰来县| 延长县| 公安县| 合作市| 田东县| 天津市| 龙泉市| 咸宁市| 揭西县| 泾源县| 孙吴县| 宣城市| 栖霞市| 湖南省| 天门市| 兴文县| 来宾市| 长沙县| 岳阳县| 汨罗市| 仙居县| 奉化市| 镇坪县| 孟州市| 宽甸| 宜都市| 湟中县| 濮阳县| 江口县| 苏尼特右旗| 闽侯县| 布拖县| 河津市| 衢州市| 象州县| 邹城市| 东兰县| 荆门市|