吳聚來
[摘 要] 數(shù)學(xué)思想的運用在數(shù)學(xué)學(xué)習中具有重要的作用。通過運用數(shù)學(xué)思想,學(xué)生可以更好地理解和解決數(shù)學(xué)問題,更加快速和高效地處理、解決學(xué)習過程中遇到的各種問題。可以說,數(shù)學(xué)思想是數(shù)學(xué)學(xué)習必不可少的組成部分,初中階段是學(xué)生數(shù)學(xué)學(xué)習的重要時期,在這一時期良好的數(shù)學(xué)思想教學(xué)可以為學(xué)生以后的數(shù)學(xué)學(xué)習打下堅實的基礎(chǔ),促進學(xué)生數(shù)學(xué)素養(yǎng)和綜合素質(zhì)的全面發(fā)展。
[關(guān)鍵詞] 數(shù)學(xué)思想;初中數(shù)學(xué);教學(xué);應(yīng)用
數(shù)學(xué)知識內(nèi)容龐雜,如果無法將知識轉(zhuǎn)化為實際能力,那么知識的價值就會大打折扣。數(shù)學(xué)思想可以幫助學(xué)生將知識轉(zhuǎn)化成為實際能力,從而促進學(xué)生綜合素質(zhì)的發(fā)展和數(shù)學(xué)素養(yǎng)的進一步提高。因此廣大初中數(shù)學(xué)教師在教學(xué)過程中一定要注意運用合適的教學(xué)方式,促進學(xué)生對教學(xué)思想的理解和掌握。這是數(shù)學(xué)教學(xué)的最重要組成部分。
一、初中數(shù)學(xué)教學(xué)中的數(shù)學(xué)思想
初中數(shù)學(xué)教學(xué)在學(xué)生數(shù)學(xué)學(xué)習生涯中起著承前啟后的重要作用,同時初中數(shù)學(xué)教學(xué)也是數(shù)學(xué)教學(xué)的基礎(chǔ)組成部分。在初中數(shù)學(xué)教學(xué)的過程中,學(xué)生需要學(xué)習這樣一些數(shù)學(xué)思想。如數(shù)形結(jié)合、分類討論、轉(zhuǎn)化化歸、類比歸納,還有方程函數(shù)思想等。這是學(xué)生在初中學(xué)習中所要掌握的基本數(shù)學(xué)思想,只有掌握好這幾種思想學(xué)生才能在解題時游刃有余。同時這些思想的掌握能促進學(xué)生思維的進一步發(fā)展,在一定程度上提高學(xué)生的創(chuàng)新能力。
二、培養(yǎng)學(xué)生的數(shù)學(xué)思想
教育必須緊跟時代發(fā)展的潮流,及時改變教學(xué)方式,打破傳統(tǒng)教學(xué)思想給我們帶來的思想上的禁錮。現(xiàn)代社會創(chuàng)新能力越來越成為一個人在社會中立足以至脫穎而出的重要條件。初中數(shù)學(xué)教學(xué)要著重培養(yǎng)學(xué)生的創(chuàng)新能力,通過數(shù)學(xué)思想的教學(xué)進一步促進學(xué)生創(chuàng)新思維的發(fā)展。課本內(nèi)容和課外內(nèi)容可以給學(xué)生提供大量的練習的機會,數(shù)學(xué)思想可以幫助學(xué)生不斷地思索和進一步理解題目。
1.讓學(xué)生深刻認識數(shù)學(xué)思想
數(shù)學(xué)思想教學(xué)的本質(zhì)就是概括解決數(shù)學(xué)問題過程中所用到的方法的一般特性,然后將這些特性進行總結(jié)和歸納。這樣以后在面對類似的問題時,運用相應(yīng)的數(shù)學(xué)思想,進行解題就能起到事半功倍的效果。通過學(xué)習數(shù)學(xué)思想學(xué)生可以對數(shù)學(xué)知識有更加深刻的認識,這有利于開拓學(xué)生的視野,促進學(xué)生綜合素質(zhì)的發(fā)展。而要想讓數(shù)學(xué)思想發(fā)揮出真正的力量,我們還需要掌握特定的數(shù)學(xué)方法。只有在數(shù)學(xué)方法的幫助下數(shù)學(xué)思想才能夠煥發(fā)出真正的魅力,可以說數(shù)學(xué)方法是數(shù)學(xué)思想完美展現(xiàn)的重要工具。就初中生的實際情況而言,他們的數(shù)學(xué)知識相對而言比較貧乏,并且他們對抽象思維的認知和處理能力不高。因此他們不能按要求較好地處理復(fù)雜的數(shù)學(xué)知識。這時再要求學(xué)生掌握好數(shù)學(xué)思想就有些強人所難了。筆者認為教師應(yīng)當通過數(shù)學(xué)方法的教學(xué)幫助學(xué)生認知數(shù)學(xué)思想,并慢慢引導(dǎo)學(xué)生從方法中總結(jié)出一般的規(guī)律。
通過數(shù)學(xué)方法進行數(shù)學(xué)思想的教育,教師需要掌握好學(xué)生的實際情況,針對學(xué)生的思維運轉(zhuǎn)情況、性格情況等制訂有針對性的教學(xué)計劃。同時教師還要完全掌握課堂情況,這樣教師才能選擇最合適的機會進行概念、公式、方法的教學(xué)。知識的形成并不是簡單的講解灌輸,在不斷解決問題的過程中學(xué)生才能對數(shù)學(xué)知識和數(shù)學(xué)方法有更加深刻的認識和理解。在不斷地獲取新知識的同時學(xué)生可以進一步鞏固已有的知識,同時在不斷運用這些知識解決問題的過程中學(xué)生分析和處理問題的能力也得到較大的提高。所以我們不僅要重視理論教學(xué),還要給學(xué)生實踐的機會,讓學(xué)生在實踐中檢查和提高自己。
數(shù)學(xué)思想的教育是不斷滲透的過程,因此教師要循序漸進,不能急功近利。根據(jù)學(xué)生的基礎(chǔ)情況和對知識的理解吸收情況,教師要控制好教學(xué)的速度和進度,在教學(xué)過程中精心安排教學(xué)內(nèi)容和教學(xué)速度。通過長時間的熏陶提高學(xué)生的學(xué)習能力。在現(xiàn)代數(shù)學(xué)教學(xué)中,教師要更多地充當引路人的角色,避免填鴨式的教育。學(xué)生對通過自己的摸索和嘗試而掌握的知識更牢固。舉個例子來講,筆者在教數(shù)形結(jié)合思想和函數(shù)方程思想時將其和具體的題目進行結(jié)合。這次筆者選擇的是二次不等式方程和二次函數(shù)圖像。將這兩者組合起來進行教學(xué)有助于學(xué)生更好地理解和掌握相關(guān)內(nèi)容。首先筆者會讓學(xué)生自己先解出二次方程,在學(xué)生解完這個問題后,筆者會讓學(xué)生再畫一個二次函數(shù)圖像。而后筆者會讓學(xué)生觀察兩者之間有什么聯(lián)系。很快學(xué)生們就發(fā)現(xiàn)二次函數(shù)圖像,圖像和橫軸的交點就是二次不等式的兩個根。因為學(xué)生是通過自己的觀察和思考解決這個問題的,所以學(xué)生的記憶和掌握的程度就更加深刻,學(xué)生也進一步意識到了數(shù)學(xué)思想的重要性。
2.讓學(xué)生由易到難地理解和掌握數(shù)學(xué)思想
數(shù)學(xué)思想的教學(xué)需要教材習題的幫助,初中生年齡比較小,他們對抽象思想的理解和掌握能力還比較弱,因此想要幫助學(xué)生更好地理解和掌握數(shù)學(xué)思想,就必須以具體的習題為載體。通過具體的習題,學(xué)生可以對數(shù)學(xué)知識有更加直觀的理解和掌握。為了達到這一目的,教師就必須深刻理解和掌握初中三個年級的具體知識,然后對其中蘊藏的數(shù)學(xué)知識進行提煉和整理。這樣,在教學(xué)過程中教師就可以有選擇性地進行側(cè)重講解。此外教師要多與學(xué)生溝通、交流,對學(xué)生的知識儲備情況、思維方式還有理解認知能力等進行深入了解,在教學(xué)過程中要循序漸進,切記要避免急功近利。要一步步來,慢慢地增加難度,這樣學(xué)生才能更好地吸收和掌握。筆者在教同底數(shù)冪的乘法的相關(guān)內(nèi)容時就會有意識地引導(dǎo)學(xué)生先從底數(shù)和指數(shù)開始學(xué)習和練習,在學(xué)生根據(jù)這些比較簡單的習題漸漸總結(jié)和掌握了相關(guān)的運算方法和運算技巧時,筆者才會進行下一步的教學(xué)。
3.讓學(xué)生在實踐中運用數(shù)學(xué)思想
教師要教導(dǎo)學(xué)生不可以閉門造車,在學(xué)生基本掌握了相關(guān)內(nèi)容時,教師可以有意識地讓學(xué)生實踐。只有在實踐中學(xué)生才能發(fā)現(xiàn)自己的問題。同時教師要注意仔細觀察學(xué)生實踐的過程,針對學(xué)生在實踐過程中出現(xiàn)的各種問題及時地選擇合適的方式,幫助學(xué)生解決處理好這些問題。雖然初中數(shù)學(xué)教學(xué)內(nèi)容比較多,但是在三年初中學(xué)習的時間中學(xué)生完全可以完成這些學(xué)習任務(wù),并且學(xué)生還會有一定的時間進行鞏固和復(fù)習。所以教師可以有選擇性地給學(xué)生實踐的時間。
數(shù)學(xué)知識體系的建立是一個不斷摧毀和重建的過程。在這個過程中學(xué)生可以不斷地精簡自己的知識體系,使其變得更加牢固、有效。在反復(fù)的訓(xùn)練中學(xué)生可以發(fā)現(xiàn)根據(jù)實際問題反映出的知識體系。比如在教類比思想時,學(xué)生很難理解“將特征相同的數(shù)據(jù)和知識進行整理和歸類,得到一般性的規(guī)律,然后根據(jù)這個規(guī)律解決接下來出現(xiàn)的問題”。但是從實際問題中,比如一元二次不等式和二次函數(shù)的關(guān)系等,學(xué)生可以更深刻地理解掌握這些知識。
4.在具體的問題中抽象出數(shù)學(xué)思想
數(shù)學(xué)思想蘊藏在一個個具體的實際問題之中,在處理這些問題時,如果教師不進行重點講解和說明,學(xué)生往往無法理解其中蘊藏的數(shù)學(xué)思想。所以在教學(xué)完成之后教師要有意識地跟學(xué)生們講一講問題中蘊藏的數(shù)學(xué)思想。在這樣的熏陶下,慢慢地學(xué)生會對抽象的數(shù)學(xué)思想有更加深刻的認識,這對于學(xué)生的數(shù)學(xué)素養(yǎng)的提升具有積極的促進作用。
數(shù)學(xué)思想在數(shù)學(xué)學(xué)習的過程中有著至關(guān)重要的作用,初中數(shù)學(xué)教學(xué)在學(xué)生的數(shù)學(xué)學(xué)習生涯中具有極其重要的地位,因此在初中數(shù)學(xué)教學(xué)過程中我們要注重數(shù)學(xué)思想的教學(xué)。相信通過不斷努力我們一定能解決好當前初中數(shù)學(xué)教學(xué)面臨的一些問題,為學(xué)生的數(shù)學(xué)素養(yǎng)的提高提供積極的幫助。
參考文獻
[1]教育部.義務(wù)教育數(shù)學(xué)課程標準(2011年版)[S].北京:北京師范大學(xué)出版社,2012.
責任編輯 王 慧