羅道根
(福建省南平市延平區(qū)夏道中學(xué))
加強(qiáng)數(shù)學(xué)教學(xué)引入策略提升中學(xué)生學(xué)習(xí)效率
羅道根
(福建省南平市延平區(qū)夏道中學(xué))
數(shù)學(xué)課程教學(xué)已在新課程教育改革的號角下吹響,在新的教學(xué)理念和教學(xué)策略的指引下,傳統(tǒng)數(shù)學(xué)沉悶的堡壘已被攻破,新的教學(xué)模式和引入策略、問題策略等應(yīng)運(yùn)而生,使中學(xué)生的朝氣本性得以釋放,思維得以開拓,學(xué)習(xí)效率也得到了大幅提升,數(shù)學(xué)教學(xué)課堂在各種靈活多變的展現(xiàn)下也呈現(xiàn)出不同的精彩風(fēng)格。
數(shù)學(xué)教學(xué);引入策略;課堂;效率
人教版中學(xué)數(shù)學(xué)教學(xué)在新課程改革之下,將新的教學(xué)理念、新的教學(xué)策略注入師生的心田,打破了思維定式,釋放了學(xué)生禁錮的視野,在數(shù)學(xué)引入策略的教學(xué)模式之中,學(xué)生被教師帶入氛圍活躍、思路多變的數(shù)學(xué)課堂,在教師對數(shù)學(xué)概念的規(guī)律進(jìn)行合理的導(dǎo)入,在教師創(chuàng)設(shè)的生動(dòng)直觀、情趣有效的問題情境中,學(xué)生的熱情被點(diǎn)燃,思緒被充分調(diào)動(dòng),各種學(xué)習(xí)的感官在觀察、分析、類比、歸納想象和判斷推理的思維中被利用,提高了數(shù)學(xué)學(xué)習(xí)效率,激活了數(shù)學(xué)想象性思維和創(chuàng)造性思維。
1.不可撼動(dòng)的教師權(quán)威地位,禁錮了學(xué)生的獨(dú)立思維
傳統(tǒng)的數(shù)學(xué)教學(xué)傳授過程中,由于數(shù)學(xué)是一門偏重理性思維的課程和概念、定律式的知識學(xué)習(xí),教師大多采用權(quán)威的授課方式,對學(xué)生施以控制性的、不可變的傳授風(fēng)格,而學(xué)生只能按照教師拓印好的腳印,一步也不敢錯(cuò),被動(dòng)地、按圖索驥式地學(xué)習(xí),在教師金科玉律的教學(xué)方式下,不敢質(zhì)疑,嚴(yán)重禁錮了學(xué)生作為主體的學(xué)習(xí)思維,喪失了獨(dú)立思考能力。
2.單調(diào)的教學(xué)模式激發(fā)不出數(shù)學(xué)學(xué)習(xí)的熱忱和信心
傳統(tǒng)灌輸式的數(shù)學(xué)教學(xué)方式,由于屬于無差異的教學(xué),沒有對學(xué)生進(jìn)行個(gè)性差異化的、有針對性的教學(xué),因而學(xué)生在應(yīng)付題海內(nèi)容的同時(shí),缺乏了對數(shù)學(xué)基本知識點(diǎn)的全面把握,形成無數(shù)學(xué)思維下的解題定式,激發(fā)不出數(shù)學(xué)探究欲望,也沒有高漲的自信和熱忱。
3.課堂教學(xué)模式不開放,缺乏新穎的數(shù)學(xué)刺激手段
數(shù)學(xué)教學(xué)注重培養(yǎng)學(xué)生的理性思維和抽象判斷分析能力,這需要教師進(jìn)行課堂的精心設(shè)計(jì)和教學(xué)方法的有效導(dǎo)入,可是,事實(shí)上是還存在教師與學(xué)生互動(dòng)脫節(jié)的問題,教師也沒有設(shè)計(jì)出高效、實(shí)用的教學(xué)計(jì)劃,使數(shù)學(xué)教學(xué)沉悶枯燥,缺乏新穎和刺激思維的有效手段,無法達(dá)到預(yù)期的教學(xué)效果。
1.引入策略要以學(xué)為主、以教為輔
中學(xué)數(shù)學(xué)知識的學(xué)習(xí)必須以學(xué)生為主體,根據(jù)不同學(xué)生的理解差異進(jìn)行數(shù)學(xué)知識的傳授,要讓不同層次的學(xué)生獲得不同的數(shù)學(xué)啟發(fā),而不是單純?yōu)榱送瓿山處煛敖獭钡娜蝿?wù)而“教”,是為了讓學(xué)生“學(xué)”而“教”。
如,在對中學(xué)數(shù)學(xué)的一元二次方程a2+2a+1=2的教學(xué)中,不要機(jī)械地讓學(xué)生進(jìn)行運(yùn)算,而要引導(dǎo)學(xué)生觀察方程式,積極地思考和探尋,最終發(fā)現(xiàn)這個(gè)方程式的左邊即是(a+1)2,是可以用直接開平方法來解算的。然后,更進(jìn)一步,教師提出變化的一元二次方程式:a2+2a-1=0,讓學(xué)生進(jìn)行自主的思考,學(xué)生會發(fā)現(xiàn)對前一方程式進(jìn)行化簡,即可轉(zhuǎn)化為a2+2a-1=0,恰好找到如何解這一方程式的靈感,從教師的引導(dǎo)中得到了啟發(fā),提升了學(xué)習(xí)效率。
2.引入策略要遵循數(shù)學(xué)知識認(rèn)知的規(guī)律
數(shù)學(xué)學(xué)科的知識是循序漸進(jìn)的,它需要教師依據(jù)學(xué)生掌握的既有知識構(gòu)架進(jìn)行新知識的規(guī)律性學(xué)習(xí),要以學(xué)生已經(jīng)熟悉或已經(jīng)認(rèn)可的數(shù)學(xué)知識作為切入點(diǎn),進(jìn)行新知識的引入,引發(fā)學(xué)生深層次的思考,揭示數(shù)學(xué)問題的本質(zhì),這樣才能與學(xué)生的認(rèn)知水平和心理接受相適合,才能達(dá)到教學(xué)目標(biāo)和教學(xué)效果。如,對人教版八年級數(shù)學(xué)立方根的教學(xué),其重點(diǎn)是要學(xué)生把握立方根的概念,學(xué)會運(yùn)用立方運(yùn)算求出某些數(shù)的立方根。在對這一知識的學(xué)習(xí)之前,教師要依據(jù)學(xué)生的認(rèn)知規(guī)律,在學(xué)生學(xué)習(xí)了平方根和乘方運(yùn)算的知識之后,以舊帶新,遵循認(rèn)知規(guī)律,引入立方根的概念性知識。
3.引入策略要鍛煉數(shù)學(xué)思維方式
數(shù)學(xué)思維是需要加以鍛煉和指引的,在中學(xué)數(shù)學(xué)課堂上,教師要逐步使學(xué)生形成數(shù)學(xué)思維方式,鍛煉其各種數(shù)學(xué)能力,如,在引導(dǎo)學(xué)生理解“同類項(xiàng)”的數(shù)學(xué)概念時(shí),可以用具體、實(shí)在的物體進(jìn)行數(shù)學(xué)思維導(dǎo)入:蘋果、芒果、香蕉、菠菜、土豆、芹菜、冰棒等,鼓勵(lì)學(xué)生按不同類別加以區(qū)分,同時(shí)引出同類項(xiàng)的概念,使學(xué)生在具體物體分類的基礎(chǔ)上掌握數(shù)學(xué)思維的概念性知識,由實(shí)物融入數(shù)學(xué)思想和方式,啟迪數(shù)學(xué)思維。
4.引入策略要多維、多角度
中學(xué)生的思維非?;钴S,在數(shù)學(xué)教學(xué)的引入策略中要用多元、多角度的方式,激發(fā)學(xué)生的思維火花,給學(xué)生以新奇、刺激、趣味的感覺,絕不能千篇一律、老調(diào)重彈,這樣難以激發(fā)學(xué)生的熱情和智慧,只有通過多維的引導(dǎo)方式,才能引領(lǐng)學(xué)生進(jìn)入數(shù)學(xué)知識的殿堂。
數(shù)學(xué)概念是純粹性、抽象性的定義形式,教師要采用適當(dāng)?shù)囊氩呗?,將抽象的?shù)學(xué)概念和知識進(jìn)行規(guī)律性的闡述,激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)效率。
1.生活情境的引入
數(shù)學(xué)課程要遵循學(xué)生的認(rèn)知規(guī)律,注重從學(xué)生既有的認(rèn)知和生活經(jīng)驗(yàn)入手,使新的數(shù)學(xué)概念建立在已有的數(shù)學(xué)知識架構(gòu)上。如,某位數(shù)學(xué)教師在向?qū)W生講授“一百萬有多大?”時(shí),先用學(xué)生熟知的西湖發(fā)問:“我們杭州西湖在國慶長假期間旅游創(chuàng)收25億,同學(xué)們,你們知道25億究竟有多大嗎?”“你們誰能夠說出哪里還見過這么大的數(shù)?”同學(xué)們紛紛發(fā)言,提及本地著名景區(qū),學(xué)生都饒有興趣,再從本地知名景區(qū)聯(lián)想到其他土特產(chǎn)方面見到的類似的大數(shù),在自然而貼近生活的引入中,激發(fā)了學(xué)生對大數(shù)的概念性認(rèn)知。
2.實(shí)例的引入
數(shù)學(xué)的抽象概念性知識可以與現(xiàn)實(shí)存在的物質(zhì)材料進(jìn)行融合,引導(dǎo)學(xué)生從現(xiàn)實(shí)的物質(zhì)存在中抽取數(shù)學(xué)知識內(nèi)容,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。如,幾何教學(xué)就可以借助于實(shí)體物質(zhì),從隨處可見的生活實(shí)例進(jìn)行剖析和講解,小到平面書本、大到立體教室空間,引入幾何點(diǎn)、線、面、體的相關(guān)數(shù)學(xué)知識;對于“平面直角坐標(biāo)系”的教學(xué),可以借助于學(xué)生喜愛的電影場所中的排號和座位號來進(jìn)行導(dǎo)入;對于數(shù)學(xué)正負(fù)數(shù)的概念性學(xué)習(xí),可以引入生活中的體溫計(jì)的指示數(shù)字進(jìn)行講解;對于數(shù)學(xué)軸對稱圖形的認(rèn)知,可以引入學(xué)生喜愛的蝴蝶翅膀或者剪紙圖案等。
3.活動(dòng)的引入
數(shù)學(xué)概念的學(xué)習(xí)和認(rèn)知還可以通過相關(guān)數(shù)學(xué)問題或?qū)嵺`活動(dòng)的設(shè)計(jì)來進(jìn)行導(dǎo)入,在任務(wù)的進(jìn)程中逐漸滲入數(shù)學(xué)概念知識。如,數(shù)學(xué)教學(xué)中一元二次方程的概念引入,可以通過對相關(guān)任務(wù)的問題解決過程,呈現(xiàn)出概念的原型,在具體的方程式中導(dǎo)出一元二次方程的抽象概念。教師可以設(shè)計(jì)以下問題:“濱江花宛”樓盤即將開盤,在兩棟樓之間要拓寬800平方米的綠地,要求綠地的長比其寬多20米,試問這塊綠地的長、寬各為多少?學(xué)生對教師提出的問題進(jìn)行思考,并列出方程式,教師則在這一過程中引入一元二次方程的抽象性概念。
綜上所述,中學(xué)數(shù)學(xué)的引入教學(xué)策略是教學(xué)方式多元化的體現(xiàn),它伴隨教學(xué)改革的不斷拓展和深入,在教師精心的設(shè)計(jì)和布局下,根據(jù)學(xué)生的生活經(jīng)驗(yàn)和思維結(jié)構(gòu)特點(diǎn),揭示出生活中蘊(yùn)藏的數(shù)字概念知識,進(jìn)行歸納、總結(jié)和推理,從而發(fā)現(xiàn)數(shù)學(xué)知識的規(guī)律,提高學(xué)生的數(shù)學(xué)思維能力,通過各種渠道和途徑汲取知識,提高數(shù)學(xué)學(xué)習(xí)效率。
[1]劉素琴.例談初中數(shù)學(xué)概念教學(xué)[J].數(shù)學(xué)學(xué)習(xí)與研究,2013(24).
[2]陳曉輝.初中數(shù)學(xué)教學(xué)的幾點(diǎn)實(shí)踐與探索[J].當(dāng)代教育論壇:教學(xué)研究,2010(09).
[3]趙穎超.數(shù)學(xué)課堂教學(xué)中優(yōu)化練習(xí)設(shè)計(jì)策略探究[J].科學(xué)大眾:科學(xué)教育,2010(08).
·編輯 張珍珍