田野 黃建 回迎軍 肖益林
中國(guó)科學(xué)院殼幔物質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)技術(shù)大學(xué)地球和空間科學(xué)學(xué)院,合肥 230026
在板塊俯沖變質(zhì)過(guò)程和地幔楔部分熔融產(chǎn)生島弧巖漿(富集大離子親石元素(LILE)和輕稀土元素(LREE)并虧損高場(chǎng)強(qiáng)元素(HFSE))過(guò)程中,流體扮演了關(guān)鍵性的角色(McCulloch and Gamble,1991;Tatsumi et al.,2005)。流體同樣會(huì)影響高壓(超高壓)變質(zhì)巖的形成和保存(Hermann et al.,2006),甚至造成地震(Davies,1999)。前人的研究表明,伴隨著俯沖板塊脫水,大量的LILE 和LREE 從變質(zhì)基性巖中脫出(Kogiso et al.,1997;Becker et al.,2000;Gao et al.,2007),但是另外一些研究顯示,從藍(lán)片巖相到榴輝巖相轉(zhuǎn)變過(guò)程中,釋放出的富水流體,其元素溶解度相當(dāng)?shù)?,無(wú)法用來(lái)解釋俯沖過(guò)程中鎂鐵質(zhì)巖石微量元素的大量丟失(Hermann et al.,2006;Miller et al.,2007;Schmidt et al.,2009)。這種脫水釋放流體和微量元素活動(dòng)性的解耦,主要是受到流體的類型、組成和在變質(zhì)過(guò)程中開(kāi)放或封閉體系下元素遷移機(jī)制和程度的影響。
實(shí)驗(yàn)證明,在俯沖帶條件下存在三類不同類型的流體,即富水流體、含水熔體和超臨界流體(Shen and Keppler,1997;Manning,2004;Kessel et al.,2005;Hack et al.,2007)。在硅酸鹽-水體系中,水飽和固相線以下只有富水流體和固相硅酸鹽共存,含水熔體不會(huì)出現(xiàn),直到溫壓條件超過(guò)水飽和固相線。當(dāng)溫壓條件繼續(xù)升高至超過(guò)液相線,硅酸鹽完全熔化,此時(shí)只有含水熔體存在。在一定的壓力下,濕固相線達(dá)到終點(diǎn),這個(gè)點(diǎn)稱為第二臨界點(diǎn)(second critical endpoint),也是濕固相線和臨界曲線的交點(diǎn)(Boettcher and Wyllie,1969;Manning,2004;Hermann et al.,2006;Zheng et al.,2011)。當(dāng)壓力超過(guò)第二臨界點(diǎn)條件時(shí),富水流體和含水熔體完全混溶變成一個(gè)相,稱為超臨界流體。除了實(shí)驗(yàn)證據(jù),自然巖石樣品中也發(fā)現(xiàn)了硅酸鹽物質(zhì)和水完全混溶的直接證據(jù)(Navon et al.,1988;Hwang et al.,2011;St?ckhert et al.,2001;Ferrando et al.,2005b;Frezzotti et al.,2007)。由于含水熔體和超臨界流體相比富水流體可以溶解更多的微量元素(包括傳統(tǒng)的流體不活動(dòng)元素),它們可能在控制地殼和上地幔的元素分配和遷移過(guò)程中起到至關(guān)重要的作用(Bureau and Keppler,1999;Manning,2004;Kessel et al.,2005;Hermann et al.,2006;Hack et al.,2007;Zheng et al.,2011)。
變質(zhì)脈是水/巖交換的直接產(chǎn)物,在特定的溫度壓力條件下發(fā)生礦物沉淀而形成的脈,它是巖石中構(gòu)造剪切的薄弱地帶為變質(zhì)流體活動(dòng)提供的通道(Oliver and Bons,2001;Zack and John,2007;盛英明等,2011)。它是流體以隧道流形式流動(dòng)的體現(xiàn),能夠提供俯沖帶流體活動(dòng)的重要信息,尤其可以用其研究俯沖板片中流體運(yùn)移路徑、高溫高壓流體中元素的溶解能力以及變質(zhì)巖在流體作用下的蝕變和變形等(Miller et al.,1994;Cartwright et al.,1994;Becker et al.,1999;Spandler and Hermann,2006;Gao et al.,2007;Wu et al.,2009;Chen et al.,2012a;Guo et al.,2012;Huang et al.,2012;Lü et al.,2012;Sheng et al.,2012,2013)。
大別-蘇魯造山帶內(nèi)超高壓榴輝巖中存在著大量的變質(zhì)脈(Cong,1996;Liou and Zhang,1996;Zheng et al.,2003a;盛英明等,2011)。根據(jù)礦物共生組合,變質(zhì)脈可以分為兩大類,一類是富含石英的“純”石英脈,主要礦物石英通常占脈體總體積的98% (Franz et al.,2001;Li et al.,2001,2004,2011;Zheng et al.,2007;Zhang,2008;Wu et al.,2009;Sun et al.,2010;Zong et al.,2010;Xiao et al.,2011;Huang et al.,2012;Sheng et al.,2012)。另一類是復(fù)雜礦物組合脈,它們的共生礦物組合復(fù)雜,可以簡(jiǎn)單概括為藍(lán)晶石-黝簾石-(石榴石)-石英脈、綠輝石-藍(lán)晶石脈、藍(lán)晶石-黝簾石/綠簾石-多硅白云母-石英脈和褐簾石-綠輝石-藍(lán)晶石-石英脈等(Castelli et al.,1998;Zhang et al.,2008,2011;Chen et al.,2012a;Guo et al.,2012;Huang et al.,2012;Sheng et al.,2013;盛英明等,2011)。榴輝巖中礦物組合復(fù)雜脈已經(jīng)成為近年來(lái)的研究熱點(diǎn)(Spandler and Hermann,2006;Gao et al.,2007;John et al.,2008;Zhang et al.,2008;Beinlich et al.,2010;Spandler et al.,2011;Herms et al.,2012;Lü et al.,2012;Sheng et al.,2013)。本文以蘇魯南部池莊地區(qū)復(fù)雜脈體及其寄主榴輝巖為研究對(duì)象,通過(guò)詳細(xì)的巖相學(xué)觀察、全巖主微量元素、脈礦物的電子探針和LA-ICPMS 分析、鋯石U-Pb 年代學(xué)和微量元素以及礦物氧同位素分析,試圖探討這些脈體的演化歷史和成因機(jī)制以及在脈體形成過(guò)程中的流體活動(dòng)和元素遷移。
圖1 蘇魯東海地質(zhì)簡(jiǎn)圖和CCSD (中國(guó)大陸科學(xué)鉆探工程)(據(jù)Zhang et al.,2008 修改)Fig.1 Simplified geological map of Donghai area showing the locations of the Chizhuang and other eclogite bodies and CCSD(Chinese Continental Scientific Drilling)(modified after Zhang et al.,2008)
大別-蘇魯造山帶是華南板塊俯沖進(jìn)入華北板塊之下所形成的陸-陸碰撞超高壓變質(zhì)帶,出露有以榴輝巖為代表的高壓、超高壓變質(zhì)巖(Okay et al.,1989;Li et al.,1993,2000;Zheng et al.,2003a)。在這些變質(zhì)巖石中發(fā)現(xiàn)了不同規(guī)模的脈體,被認(rèn)為是高壓、超高壓變質(zhì)流體流動(dòng)的記錄(Xu et al.,1992;Liou et al.,1995;You et al.,1996;Cong and Wang,1996;Wallis et al.,1999;Zhang et al.,2008,2011)。前人對(duì)這些變質(zhì)脈及其圍巖的研究發(fā)現(xiàn):在脈體和圍巖中都發(fā)現(xiàn)大量的含水礦物,如簾石、云母、角閃石、磷灰石等(Castelli et al.,1998;Franz et al.,2001;Li et al.,2001,2004;Zheng et al.,2003a,2007),暗示變質(zhì)脈是從流體而非熔體中沉淀形成。很多變質(zhì)脈中發(fā)現(xiàn)了金紅石、石榴石等富集高場(chǎng)強(qiáng)和重稀土元素的礦物(Li et al.,2004;Xiao et al.,2006;Huang et al.,2012)。由于這些礦物在通常情況下,很難被富水流體溶解(Kessel et al.,2005),不少研究推測(cè)成脈流體可能為溶解能力極強(qiáng)的超臨界流體(Zhang et al.,2008;Huang et al.,2012)。
前人將大別-蘇魯造山帶超高壓巖石的變質(zhì)演化階段分為三個(gè)階段(Ernst and Liou,1999;Zheng et al.,2003a;Zhao et al.,2006):(1)峰期超高壓柯石英/金剛石榴輝巖相,存在金剛石、柯石英,溫度約在800~700℃,壓力>2.8GPa;(2)高壓石英榴輝巖相,以石英代替柯石英與石榴石和綠輝石共生為特征,不存在長(zhǎng)石和角閃石,溫壓條件約在750~600℃,2.4~1.2GPa;(3)退變質(zhì)角閃巖相,綠輝石退變質(zhì)為角閃石+ 斜長(zhǎng)石后成合晶,溫壓條件約在600~450℃,1.0~0.6GPa。對(duì)大別-蘇魯超高壓榴輝巖中復(fù)雜脈的形成時(shí)代、演化歷史已有較多的研究(Castelli et al.,1998;Zhang et al.,2008;Chen et al.,2012a;Guo et al.,2012;Sheng et al.,2013)。由巖相學(xué)和礦物學(xué)結(jié)果顯示大別-蘇魯超高壓榴輝巖中礦物組合復(fù)雜脈可以形成于進(jìn)變質(zhì)(Castelli et al.,1998)、峰期變質(zhì)(Zhang et al.,2008;Guo et al.,2012)或是和寄主榴輝巖一起經(jīng)歷進(jìn)-峰期-退變質(zhì)作用(Xiao et al.,2011,Huang et al.,2012)。而關(guān)于大別-蘇魯超高壓榴輝巖中礦物組合復(fù)雜脈的形成時(shí)代,利用鋯石U-Pb 定年得到的年齡大多處在高壓石英榴輝巖相(215~225Ma)(Chen et al.,2012a;Sheng et al.,2013),與復(fù)雜礦物組合指示的超高壓階段相矛盾。這表明鋯石U-Pb 年齡結(jié)果可能記錄的是鋯石從成脈流體中結(jié)晶析出的年代,因此晚于成脈流體形成的時(shí)代(Sheng et al.,2013)。
本文研究的區(qū)域位于蘇魯造山帶南部的東海池莊(圖1),該區(qū)域含有大量超高壓變質(zhì)巖,主要是花崗質(zhì)片麻巖、榴輝巖和大理巖。前人的研究顯示,東海地區(qū)變質(zhì)巖的峰期變質(zhì)條件為700~850℃,3.0~4.5GPa,折返P-T 軌跡近似等溫降壓(Zhang et al.,1994,1995,2000a,b,2006);超高壓變質(zhì)作用發(fā)生在230~240Ma,高壓石英榴輝巖相退變質(zhì)作用發(fā)生在220Ma (Li et al.,1993;Zheng et al.,2003a;Zhao et al.,2006)。在該區(qū)榴輝巖、片麻巖、大理巖的鋯石中均發(fā)現(xiàn)了柯石英包裹體,表明陸殼整體深俯沖并發(fā)生超高壓變質(zhì)作用(Ye et al.,2000;Liu et al.,2001a,b)。榴輝巖和片麻巖的原巖是700~800Ma 新元古代雙峰式火山巖(Zheng et al.,2003a;Zhang et al.,2006)。榴輝巖和片麻巖中的超高壓礦物具有虧損的δ18O,表明原巖在俯沖之前與大氣降水來(lái)源流體發(fā)生了高溫?zé)嵋何g變作用(Zheng et al.,1996,2003a;Zhang et al.,2005a,2006;Xiao et al.,2006)。整個(gè)區(qū)域上氧同位素空間分布不均勻,說(shuō)明在進(jìn)變質(zhì)、峰期變質(zhì)及折返過(guò)程中,流體活動(dòng)有限(Xiao et al.,2000,2001,2006;Fu et al.,2003;Zheng et al.,2003a;Ferrando et al.,2005a,b;Zhang et al.,2005b,2006,2011)。
樣品采集區(qū)域位于中國(guó)大陸科學(xué)鉆探工程(CCSD)鉆孔西北約2.5km 的池莊。我們采集了兩種復(fù)雜變質(zhì)脈及其寄主榴輝巖,分別為:黝簾石-綠輝石-石英脈(13CZ-7V)和寄主榴輝巖(13CZ-7E);綠輝石-多硅白云母-石英脈(12CZ-9V)和寄主榴輝巖(12CZ-9E)。脈體13CZ-7V 和12CZ-9V 中礦物非常不均一,靠近榴輝巖區(qū)域可以觀察到暗色礦物顆粒(如金紅石、黝簾石和綠輝石等),遠(yuǎn)離榴輝巖區(qū)域以石英為主。脈體13CZ-7V 靠近榴輝巖邊界處可以觀察到綠輝石和黝簾石(圖2a)。脈體12CZ-9V 中可以觀察到顆粒狀的綠輝石、多硅白云母、石榴石和金紅石(圖2b)。
表1 蘇魯池莊榴輝巖和脈體的礦物組合及礦物含量(vol.%)Table 1 Mineral assemblages and estimated volume contents(vol.%)
巖相學(xué)觀察結(jié)果顯示(表1),榴輝巖13CZ-7E 的主要組成礦物有:石榴石(Grt)、綠輝石(Omp)、多硅白云母(Phg)、石英(Qtz)、藍(lán)晶石(Ky)、金紅石(Rt),還包括少量的鋯石(Zrn)(圖2c)。榴輝巖12CZ-9E 中可以觀察到1~2mm 的黝簾石顆粒(圖2d)。榴輝巖和脈體均發(fā)現(xiàn)綠輝石被角閃石+鈉長(zhǎng)石后成合晶取代和石榴石邊緣存在角閃石退變質(zhì)邊(圖2h),說(shuō)明它們經(jīng)歷了角閃巖相退變質(zhì)作用。
變質(zhì)脈中礦物的體積豐度變化較大,脈體13CZ-7V 的礦物組合是石英(80%)+綠輝石(8%)+黝簾石(4%)+石榴石(2%)+多硅白云母(2%)+藍(lán)晶石(2%)+金紅石(2%)+少量鋯石。其中,綠輝石顆粒較大,可以達(dá)到0.6~2mm(圖2f);黝簾石主要分布在脈體邊緣處,靠近榴輝巖(圖2e)。脈體12CZ-9V 的礦物組合是石英(75%)+ 綠輝石(5%)+石榴石(5%)+多硅白云母(8%)+藍(lán)晶石(5%)+金紅石(2%)+少量鋯石。脈體中白云母和金紅石顆粒較自形,粒徑約為0.5~3mm(圖2g,f)。
電子探針?lè)治鲈谥袊?guó)科學(xué)技術(shù)大學(xué)(USTC)電子探針實(shí)驗(yàn)室完成。儀器型號(hào)為Shimadzu 1600。工作條件設(shè)定如下:電壓為15.0kV,電流為20nA,電子束直徑為5μm,對(duì)所測(cè)元素的計(jì)數(shù)時(shí)間為15s。不同元素用自然硅酸鹽礦物或者人工合成氧化物作為標(biāo)準(zhǔn)物質(zhì)。Na 元素誤差約為10%,其他元素誤差均優(yōu)于5%。
鋯石中包裹體的激光拉曼分析在中國(guó)科技大學(xué)(USTC)激光拉曼實(shí)驗(yàn)室完成,使用的儀器為Thermo Scientific DXR型激光共聚焦拉曼光譜儀。使用1~3mW,532nm Nd (YVO4 DPSS)的激發(fā)激光,測(cè)試束斑設(shè)定為~0.6μm,測(cè)試時(shí)間為5s。測(cè)試時(shí),疊加3 次記錄,記錄區(qū)間為100~3000cm-1。整個(gè)測(cè)試在常溫常壓下進(jìn)行。
單礦物微量元素分析在中國(guó)科學(xué)技術(shù)大學(xué)(USTC)激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)實(shí)驗(yàn)室完成。ICPMS 是Agilent 7700,配備有ArF 準(zhǔn)分子激光器(GeoLas Pro,193 nm 波長(zhǎng))。高純He 氣作為載氣,能量輸出為90mJ/cm2,脈沖頻率為10Hz,激光束斑的直徑為32μm。單點(diǎn)分析包含空白時(shí)間20~30s 和樣品采集時(shí)間~40s。在儀器分析和數(shù)據(jù)處理過(guò)程中,無(wú)水硅酸鹽礦物采用多外標(biāo)(BCR-2G,BIR-1G 和BHVO-2G,Liu et al.,2008)無(wú)內(nèi)標(biāo)方法;而含水礦物(如黝簾石和多硅白云母)采用單內(nèi)標(biāo)多外標(biāo)方法(Si 作內(nèi)標(biāo),BCR-2G,BIR-1G 和BHVO-2G 作外標(biāo));金紅石采用Ti 作內(nèi)標(biāo),NIST610 作外標(biāo)。數(shù)據(jù)處理校正使用ICPMSDataCal 軟件(Liu et al.,2008,2010a),標(biāo)準(zhǔn)物質(zhì)推薦值來(lái)自GeoReM數(shù)據(jù)庫(kù)。BCR-2G、BIR-1G、BHVO-2G 和NIST610 的分析結(jié)果表明,大部分元素的準(zhǔn)確度(相對(duì)誤差)優(yōu)于10%。
鋯石U-Pb 年齡及微量元素分析在中國(guó)科學(xué)技術(shù)大學(xué)激光剝蝕電感耦合等離子體質(zhì)譜儀(LA-ICP-MS)實(shí)驗(yàn)室完成。儀器參數(shù)設(shè)置與原位的單礦物微量元素分析相同。鋯石UPb 年齡采用國(guó)際標(biāo)準(zhǔn)鋯石91500 作為外標(biāo)標(biāo)準(zhǔn)物質(zhì),每測(cè)量4 個(gè)未知樣品點(diǎn),測(cè)量一次標(biāo)準(zhǔn)鋯石。U-Th-Pb 同位素的時(shí)間漂移校正使用線性內(nèi)插法(即91500 +4 個(gè)樣品+91500)。91500 的U-Th-Pb 同位素比值推薦值取自Wiedenbeck et al.(1995)。諧和圖和加權(quán)平均圖使用Isoplot/Ex_ver3(Ludwig,2003)制作。鋯石微量元素使用29Si 作為內(nèi)標(biāo),NIST610 作外標(biāo),使用數(shù)據(jù)處理軟件ICPMSDataCal (Liu et al.,2008,2010a)獲得。
每個(gè)單獨(dú)的巖石樣品用剛玉顎式破碎機(jī)粉碎成60 目粉末,再取60g 在瑪瑙研缽中磨制成小于200 目的巖石粉末。主量元素分析在廣州澳實(shí)礦物實(shí)驗(yàn)室,采用X 射線熒光光譜分析(XRF)儀完成。重復(fù)測(cè)量美國(guó)地質(zhì)勘探局(USGS)巖石樣品標(biāo)準(zhǔn)顯示,主要氧化物的準(zhǔn)確度和精確度均優(yōu)于1%。
微量元素分析在中國(guó)科學(xué)技術(shù)大學(xué)完成。樣品先烘干,稱取50.00mg (49.5~50.5mg),放入聚四氟乙烯溶樣彈中,加幾滴高純水潤(rùn)濕,再加入1.50mL 高純HNO3、1.50mL 高純HF 和0.01mL HClO4,然后將溶樣彈置于電熱板上,在140℃條件下蒸至濕鹽狀。等冷卻后,再加入高純HNO3和高純HF 各1.50mL,加鋼套密閉,放入烘箱中在190℃下溶樣48h,以保證樣品的完全溶解。待溶液在電熱板上蒸干后,再加入3mL HNO3溶解,隨后蒸至濕鹽狀,加入約3mL 50%的HNO3,加鋼套密閉,在烘箱中(150℃)保持12h。待提取液冷卻后,將其轉(zhuǎn)移至100mL PET 瓶中,加入1mL Rh 內(nèi)標(biāo)溶液,并加高純水稀釋至80.00g。稀釋后的溶液使用ELAN DRCII 電感耦合等離子體質(zhì)譜儀(ELAN DRCII ICP-MS)進(jìn)行分析,分析程序詳見(jiàn)侯振輝和王晨香(2007)和Huang and Xiao(2014)。美國(guó)地質(zhì)勘探局標(biāo)準(zhǔn)物質(zhì)BHVO-2 的分析結(jié)果表明,大部分元素的精確度(相對(duì)標(biāo)準(zhǔn)偏差)優(yōu)于5%,準(zhǔn)確度(相對(duì)誤差)優(yōu)于10%,對(duì)于大多數(shù)元素相對(duì)誤差在3%以內(nèi)。
圖2 蘇魯池莊榴輝巖及變質(zhì)脈野外照片和巖相學(xué)照片(a)黝簾石-綠輝石-石英脈(13CZ-7V)和寄主榴輝巖(13CZ-7E),脈體和榴輝巖邊界處可以觀察到綠輝石和黝簾石顆粒,13CZ-7E1~3 為依次靠近脈體的榴輝巖樣品,13CZ-7Va 為靠近榴輝巖的脈體樣品,13CZ-7Vb 為遠(yuǎn)離榴輝巖的脈體樣品;(b)綠輝石-多硅白云母-石英脈體(12CZ-9V)和寄主榴輝巖(12CZ-9E);(c)榴輝巖13CZ-7E1;(d)榴輝巖中的柱狀的黝簾石顆粒;(e)脈體13CZ-7Va 中的黝簾石,中間包含有石榴石包體;(f)脈體12CZ-9V 中的金紅石顆粒;(g)脈體13CZ-7Vb 中的多硅白云母;(h)脈體13CZ-7Vb 中石榴石退變質(zhì)為角閃石,綠輝石退變質(zhì)為角閃石+斜長(zhǎng)石后成合晶Fig.2 Hand specimens and photomicrographs showing petrology of the veins and their host eclogites from Chizhuang in the Sulu orogen(a)zoisite-omphacite-quartz vein (13CZ-7V)and host eclogite (13CZ-7E),at the boundary of the vein and eclogite,coarsed omphacite and zoisite can be observed,sample 13CZ-7E1~3 are the eclogites gradually close to the vein,sample 13CZ-7Va is the vein close to the eclogite,sample 13CZ-7Vb is the vein away from the eclogite;(b)omphacite-phengite-quartz vein (12CZ-9V)and host eclogite (12CZ-9E);(c)eclogite 13CZ-7E1;(d)columnar zoisite in the eclogite;(e)zoisite in the vein (13CZ-7Va)containing garnet inclusions;(f)rutile in sample 12CZ-9V;(g)phengite in sample 13CZ-7Vb;(h)garnet rimmed by amphibole and omphacite rimmed by symplectitic corona of fine-grained plagioclase and amphibole
圖3 蘇魯池莊榴輝巖及變質(zhì)脈原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖和球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.3 Primitive mantle-and chondrite-normalized diagrams for the veins and their host eclogites from Chizhuang in the Sulu orogen (normalization values after Sun and McDonough,1989)
單礦物氧同位素分析在德國(guó)哥廷根大學(xué)地學(xué)中心完成,使用的方法是CO2激光氟化法。挑選顆粒完好,無(wú)明顯包裹體的礦物顆粒,稱取0.5~1.5mg,裝載到一個(gè)鎳質(zhì)孔盤,上有18 個(gè)2mm 深的孔。使用CO2激光將樣品加熱熔融,并與F2反應(yīng),來(lái)獲得O2。氧氣純化方法與Wiechert et al.(2002)描述的紫外激光方法類似。獲得的18O/16O 比值用δ 形式給出(相對(duì)于標(biāo)準(zhǔn)平均海水,SMOW)。
榴輝巖及變質(zhì)脈全巖主微量數(shù)據(jù)見(jiàn)表2,礦物主微量數(shù)據(jù)見(jiàn)表3~表8,鋯石U-Pb 同位素定年數(shù)據(jù)見(jiàn)表9,鋯石微量元素?cái)?shù)據(jù)見(jiàn)表10,礦物氧同位素?cái)?shù)據(jù)見(jiàn)表11。
依次遠(yuǎn)離變質(zhì)脈的榴輝巖樣品13CZ-7E1~13CZ-7E3 的主量元素組成相似,SiO2含量為47.8%~48.6%;Al2O3為16.1%~16.6%,F(xiàn)e2O3為10.8%~11.3%,MgO 為7.8%~8.0%,Na2O 為3.3%~3.5%(表2)。相對(duì)榴輝巖,靠近榴輝巖的脈體13CZ-7V 部分(編號(hào)13CZ-7Va,圖2a),SiO2(63.7%)和 Na2O (5.1%)含量顯著升高,而 Al2O3(11.3%)、Fe2O3(3.2%)、MgO(5.6%)和CaO(8.7%)含量明顯降低;遠(yuǎn)離榴輝巖的脈體13CZ-7V 部分(標(biāo)號(hào)13CZ-7Vb,圖2a)基本為純石英,SiO2含量高達(dá)95.8%。由于變質(zhì)脈中礦物顆粒分布十分不均勻,脈體的全巖數(shù)據(jù)可能不具有代表性。榴輝巖12CZ-9E 的SiO2含量為45.3%,Al2O3為22.3%,F(xiàn)e2O3為11.5%,MgO 為5.6%,Na2O 為2.3%;變質(zhì)脈13CZ-9V 的SiO2含量高達(dá)90.6%。
表2 蘇魯池莊榴輝巖和脈體的全巖主量(wt%)和微量(×10 -6)元素?cái)?shù)據(jù)Table 2 Bulk rock major (wt%)and trace (×10 -6)element concentrations of eclogites and veins from Chizhuang in the Sulu orogen
圖4 蘇魯池莊榴輝巖及變質(zhì)脈中礦物三端元組分圖(a)石榴石:Prp-鎂鋁榴石;Grs-鈣鋁榴石;Alm-鐵鋁榴石;Spe-錳鋁榴石;(b)綠輝石:Jd-硬玉;Ae-霓石;Aug-普通輝石Fig.4 Ternary diagram showing the molecular compositions of minerals in the veins and their host eclogites from Chizhuang in the Sulu orogen(a) garnet:Prp-pyrope;Grs-grossular;Alm-almandine;Spespessartine;(b)omphacite:Jd-jadeite;Ae-aegirine;Aug-augite
在微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖中(圖3a),距脈體較遠(yuǎn)的2 個(gè)榴輝巖樣品13CZ-7E1 和13CZ-7E2 的微量元素分布特征類似,具有Pb 的正異常。在稀土球粒隕石標(biāo)準(zhǔn)化圖上(圖3b),這兩個(gè)樣品的LREE 相對(duì)虧損。距脈體最近的榴輝巖13CZ-7E3 與前者有較大區(qū)別,表現(xiàn)為Rb、Ba、U、Th和LREE 的明顯相對(duì)富集。相比于榴輝巖,樣品13CZ-7Va更加富集LREE,虧損HREE 和Ta(低于檢出限,故未列于表中)、Zr、Hf 等流體不活動(dòng)元素(圖3a,b),并且具有較高的Sr 含量(400 ×10-6vs.103 ×10-6),但是Rb (1.24 ×10-6vs.8.65 ×10-6)和Ba(50.9 ×10-6vs.156 ×10-6)含量較低。樣品13CZ-7Vb 的微量元素整體含量較低,其中Ti 的正異??赡芘c含較多的金紅石含量有關(guān)。
表3 蘇魯池莊脈體(12CZ-9V)及寄主榴輝巖(12CZ-9V)中綠輝石的主量(wt%)和微量(×10 -6)元素的含量Table 3 Major (wt%)and trace (×10 -6)element concentrations of omphacite in vein (12CZ-9V)and its host eclogite (12CZ-9E)from Chizhuang in the Sulu orogen
榴輝巖12CZ-9E 的Rb、Ba 含量較低,分別只有0.86 ×10-6和6.94 ×10-6(表2)。脈體12CZ-9V 相比于圍巖榴輝巖的微量元素差異主要表現(xiàn)為HREE 虧損(圖3d),較低的Nb(0.67 ×10-6vs.2.58 ×10-6)、Ta(0.05 ×10-6vs.0.15 ×10-6)和Y(0.91 ×10-6vs.12.6 ×10-6)含量。
表4 蘇魯池莊脈體(12CZ-7V)及寄主榴輝巖(12CZ-7E)中綠輝石的主量(wt%)和微量(×10 -6)元素的含量Table 4 Major (wt%)and trace (×10 -6)element concentrations of omphacite in vein (12CZ-7V)and its host eclogite (12CZ-7E)from Chizhuang in the Sulu orogen
4.2.1 石榴石
石榴石主量元素十分均一,基本不存在環(huán)帶。在石榴石三端元圖上(圖4a),變質(zhì)脈與寄主榴輝巖中石榴石組分對(duì)比變化不大,樣品12CZ-9E 和12CZ-9V 中石榴石的端元組分為:鐵鋁榴石為0.33~0.41,鎂鋁榴石為0.22~0.28,鈣鋁榴石為0.33~0.43。樣品12CZ-7E 和12CZ-7V 中石榴石組成為:鐵鋁榴石為0.39~0.43,鎂鋁榴石為0.29~0.31,鈣鋁榴石為0.28~0.30。在微量元素方面,石榴石中含有很高的Zn、Y、Co、Sc 和HREE 含量,但是基本不含Rb、Sr、Cs、Nb、Ta、W、U、Th、Pb 和Hf(表5、表6)。相對(duì)榴輝巖中的石榴石,脈體中的石榴石HREE 含量更高(圖5a,b)。脈體13CZ-7V 中石榴石Cr 含量(528 ×10-6~827 ×10-6)要明顯高于13CZ-7E 榴輝巖中的(140 ×10-6~265 ×10-6)。
表5 蘇魯池莊脈體(12CZ-9V)及寄主榴輝巖(12CZ-9E)中石榴石的主量(wt%)和微量(×10 -6)元素的含量Table 5 Major (wt%)and trace (×10 -6)element concentrations of garnet in the vein (12CZ-9V)and its host eclogite (12CZ-9E)from Chizhuang in the Sulu orogen
表6 蘇魯池莊脈體(12CZ-7V)及寄主榴輝巖(12CZ-7E)中石榴石的主量(wt%)和微量(×10 -6)元素的含量Table 6 Major (wt%)and trace (×10 -6)element concentrations of garnet in vein (12CZ-7V)and its host eclogite (12CZ-7E)from Chizhuang in the Sulu orogen
4.2.2 綠輝石
圖5 蘇魯池莊榴輝巖及變質(zhì)脈中單礦物球粒隕石標(biāo)準(zhǔn)化稀土元素配分曲線(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)(a)變質(zhì)脈13CZ-7V 和寄主榴輝巖中的石榴石;(b)變質(zhì)脈12CZ-9V 和寄主榴輝巖中的石榴石;(c)變質(zhì)脈13CZ-7V 和寄主榴輝巖中的綠輝石;(d)變質(zhì)脈12CZ-9V 和寄主榴輝巖中的綠輝石;(e)變質(zhì)脈13CZ-7V 和榴輝巖12CZ-9E 中的黝簾石Fig.5 Chondrite-normalized REE patterns for minerals from the veins and their host eclogites from Chizhuang in the Sulu orogen(normalization values after Sun and McDonough,1989)(a)garnet in the vein 13CZ-7V and its host eclogite;(b)garnet in the vein 12CZ-9V and its host eclogite;(c)omphacite in the vein 13CZ-7V and its host eclogite;(d)omphacite in the vein 12CZ-9V and its host eclogite;(e)zoisite in the vein 13CZ-7V and the eclogite 12CZ-9E
榴輝巖和變質(zhì)脈中的綠輝石沒(méi)有發(fā)現(xiàn)成分環(huán)帶,并且有相似的主量元素成分(圖4b):硬玉組分含量占0.42~0.53,霓石組分小于0.09。綠輝石有很高的V、Ni、Zn、Cr、Ga 和Sr含量;基本不含Nb、Ta、W、U、Th、Pb 和Hf(表3、表4)。綠輝石的稀土元素含量很低,表現(xiàn)為MREE 相對(duì)富集,LREE 和HREE 相對(duì)虧損的特點(diǎn)。脈體和榴輝巖中綠輝石稀土元素分布模式基本一致(圖5c,d)。
4.2.3 多硅白云母
榴輝巖中的多硅白云母SiO2在53.2%~53.9% (Si ≈3.51)左右,Ba 含量很高(1364 ×10-6~1676 ×10-6),Rb 含量為283 ×10-6~261 ×10-6,Sr 含量約為26.4 ×10-6,V 約為327.2 ×10-6,幾乎不含Nb、Ta、W、U、Th、Hf 和稀土元素。脈體13CZ-7V 中的多硅白云母SiO2為52.4%~53.6% (Si=3.44~3.48),Rb 含量為195.2 ×10-6~244.9 ×10-6、Ba為865 ×10-6~1762 ×10-6,與榴輝巖中多硅白云母組成相似(表7)。
4.2.4 黝簾石
在池莊榴輝巖和變質(zhì)脈中均存在黝簾石。相比于榴輝巖,脈體中黝簾石更加富集LREE(圖5e),并且含有較高的FeO(~2.2% vs.4.63%),REE (45 ×10-6~107 ×10-6vs.4000 ×10-6~6500 ×10-6)和Sr 含量(167 ×10-6~199 ×
10-6vs.7315 ×10-6~8886 ×10-6)。
表7 蘇魯池莊變質(zhì)脈及榴輝巖中多硅白云母和黝簾石的主量(wt%)和微量(×10 -6)元素的含量Table 7 Major (wt%) and trace (× 10 -6 ) element concentrations of phengite and zoisite in the veins and eclogites from Chizhuang in the Sulu orogen
表8 蘇魯池莊變質(zhì)脈及榴輝巖中金紅石微量元素的含量(×10-6)Table 8 Trace element concentrations of rutilein the veins and eclogites from Chizhuangin the Sulu orogen( ×10-6 )
圖6 蘇魯池莊榴輝巖及變質(zhì)脈中金紅石Nb-Nb/Ta 圖Fig.6 Nb vs.Nb/Ta of the rutiles in the veins and their host eclogites from Chizhuang in the Sulu orogen
圖7 蘇魯池莊變質(zhì)脈(13CZ-7V)及寄主榴輝巖(13CZ-7E)中鋯石的CL 圖像(a)榴輝巖13CZ-7E;(b)變質(zhì)脈13CZ-7VFig.7 The zircon cathodoluminescence (CL)images of the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(a)eclogite 13CZ-7E;(b)vein 13CZ-7V
4.2.5 金紅石
榴輝巖中的金紅石的V 含量很高(1521 ×10-6~2134×10-6),Zr 含量為105.4 ×10-6~125 ×10-6,Nb 為115 ×10-6~198 ×10-6、Ta 為5.6 ×10-6~10.2 ×10-6,Nb/Ta 比值為18.7~29.1,略高于球粒隕石值(17.5,Sun and McDonough,1989)。此外,金紅石還含有少量的Sr、Hf、W、Th 和U。脈體中的金紅石沒(méi)有明顯的生長(zhǎng)環(huán)帶,V 含量為2384 ×10-6~3207 ×10-6,Zr 為123 ×10-6~139 ×10-6,Nb為120 ×10-6~143 ×10-6,Ta 為7.5 ×10-6~10.6 ×10-6,Nb/Ta 比值為12.4~17.9(圖6)。
總結(jié)池莊榴輝巖和變質(zhì)脈中各種礦物的微量元素特征如下:石榴石是主要的Y 儲(chǔ)庫(kù),并含有大量的Zn、Co、V 和HREE 元素;綠輝石含有很高的V、Ni、Zn、Cr、Ga 和Sr,但是基本不含REE;多硅白云母中含大量的LILE;黝簾石中REE和Sr、Ba、V、Cr、U、Th、Pb 等元素含量很高;金紅石富集Ti、Nb、Ta 和V,并含有一定量的Sr、Zr、Hf、Th、U 和W。
圖8 蘇魯池莊變質(zhì)脈(13CZ-7V)中鋯石的礦物包裹體的拉曼圖譜(a)石英(Qtz);(b)石榴石(Grt);(c)綠輝石(Omp)Fig.8 Micro-inclusions in zircons in the vein (13CZ-7V)from Chizhuang in the Sulu orogen(a)quartz(Qtz);(b)garnet(Grt);(c)omphacite(Omp)
4.3.1 鋯石U-Pb 定年
對(duì)榴輝巖13CZ-7E 及變質(zhì)脈13CZ-7V 中的鋯石進(jìn)行了LA-ICP-MS U-Pb 年齡分析。變質(zhì)脈中的鋯石多為圓形或橢圓形,大小為50~200μm。在CL 圖像上(圖7b),大部分顆粒為無(wú)分帶或弱分帶。脈鋯石中含有石榴石、綠輝石和石英等礦物包裹體(圖8)。脈鋯石的U 含量為106.4 ×10-6~151.2 ×10-6,Th 為5.8 ×10-6~14.0 ×10-6,Th/U 比值為0.05~0.10(表9),與熱液成因鋯石相似(Williams et al.,1996;Rubatto and Hermann,2003;Zheng et al.,2007)。LAICPMS 分析結(jié)果顯示,脈鋯石U-Pb 年齡為218 ± 2.4Ma(2σ,MSWD=3.5)(圖9a)。
表9 蘇魯池莊變質(zhì)脈(13CZ-7V)和寄主榴輝巖(13CZ-7E)LA-ICP-MS 鋯石U-Pb 同位素定年結(jié)果Table 9 Results of LA-ICP-MS zircon U-Pb dating of vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen
榴輝巖中的鋯石也多為圓形或橢圓形,大小為30~200μm。在CL 圖像中可觀察到特征的巖漿鋯石核和變質(zhì)鋯石邊(圖7a)。由于變質(zhì)鋯石邊很窄,小于20μm,在LA-ICPMS 分析中無(wú)法得到純鋯石邊數(shù)據(jù),所以大多數(shù)分析點(diǎn)表示巖漿鋯石核和增生邊混合結(jié)果。所分析鋯石的U 含量為47.8 × 10-6~212 × 10-6,Th 含量為53.8 × 10-6~111 ×10-6,Th/U 比值為0.42~1.53。在Pb-Pb 諧和圖上,數(shù)據(jù)點(diǎn)落在Pb 丟失線上,僅能獲得不諧和的下交點(diǎn)年齡為218 ±21Ma,上交點(diǎn)年齡為691 ±48Ma (圖9b)。
4.3.2 鋯石微量元素
在稀土元素球粒隕石標(biāo)準(zhǔn)化圖上(圖10),脈鋯石都具有平坦的HREE 特征((Lu/Gd)N=1.1~2.9,LuN=8.1~27.8),沒(méi)有明顯的Eu 異常(Eu/Eu*=1.10~1.22)。脈鋯石的LREE 含量較低,部分鋯石的La 和Pr 含量低于檢出限(表10)。它們的Hf 含量為11377 ×10-6~12554 ×10-6,Nb為0.12 ×10-6~0.18 × 10-6,Ta 為0.04 × 10-6~0.12 ×10-6,Nb/Ta 比值為1.31~3.21。榴輝巖鋯石具有陡峭的HREE 特 征((Lu/Gd)N= 17.7~30.6,LuN= 670.7~1982.4),存在Eu 的負(fù)異常(Eu/Eu*=0.36~0.53)。它們的Hf 含量為6459 ×10-6~9317 ×10-6,Nb 為0.21 ×10-6~0.85×10-6,Ta 為 0.12×10-6~0.49 × 10-6,Nb/Ta 比值為1.26~2.07。
圖9 蘇魯池莊變質(zhì)脈(13CZ-7V)及寄主榴輝巖(13CZ-7E)鋯石U-Pb 諧和圖(a)脈體13CZ-7V;(b)榴輝巖13CZ-7EFig.9 Zircon U-Pb concordia diagrams for the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(a)vein 13CZ-7V;(b)eclogite 13CZ-7E
脈體13CZ-7V 中,石英的δ18O 為2.42‰,石榴石為-0.30‰,綠輝石為0.25‰,金紅石為-2.38‰(表11)。榴輝巖13CZ-7E 中,石英的δ18O 為2.79‰,石榴石為0.01‰,綠輝石為0.07‰,多硅白云母為0.96‰(表11)。符合高溫下礦物18O 富集順序:石英>多硅白云母>綠輝石>石榴石>金紅石。在氧同位素等溫圖上(圖11),脈體中石英-綠輝石和石英-石榴石氧同位素溫度為754~830℃,表明氧同位素達(dá)到平衡,保存了超高壓變質(zhì)條件;而石英-金紅石的氧同位素溫度較低,為681℃,可能是因?yàn)樵诮鸺t石中,氧擴(kuò)散速率比石榴石和綠輝石快(Zheng and Fu,1998),從而具有低的氧擴(kuò)散封閉溫度。榴輝巖中石英-石榴石和石英-多硅白云母氧同位素溫度為774~818℃,與脈體中石英-綠輝石和石英-石榴石氧同位素溫度相近,同樣保存了超高壓變質(zhì)條件,但是石英-綠輝石給出的溫度為645℃,代表冷卻過(guò)程中榴輝巖相溫度。
圖10 蘇魯池莊變質(zhì)脈(13CZ-7V)及其寄主榴輝巖(13CZ-7E)的鋯石球粒隕石標(biāo)準(zhǔn)化稀土元素配分曲線(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989;深溶鋯石數(shù)值據(jù)Zong et al.,2010)Fig.10 Chondrite-normalized REE patterns of zircon in the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen (normalization values after Sun and McDonough,1989;anatexis zircon data after Zong et al.,2010)
圖11 蘇魯池莊變質(zhì)脈(13CZ-7V)及其寄主榴輝巖(13CZ-7E)中石英-其他礦物間氧同位素分餾等溫線(分餾系數(shù)值據(jù)Zheng et al.,2003b)Fig.11 Isotherm plot for O-isotope fractionations between quartz and other minerals in the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(fractionation coefficients are after Zheng et al.,2003b)
表10 蘇魯池莊變質(zhì)脈(13CZ-7V)及寄主榴輝巖(13CZ-7E)LA-ICP-MS 鋯石微量元素含量(×10 -6)Table 10 Zircon trace element data of vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(×10 -6)
表11 蘇魯池莊變質(zhì)脈(13CZ-7V)及寄主榴輝巖(13CZ-7E)的礦物氧同位素組成Table 11 Oxygen isotopic composition of minerals from vein(13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen
關(guān)于蘇魯榴輝巖,前人做了大量的研究(Hirajima et al.,1990;Enami et al.,1993;Zhang et al.,2005a,2008)。Zhang et al.(2006)利用CCSD 榴輝巖中石榴石、綠輝石、多硅白云母礦物溫壓計(jì)估計(jì)的峰期變質(zhì)溫壓條件為3.0~4.5GPa 和700~850℃。我們利用Krogh and Terry (2004)給出的石榴石-綠輝石-多硅白云母-藍(lán)晶石-石英溫壓計(jì)計(jì)算得到池莊榴輝巖13CZ-7E 的峰期變質(zhì)溫壓條件為679 ± 65℃、3.7 ±0.3GPa,脈體13CZ-7V 峰期變質(zhì)溫壓條件為692 ±65℃、3.6±0.3GPa。氧同位素溫度計(jì)得到的脈體和榴輝巖中不同礦物與石英的等溫線相近,在830~645℃之間,這些溫度與氧同位素?cái)U(kuò)散和礦物的封閉溫度有關(guān)(Zheng et al.,2003b)。其中石英-石榴石給出的溫度最高,為818~830℃,略高于用礦物對(duì)溫壓計(jì)得到的溫度。礦物對(duì)溫壓計(jì)所得結(jié)果與Zhang et al.(2006)估計(jì)的蘇魯超高壓變質(zhì)巖體折返溫壓條件一致。
鋯石的生長(zhǎng)和改變都需要有流體的參與(Corfu et al.,2003;Zheng,2009;Chen et al.,2010),這些流體可以是富水流體、含水熔體或超臨界流體(Zhang et al.,2008;Zheng et al.,2011)。流體活動(dòng)會(huì)使鋯石生長(zhǎng)、改變,在沒(méi)有后期擾動(dòng)情況下,鋯石的U-Pb 體系可以記錄下流體活動(dòng)的年代(Rubatto and Hermann,2003;Li et al.,2004;Wu et al.,2006;Zheng et al.,2007)。流體活動(dòng)造成的鋯石生長(zhǎng),既可以是圍繞原有繼承鋯石的生長(zhǎng),也可以發(fā)育新的顆粒。這為我們研究流體的形成年代提供了很重要的手段。
圖12 大別-蘇魯造山帶中變質(zhì)脈體鋯石U-Pb 年齡統(tǒng)計(jì)直方圖鋯石年齡值據(jù)Franz et al.,2001;Zheng et al.,2007;Wu et al.,2009;Zong et al.,2010;Chen et al.,2012a;Sheng et al.,2012,2013;本文數(shù)據(jù)Fig.12 Zircon U-Pb age histogram of metamorphic veins in the Dabie-Sulu orogenic beltZircon age data sources:Franz et al.,2001;Zheng et al.,2007;Wu et al.,2009;Zong et al.,2010;Chen et al.,2012a;Sheng et al.,2012,2013;and this study
池莊榴輝巖和變質(zhì)脈中的鋯石存在很大差別。脈鋯石不含巖漿鋯石繼承核,CL 圖像偏亮,說(shuō)明它是在流體活動(dòng)中生長(zhǎng)的,而不是從榴輝巖中機(jī)械混入的。并且脈鋯石中含有石榴石、綠輝石、石英等榴輝巖相礦物包裹體,說(shuō)明鋯石是在榴輝巖相條件下生長(zhǎng)的。鋯石較低的REE 含量及平坦的HREE 特征((Lu/Gd)N=1.1~2.9,LuN=8.1~27.8),無(wú)明顯的Eu 異常(Eu/Eu*=1.10~1.22),同樣證明它們是在石榴石穩(wěn)定而斜長(zhǎng)石不穩(wěn)定條件下生長(zhǎng)的(Hermann and Green,2001;Rubatto,2002;Rubatto and Hermann,2003)。脈鋯石LA-ICPMS 定年給出的U-Pb 年齡為218 ± 2.4Ma(2σ,MSWD =3.5),稍晚于峰期超高壓變質(zhì)年齡(225~242Ma,Zheng,2008)。
圖12 統(tǒng)計(jì)的大別-蘇魯造山帶變質(zhì)脈中鋯石的U-Pb 年齡,大部分年齡集中在210~225Ma,只有Zheng et al.(2007)在南大別黃鎮(zhèn)地區(qū)一個(gè)藍(lán)晶石-石英脈的鋯石中獲得了180 ±5Ma 的年齡。作者認(rèn)為這個(gè)較晚的年齡與大陸碰撞無(wú)關(guān),而是反映了一個(gè)獨(dú)立的熱事件。使用正態(tài)分布擬合得到峰值年齡為217.7 ±0.3Ma,這些年齡結(jié)果同池莊脈體中鋯石年齡一樣都晚于榴輝巖的峰期超高壓變質(zhì)時(shí)代(227~242Ma,Zheng,2008)。根據(jù)礦物對(duì)溫壓計(jì)和氧同位素計(jì)算得到的變質(zhì)脈形成的峰期溫壓條件為692 ± 65℃、3.6 ±0.3GPa,對(duì)應(yīng)于超高壓變質(zhì)條件。Zhang et al.(2008)在蘇魯造山帶南部池莊榴輝巖中脈體內(nèi)發(fā)現(xiàn)柯石英假象,證明該脈體形成于超高壓變質(zhì)條件。而池莊變質(zhì)脈中的鋯石U-Pb年齡為218 ±2.4Ma,晚于榴輝巖的峰期超高壓變質(zhì)時(shí)代,說(shuō)明池莊榴輝巖中變質(zhì)脈形成于深俯沖陸殼折返初期的超高壓變質(zhì)階段。
自發(fā)現(xiàn)大別-蘇魯造山帶超高壓變質(zhì)巖氧同位素異常以來(lái),前人進(jìn)行了大量的氧同位素工作(Zheng et al.,2003a,b;Chen et al.,2007;Zhang et al.,2005a,b;Zheng,2009,2012)。超高壓變質(zhì)巖低的δ18O 值表明它們的原巖在俯沖前和大氣降水來(lái)源的流體發(fā)生了強(qiáng)烈的高溫?zé)嵋何g變作用(Zheng et al.,2003a;Zheng,2009)。這些低δ18O 巖石經(jīng)歷深俯沖-折返并保持氧同位素負(fù)異常特征,是因?yàn)楦_陸塊在地幔深部居留時(shí)間較短,未能發(fā)生充分的同位素重置(Zheng,2009)。Chen et al.(2007)根據(jù)CCSD 中超高壓變質(zhì)巖與相鄰樣品的距離、巖相學(xué)和礦物氧同位素組成,確定了相同巖性和不同巖性之間氧同位素組成不均一的尺度為20~50cm,對(duì)應(yīng)于流體活動(dòng)的最大尺度,說(shuō)明大陸碰撞過(guò)程中流體活動(dòng)有限。
Zheng et al.(2007)對(duì)南大別黃鎮(zhèn)的石英脈及其圍巖榴輝巖礦物間的氧同位素組成進(jìn)行了對(duì)比研究,發(fā)現(xiàn)脈體和榴輝巖中同種礦物具有相似的δ18O 值,表明成脈流體直接來(lái)自圍巖榴輝巖的脫水。Sheng et al.(2013)對(duì)大別山三祖寺地區(qū)超高壓榴輝巖中藍(lán)晶石-綠簾石-多硅白云母-石英脈中氧同位素進(jìn)行了研究,發(fā)現(xiàn)同種礦物間氧同位素組成相似,也得到了相同的結(jié)果??梢?jiàn),通過(guò)比較榴輝巖與變質(zhì)脈中礦物的氧同位素組成,可以很好的制約形成脈體的流體的來(lái)源。
本研究對(duì)變質(zhì)脈13CZ-7V 和榴輝巖13CZ-7E 中礦物氧同位素分析,變質(zhì)脈和榴輝巖中石英的δ18O 分別為2.42‰和2.79‰,相差0.37‰;石榴石的δ18O 分別為-0.30‰和0.010‰,相差0.31‰;綠輝石的δ18O 分別為0.25‰和0.071‰,相差0.18‰。變質(zhì)脈和圍巖榴輝巖中的同種礦物的氧同位素在誤差范圍內(nèi)一致,說(shuō)明成脈流體來(lái)自圍巖榴輝巖的脫水。與前人的數(shù)據(jù)進(jìn)行對(duì)比(圖13),三組變質(zhì)脈和圍巖榴輝巖的氧同位素組成均相近,表明這些成脈流體來(lái)自圍巖榴輝巖自身的脫水。但是,不同區(qū)域的脈體或者榴輝巖的氧同位素組成差異較大,表明流體活動(dòng)是有限的,無(wú)法在大的尺度上達(dá)到氧同位素平衡。
圖13 大別-蘇魯造山帶變質(zhì)脈及其寄主榴輝巖間礦物氧同位素對(duì)比δ18O 值據(jù)Zheng et al.,2007;Sheng et al.,2013 和本文數(shù)據(jù)Fig.13 Contrast of O-isotope between the veins and their host eclogites in the Dabie-Sulu orogenic beltThe δ18O data sources:Zheng et al.,2007;Sheng et al.,2013 and this study
本次研究的變質(zhì)脈中,含有很多的含水礦物(黝簾石、多硅白云母),其LOI 達(dá)到1.67% (表2)。在脈體中觀察到了黝簾石,說(shuō)明成脈流體中富含Si、Ca、Al。脈黝簾石的LREE含量明顯高于榴輝巖中黝簾石的LREE 含量,說(shuō)明成脈流體中富含LREE 元素。脈體中含有多硅白云母,指示成脈流體中富含K。脈體中含有大顆粒金紅石,而金紅石富集Nb-Ta-Ti (圖6),說(shuō)明成脈流體可以有效遷移HFSE。因氧同位素證據(jù)表明成脈流體來(lái)自圍巖榴輝巖自身的脫水,脈金紅石的Nb/Ta 比值低于榴輝巖金紅石的Nb/Ta 比值(圖6),說(shuō)明Ta比Nb 更容易進(jìn)入超高壓流體中,從而導(dǎo)致顯著的Nb/Ta 分異。脈礦物(如石榴石、綠輝石和金紅石)成分都比較均一,不存在變質(zhì)環(huán)帶,并且脈石榴石的HREE 比榴輝巖中的石榴石更加富集,說(shuō)明HREE 在一定條件下也具有流體活動(dòng)性。榴輝巖和脈體中的綠輝石成分相近,稀土元素含量很低,MREE 相對(duì)富集。池莊脈體中鋯石沒(méi)有繼承核,均是在流體中生長(zhǎng)的,顆粒大小在50~200μm,而圍巖榴輝巖中的鋯石大多只有寬度不到10μm 的生長(zhǎng)邊,說(shuō)明有大量的Zr 被流體搬運(yùn)出榴輝巖,進(jìn)入變質(zhì)脈。此外,脈體中鋯石的稀土元素分布模式有別于典型的巖漿鋯石和大別-蘇魯造山帶UHP 變質(zhì)巖部分熔融產(chǎn)生的深熔鋯石(圖10,Xia et al.,2009;Zong et al.,2010;曾令森等,2011),進(jìn)一步說(shuō)明脈體中鋯石是從變質(zhì)流體中結(jié)晶沉淀形成。
前人研究表明,成脈流體性質(zhì)存在如下三種類型。
(1)含水熔體,實(shí)驗(yàn)證明鎂鐵質(zhì)和長(zhǎng)英質(zhì)巖石部分熔融可以產(chǎn)生長(zhǎng)英質(zhì)熔體(Hermann et al.,2006;Liu et al.,2009;Zheng et al.,2011)。在大別-蘇魯造山帶可以觀察到HP/UHP 變質(zhì)巖中的長(zhǎng)英質(zhì)脈體,它們的礦物組成與花崗巖類似(Liu et al.,2010b;Wallis et al.,2005;Zong et al.,2010;曾令森等,2011);而在西天山UHP 榴輝巖中的長(zhǎng)英質(zhì)脈體,是由榴輝巖中綠輝石熔融產(chǎn)生的(Chen et al.,2012b),這些脈體中含有大量的長(zhǎng)石等礦物。巖相學(xué)觀察發(fā)現(xiàn),池莊復(fù)雜脈體中存在的主要礦物有:石榴石、綠輝石、多硅白云母、藍(lán)晶石、黝簾石、綠簾石、金紅石、石英。這些礦物都可以在高壓榴輝巖相甚至超高壓榴輝巖相中穩(wěn)定存在(石英以柯石英形式存在)。池莊榴輝巖中的變質(zhì)脈不含長(zhǎng)石,只在藍(lán)晶石和多硅白云母邊緣存在退變質(zhì)成因的長(zhǎng)石邊。變質(zhì)脈中含有的石榴石、綠輝石、藍(lán)晶石、金紅石、多硅白云母、黝簾石等礦物,與部分熔融產(chǎn)生的花崗質(zhì)脈體在礦物組合上有很大區(qū)別,所以池莊復(fù)雜脈體不是由部分熔融產(chǎn)生的花崗質(zhì)熔體結(jié)晶產(chǎn)生的。
(2)富水流體,實(shí)驗(yàn)證明富水流體對(duì)主微量元素的溶解度都很低(Manning,2004;Hermann et al.,2006;Spandler et al.,2007;Hermann and Spandler,2008)。在變質(zhì)流體中礦物的沉淀,說(shuō)明形成礦物的元素過(guò)飽和。如果成脈流體沒(méi)有丟失,而是全部沉淀下來(lái),那么,脈體中全部礦物的豐度和組成就能得到初始流體的組成。但是,很多研究都表明,脈體中礦物的生長(zhǎng)可能要經(jīng)歷很長(zhǎng)的階段(Rubatto and Hermann,2003;Spandler and Hermann,2006;Spandler et al.,2011;Huang et al.,2012)。脈體可能是流體活動(dòng)的堆積,或者流體的不完全結(jié)晶(Hermann et al.,2006)。所以,脈體中某些礦物富含特定的元素,可能不一定表示這種元素在流體中有很大的溶解度,也可能是流體與巖石反應(yīng)反復(fù)累積的結(jié)果(Spandler and Hermann,2006;Chen et al.,2012a;Huang et al.,2012)。例如,Spandler and Herman (2006)在New Caledonia 高壓榴輝巖中發(fā)現(xiàn)的石榴石-石英-多硅白云母脈,脈中石榴石粒度可達(dá)5mm,并且存在明顯不同于圍巖榴輝巖中石榴石的Mn 和HREE 生長(zhǎng)環(huán)帶,解釋為進(jìn)變質(zhì)過(guò)程中,榴輝巖內(nèi)部礦物(硬柱石、綠泥石等)脫水流體反復(fù)累積沉淀的結(jié)果。Huang et al.(2012)在大別山碧溪嶺地區(qū)黝簾石-石英脈和圍巖榴輝巖中,發(fā)現(xiàn)脈體和榴輝巖中金紅石Nb/Ta 比值存在互補(bǔ)性的生長(zhǎng)環(huán)帶,解釋為俯沖初期,流體具有低的Nb/Ta,隨著溫度壓力升高,流體Nb/Ta 比值升高,所以在流體中結(jié)晶出的金紅石Nb/Ta 比值也相應(yīng)改變??梢?jiàn)如果礦物是流體活動(dòng)反復(fù)累積的結(jié)果,隨著流體的成分發(fā)生變化,結(jié)晶出的礦物元素含量也會(huì)相應(yīng)改變,應(yīng)該能夠觀察到礦物生長(zhǎng)環(huán)帶。然而巖相學(xué)和地球化學(xué)證據(jù)顯示,池莊變質(zhì)脈中石榴石,綠輝石和金紅石等礦物成分都很均一,沒(méi)有觀察到多期次生長(zhǎng)的現(xiàn)象,說(shuō)明本研究中變質(zhì)脈里的礦物不是流體活動(dòng)反復(fù)累積的結(jié)果。
(3)超臨界流體,在一定的溫壓區(qū)間里硅酸鹽流體對(duì)MREE、HREE、HFSE 等微量元素的溶解度都大幅提升(Herman et al.,2006),一般將這種流體稱為超臨界流體。由于微量元素在超臨界流體中的活動(dòng)性要比富水流體中強(qiáng)很多,大量的難溶元素都可以被帶入流體,從而結(jié)晶出富含特定的元素的礦物(如金紅石、簾石)。
圖14 大別-蘇魯造山帶超高壓變質(zhì)P-T 演化軌跡(據(jù)Zhang et al.,2011 修改)A-峰期變質(zhì)折返初期,超高壓榴輝巖相;B-高壓榴輝巖相重結(jié)晶;C-退變質(zhì)角閃巖相.花崗巖+ 水體系固相線據(jù)Huang and Wyllie,1981;玄武巖+水體系固相線據(jù)Mibe et al.,2011;花崗巖+水體系第二臨界點(diǎn)條件據(jù)Hermann et al.,2006;玄武巖+水體系第二臨界點(diǎn)條件據(jù)Mibe et al.,2011;花崗巖+水體系臨界曲線據(jù)Bureau and Keppler,1999Fig.14 Schematic P-T path for metamorphic processes concerning fluid activity during subduction and exhumation of continental crust in the Dabie-Sulu orogenic belt(modified after Zhang et al.,2011)A-peak metamorphic exhumation, UHP eclogite facies; B-HP eclogite phase recrystallization;C-retrograde amphibolite facies.Wet solidus for the system granite-H2O after Huang and Wyllie (1981)and that for the system basalt-H2O after Mibe et al.(2011).The position of the second critical endpoint in the system granite +H2O after Hermann et al.(2006)and that in the system basalt + H2O after Mibe et al.(2011).The critical curve for the system granite+H2O after Bureau and Keppler (1999)
根據(jù)大別-蘇魯造山帶超高壓變質(zhì)P-T 演化軌跡(圖14),在峰期變質(zhì)折返初期,由于壓力降低,一些含水礦物的分解(如硬柱石、黝簾石、多硅白云母)和名義無(wú)水礦物中結(jié)構(gòu)水的出溶(如綠輝石、石榴石和金紅石)將產(chǎn)生大量的流體(Zheng et al.,2003a;Li et al.,2004)。這些流體是從榴輝巖內(nèi)部產(chǎn)生的,并且溫壓條件在花崗巖+水體系和玄武巖+水體系的第二臨界點(diǎn)以上,處在超臨界流體條件下(圖14 中點(diǎn)A)。超臨界流體對(duì)REE、HFSE 等微量元素具有很高的溶解度(Kessel et al.,2005),大大提升了這些元素的活動(dòng)性??梢院芎媒忉尦厍f脈體中含有大量的REE 和HFSE 等傳統(tǒng)上流體不活動(dòng)元素。而隨著壓力溫度的降低,低于玄武巖-水體系的第二臨界點(diǎn)的溫壓條件時(shí),流體向富水流體或含水熔體轉(zhuǎn)變(圖14,點(diǎn)B),REE、HFSE 等微量元素溶解度降低,從而可能結(jié)晶出一些富含這些元素的礦物(如石榴石、鋯石和金紅石)。Zhang et al.(2008)在池莊褐簾石-石英變質(zhì)脈中發(fā)現(xiàn)褐簾石和鋯石中存在柯石英假象,表明褐簾石-石英變質(zhì)脈形成于超高壓變質(zhì)條件,褐簾石中富含有大量的REE、Th 等微量元素,很可能是超臨界流體溶解了這些元素。同時(shí),從圖14 中也可以看出,這些元素的活動(dòng)只存在于一個(gè)特定的溫壓范圍內(nèi),持續(xù)的時(shí)間可能很短暫,活動(dòng)性有限;但是流體活動(dòng)可能要持續(xù)很長(zhǎng)的時(shí)間,而隨著溫壓條件降低,超臨界流體會(huì)轉(zhuǎn)變?yōu)楦凰黧w(或含水熔體),之后的演化特征和富水流體(或含水熔體)脈體相同。至高壓榴輝巖相,減壓脫水釋放出的花崗質(zhì)巖石中的流體以含水熔體形式存在,如Zong et al.(2010)在蘇魯造山帶觀察到由花崗片麻巖部分熔融產(chǎn)生的長(zhǎng)英質(zhì)脈體,而在此溫壓條件下玄武質(zhì)巖石中的流體則以富水流體形式存在,如Sheng et al.(2012)在大別山地區(qū)UHP 榴輝巖中觀察到的石英脈等。脈體中鋯石UPb 年齡顯示的218 ±2.4Ma,可能反應(yīng)的是流體從超臨界流體向富水流體(或含水熔體)轉(zhuǎn)變,此時(shí)Zr 在流體中從不飽和元素變?yōu)轱柡驮?,結(jié)晶出鋯石。而在超臨界流體中,可能沒(méi)有鋯石的生長(zhǎng)。
蘇魯造山帶池莊榴輝巖中的復(fù)雜脈體中含有石榴石、綠輝石、多硅白云母、藍(lán)晶石、黝簾石、綠簾石、金紅石、石英等與寄主榴輝巖類似的礦物組成。氧同位素分析表明,變質(zhì)脈和榴輝巖中各主要礦物的氧同位素組成相近,說(shuō)明池莊榴輝巖中的黝簾石-石英脈體是由內(nèi)部釋放的流體結(jié)晶形成。綜合大別-蘇魯造山帶其它地區(qū)的榴輝巖和變質(zhì)脈,發(fā)現(xiàn)不同脈體間氧同位素差別較大,說(shuō)明在大陸深俯沖和折返過(guò)程中,流體活動(dòng)有限。由石榴石-綠輝石-多硅白云母-藍(lán)晶石-石英溫壓計(jì)和氧同位素溫度計(jì)計(jì)算表明,脈體經(jīng)歷了超高壓變質(zhì)。巖相學(xué)觀察和礦物成分分析表明,成脈流體是富集Al、Ca、K 的硅酸鹽流體,并且溶解了大量MREE、HREE、HFSE 等流體不活動(dòng)元素。而鋯石U-Pb 定年結(jié)果為218 ±2.4Ma,可能要晚于流體形成的年齡。超臨界流體條件存在于一個(gè)很小的溫壓范圍下,在大陸深俯沖折返過(guò)程中持續(xù)的時(shí)間可能很短暫,隨著溫度壓力降低,流體可能會(huì)轉(zhuǎn)變?yōu)楦凰黧w(或含水熔體),從而導(dǎo)致一些富含MREE、HREE、HFSE 等元素的礦物析出,從而形成蘇魯池莊觀察到的變質(zhì)脈。
Becker H,Jochum KP and Carlson RW.1999.Constraints from highpressure veins in eclogites on the composition of hydrous fluids in subduction zones.Chemical Geology,160(4):291-308
Becker H, Jochum KP and Carlson RW.2000.Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones.Chemical Geology,163(1-4):65-99
Beinlich A,Klemd R,John T and Gao J.2010.Trace-element mobilization during Ca-metasomatism along a major fluid conduit:Eclogitization of blueschist as a consequence of fluid-rock interaction.Geochimica et Cosmochimica Acta,74 (6):1892-1922
Boettcher AL and Wyllie PJ.1969.The system CaO-SiO2-CO2-H2O-III.Second critical end-point on the melting curve.Geochimica et Cosmochimica Acta,33(5):611-632
Bureau H and Keppler H.1999.Complete miscibility between silicate melts and hydrous fluids in the upper mantle:Experimental evidence and geochemical implications.Earth and Planetary Science Letters,165(2):187-196
Cartwright I,Power WL,Oliver NHS et al.1994.Fluid migration and vein formation during deformation and greenschist facies metamorphism at Ormiston Gorge,Central Australia.Journal of Metamorphic Geology,12(4):373-386
Castelli D,Rolfo F,Compagnoni R et al.1998.Metamorphic veins with kyanite,zoisite and quartz in the Zhu-Jia-Chong eclogite,Dabie Shan,China.Island Arc,7(1-2):159-173
Chen DL,Liu L,Sun Y et al.2012b.Felsic veins within UHP eclogite at Xitieshan in North Qaidam,NW China:Partial melting during exhumation.Lithos,136-139:187-200
Chen RX,Zheng YF,Gong B et al.2007.Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200~4000m core samples of the Chinese Continental Scientific Drilling.Chemical Geology,242(1-2):51-75
Chen RX,Zheng YF and Xie LW.2010.Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements,U-Th-Pb and Lu-Hf isotopes in zircon from eclogite-facies rocks in the Sulu orogen.Lithos,114(1-2):132-154
Chen RX,Zheng YF and Hu ZC.2012a.Episodic fluid action during exhumation of deeply subducted continental crust:Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen.Lithos,155:146-166
Cong BL.1996.Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China.Beijing:Science Press,1-224
Cong B and Wang Q.1996.A review on researches of UHPM rocks in the Dabieshan-Sulu region.In:Cong BL (ed.).Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China.Beijing:Science Press,1-170
Corfu F,Hanchar JM,Hoskin PWO et al.2003.Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53(1):469-500
Davies JH.1999.The role of hydraulicfractures and intermediate-depth earthquakes in generating subduction-zone magmatism.Nature,398(6723):142-145
Enami M,Zang QJ and Yin YJ.1993.High-pressure eclogites in northern Jiangsu-southern Shangdong provinces,eastern China.Journal of Metamorphic Geology,11(4):589-603
Ernst WG and Liou JG.1999.Overview of UHP metamorphism and tectonics in well-studied collisional orogens.International Geology Review,41(6):477-493
Ferrando S,F(xiàn)rezzotti ML,Dallai L et al.2005a.Fluid-rock interaction in UHP phengite-kyanite-epidote eclogite from the Sulu orogen,eastern China.International Geology Review,47(7):750-774
Ferrando S,F(xiàn)rezzotti ML,Dallai L et al.2005b.Multiphase solid inclusions in UHP rocks (Su-Lu,China):Remnants of supercritical silicate-rich aqueous fluids released during continental subduction.Chemical Geology,223(1-3):68-81
Franz L,Romer RL,Klemd R et al.2001.Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):Pressuretemperature-time-deformation path,composition of the fluid phase and fluid flow during exhumation of high-pressure rocks.Contributions to Mineralogy and Petrology,141(3):322-346
Frezzotti ML,F(xiàn)ernando S,Dallai L et al.2007.Intermediate alkalialumino-silicate aqueous solutions released by deeply subducted continental crust:Fluid evolution in UHP OH-rich topaz-kyanite quartzites from Donghai (Sulu,China).Journal of Petrology,48(6):1219-1241
Fu B,Touret JLR and Zheng YF.2003.Remnants of premetamorphic fluid and oxygen isotopic signatures in eclogites and garnet clinopyroxenite from the Dabie-Sulu terranes,eastern China.Journal of Metamorphic Geology,21(6):561-578
Gao J,John T,Klemd R et al.2007.Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite,Tianshan,NW China.Geochimica et Cosmochimica Acta,71(20):4974-4996
Guo S,Ye K,Chen Y et al.2012.Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphaciteepidote vein and host eclogites in the Dabie orogen.Lithos,136-139:145-167
Hack AC,Thompson AB and Aerts M.2007.Phase relations involving hydrous silicate melts,aqueous fluids,and minerals.Reviews in Mineralogy and Geochemistry,65(1):129-185
Hermann J and Green DH.2001.Experimental constraints on high pressure melting in subducted crust.Earth and Planetary Science Letters,188(1-2):149-168
Hermann J,Spandler CJ,Hack A et al.2006.Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones.Lithos,92(3-4):399-417
Hermann J and Spandler CJ.2008.Sediment melts at sub-arc depths:An experimental study.Journal of Petrology,49(4):717-740
Herms P,John T,Bakker RJ et al.2012.Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex,Ecuador).Chemical Geology,310-311:79-96
Hirajima T,Ishiwateri A,Cong B et al.1990.Identification of coesite in Mengzhong eclogite from Donghai County,northeastern Jiangsu Province,China.Mineralogical Magazine,54:579-584
Hou ZH and Wang CZ.2007.Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry.Journal of University of Science and Technology of China,37(8):940-944 (in Chinese with English Abstract)
Huang J,Xiao YL,Gao YJ et al.2012.Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones:Constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen,Central-Eastern China.Journal of Metamorphic Geology,30(8):821-842 Huang J and Xiao YL.2014.Element mobility in mafic and felsic ultrahigh pressure metamorphic rocks from the Dabie UHP Orogen,China:Insights into supercritical liquids in continental subduction zones.International Geology Review,57(9-10):1-28
Huang WL and Wyllie PJ.1981.Phase relationships of S-type granite with H2O to 35kbar:Muscovite granite from Harney Peak,South Dakota.Journal of Geophysical Research,86:10515-10529
Hwang SL,Shen PY,Chu HT et al.2001.Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahighpressure gneiss from Erzgebirge,Germany.Earth and Planetary Science Letters,188(1-2):9-15
John T,Klemd R,Gao J et al.2008.Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan,China).Lithos,103(1-2):1-24
Kessel R,Schmidt MW,Ulmer P et al.2005.Trace element signature of subduction-zone fluids,melts and supercritical liquids at 120~180km depth.Nature,437(7059):724-727
Krogh Ravna EJ and Terry MP.2004.Geothermobarometry of UHP and HP eclogites and schists:An evaluation of equilibria among garnetclinopyroxene-kyanite-phengite-coesite/quartz.Journal of Metamorphic Geology,22(6):579-592
Kogiso T,Tatsumi Y and Nakano S.1997.Trace element transport during dehydration processes in the subducted oceanic crust:1.Experiments and implications for the origin of ocean island basalts.Earth and Planetary Science Letters,148(1-2):193-205
Lü Z,Zhang LF,Du JX et al.2012.Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan,China:Fluid processes and elemental mobility during exhumation in a cold subduction zone.Lithos,136-139:168-186
Li SG,Xiao YL,Liou D et al.1993.Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites:Timing and processes.Chemical Geology,109(1-4):89-111 Li SG,Jagoutz E,Chen YZ et al.2000.Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains,Central China.Geochimica et Cosmochimica Acta,64(6):1077-1093
Li XF,Rusk B,Wang RC et al.2011.Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai,East China.American Mineralogist,96(7):964-973
Li XP,Zheng YF,Wu YB et al.2004.Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating.Contributions to Mineralogy and Petrology,148(4):443-470
Li YL,Zheng YF,F(xiàn)u B et al.2001.Oxygen isotope composition of quartz-vein in ultrahigh-pressure eclogite from Dabieshan and implications for transport of high-pressure metamorphic fluid.Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,26(9-10):695-704
Liou JG, Banno S and Ernst WG.1995.Ultrahigh-pressure metamorphism and tectonics.Island Arc,4(4):233-239
Liou JG and Zhang RY.1996.Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region,eastern China:Implications for lack of fluid during exhumation.American Mineralogist,81(9-10):1217-1221
Liu FL,Xu ZQ,Katayama I et al.2001a.Mineral inclusions in zircons of para-and orthogneiss from pre-pilot drillhole CCSD-PP1,Chinese Continental Scientific Drilling Project.Lithos,59(4):199-215
Liu JB,Ye K,Maruyama S et al.2001b.Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains,China.The Journal of Geology,109(4):523-535
Liu Q,Jin ZM and Zhang JF.2009.An experimental study of dehydration melting of phengite-bearing eclogite at 1.5~3.0GPa.Chinese Science Bulletin,54(12):2090-2100
Liu YS,Hu ZC,Gao S et al.2008.In situ analysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Gao S,Hu ZC et al.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571
Liu YS,Hu ZC,Zong KQ et al.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546
Ludwig KR.2003.User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel (No.4 ).Berkeley: Berkeley Geochronlogical Center Special Publication
Manning CE.2004.The chemistry of subduction-zone fluids.Earth and Planetary Science Letters,223(1-2):1-16
McCulloch MT and Gamble JA.1991.Geochemical and geodynamical constraints on subduction zone magmatism.Earth and Planetary Science Letters,102(3-4):358-374
Mibe K,Kawamoto T,Matsukage KN et al.2011.Slab melting versus slab dehydration in subduction-zone magmatism.Proceedings of the National Academy of Sciences of the United States of America,108(20):8177-8182
Miller LD,Goldfarb RJ,Gehrels GE et al.1994.Genetic links among fluid cycling,vein formation,regional deformation,and plutonism in the Juneau gold belt,southern Alaska.Geology,22(3):203-206 Miller C,Zanetti A,Th?ni M et al.2007.Eclogitisation of gabbroic rocks:Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps).Chemical Geology,239(1-2):96-123
Navon O,Hutcheon ID,Rossman GR et al.1988.Mantle-drived fluids in diamond Micro-inclusions.Nature,335(6193):784-789
Okay AI,Xu ST and ?eng?r AMC.1989.Coesite from the Dabie Shan eclogites,central China.European Journal of Mineralogy,1(4):595-598
Oliver NHS and Bons PD.2001.Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns,geometry and microstructures.Geofluids,1(2):137-162
Rubatto D.2002.Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism.Chemical Geology,184(1-2):123-138
Rubatto D and Hermann J.2003.Zircon formation during fluid circulation in eclogites (Monviso,Western Alps):Implications for Zr and Hf budget in subduction zones.Geochimica et Cosmochimica Acta,67(12):2173-2187
Schmidt A,Weyer S,John T et al.2009.HFSE systematics of rutilebearing eclogites:New insights into subduction zone processes and implications for the earth’s HFSE budget.Geochimica et Cosmochimica Acta,73(2):455-468
Shen AH and Keppler H.1997.Direct observation of complete miscibility in the albite-H2O system.Nature,385(6618):710-712
Sheng YM,Zheng YF and Wu YB.2011.Studies of metamorphic vein in ultrahigh-pressure rocks.Acta Petrologica Sinica,27(2):490-500 (in Chinese with English abstract)
Sheng YM,Zheng YF,Chen RX et al.2012.Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages,O-Hf isotopes and trace elements.Lithos,136-139:126-144
Sheng YM,Zheng YF,Li SN et al.2013.Element mobility during continental collision:Insights from polymineralic metamorphic vein within UHP eclogite in the Dabie orogen.Journal of Metamorphic Geology,31(2):221-241
Spandler C and Hermann J.2006.High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones.Lithos,89(1-2):135-153
Spandler C, Mavrogenes J and Hermann J.2007.Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions.Chemical Geology,239(3-4):228-249
Spandler C,Pettke T and Rubatto D.2011.Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite,Western Alps:Implications for fluid flow in subduction zones.Journal of Petrology,52(6):1207-1236
St?ckhert B,Duyster J,Trepmann C et al.2001.Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet,Erzgebirge.Germany Geology,29(5):391-394
Sun SS and McDonough W.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345
Sun X,Xu L,Sun W et al.2010.Channelized fluids in subducted continental crust:constraints from δD-δ18O of quartz and fluid inclusions in quartz veins from the Chinese Continental Scientific Drilling Project.International Geology Review,53:1443-1463
Tatsumi Y,Shukuno H,Yoshikawa M et al.2005.The petrology and geochemistry of volcanic rocks on Jeju Island:Plume magmatism along the Asian continental margin.Journal of Petrology,46(3):523-553
Wallis S,Enami M and Banno S.1999.The Sulu UHP terrane:A review of the petrology and structural Geology.Int.Geol.Rev.,41(10):906-920
Wallis S,Tsuboi M,Suzuki K et al.2005.Role of partial melting in the evolution of the Sulu (eastern China)ultrahigh-pressure terrane.Geology,33(2):129-132
Wiedenbeck M,Allé P,Corfu F et al.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostandards and Geoanalytical Research,19(1):1-23
Wiechert U,F(xiàn)iebig J,Przybilla R et al.2002.Excimer laser isotoperatio-monitoring mass spectrometry for in situ oxygen isotope analysis.Chemical Geology,182(2-4):179-194
Williams IS,Buick IS and Cartwright I.1996.An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds Range,central Australia.Journal of Metamorphic Geology,14(1):29-47
Wu YB,Zheng YF,Zhao ZF et al.2006.U-Pb,Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marblehosted eclogites from the Dabie orogen.Geochimica et Cosmochimica Acta,70(14):3743-3761
Wu YB,Gao S,Zhang HF et al.2009.U-Pb age,trace-element,and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks.American Mineralogist,94(2-3):303-312
Xia QX,Zheng YF,Yuan HL et al.2009.Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen,China.Lithos,112(3-4):477-496
Xiao YL,Hoefs J,van den Kerkhof AM et al.2000.Fluid history of UHP Metamorphism in Dabie Shan,China:A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling.Contributions to Mineralogy and Petrology,139(1):1-6
Xiao YL,Hoefs J,van den Kerkhof AM et al.2001.Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan,China.Journal of Petrology,19(1):3-19
Xiao YL, Zhang ZM, Hoefs J et al.2006.Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project-II.Oxygen isotope and fluid inclusion distributions through vertical sections.Contributions to Mineralogy and Petrology,152(4):443-458
Xiao YL,Hoefs J,Hou ZH et al.2011.Fluid/rock interaction and mass transfer in continental subduction zones:Constraints from trace elements and isotopes (Li,B,O,Sr,Nd,Pb)in UHP rocks from the Chinese Continental Scientific Drilling Program,Sulu,East China.Contributions to Mineralogy and Petrology,162(4):797-819
Xu ST,Okay AI,Ji SY et al.1992.Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting.Science,256(5053):80-82
Ye K,Yao YP,Katayama I et al.2000.Large areal extent of ultrahighpressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:New implications from coesite and omphacite inclusions in zircon of granitic gneiss.Lithos,52(1-4):157-164
You ZD,Han YJ,Yang WR et al.1996.The High-Pressure and Ultrahigh-Pressure Metamorphic Belt in the East Qinling and Dabie Mountains,China.Wuhan:China University of Geoscience Press
Zack T and John T.2007.An evaluation of reactive fluid flow and trace element mobility in subducting slabs.Chemical Geology,239(3-4):199-216
Zeng LS,Gao LE,Yu JJ et al.2011.SHRIMP zircon U/Pb dating on ultrahigh pressure rocks Yangkou:Implications for the timing of partial melting in the Sulu UHP metamorphic belt.Acta Petrologica Sinica,27(4):1085-1094 (in Chinese with English abstract)
Zhang RY,Liou JG and Cong BL.1994.Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-lu ultrahighpressure metamorphic terrane,China.Journal of Metamorphic Geology,12(2):169-186
Zhang RY,Hirajima T,Banno S et al.1995.Petrology of ultrahigh pressure rocks from the southern Sulu region,eastern China.Journal of Metamorphic Geology,13(6):659-675
Zhang ZM,Xu ZQ and Xu HF.2000a.Petrology of ultrahigh-pressure eclogite from the ZK703 drill hole in the Donghai,eastern China.Lithos,52(1-4):35-50
Zhang RY,Liou JG,Yang J et al.2000b.Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane,eastern-central China.Journal of Metamorphic Geology,18(2):149-166
Zhang ZM,Xiao YL,Liu FL et al.2005a.Petrogenesis of UHP metamorphic rocks from Qinglongshan,Southern Sulu,East-Central China.Lithos,81(1-4):189-207
Zhang ZM,Shen K,Xiao YL et al.2005b.Fluid composition and evolution attending UHP metamorphism:Study of fluid inclusions from drill cores,southern Sulu Belt,eastern China.International Geology Review,47(3):297-309
Zhang ZM,Shen K,Xiao YL et al.2006.Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:A record of metamorphism and fluid activity.Lithos,92(3-4):378-398
Zhang ZM,Shen K,Sun WD et al.2008.Fluids in deeply subducted continental crust:Petrology,mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen,eastern China.Geochimica et Cosmochimica Acta,72(13):3200-3228
Zhang ZM,Shen K,Liou JG et al.2011.Fluid-rock interactions during UHP metamorphism:A review of the Dabie-Sulu orogen,east-central China.Journal of Asian Earth Sciences,42(3):316-329
Zhao ZF,Zheng YF,Gao TS et al.2006.Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen.Journal of Metamorphic Geology,24(8):687-702
Zheng YF,F(xiàn)u B,Cong B et al.1996.Extremed18O depletion in eclogite from the Su-Lu terrane in East China.European Journal of Mineralogy,62(8):317-323
Zheng YF and Fu B.1998.Estimation of oxygen diffusivity from anion porosity in minerals.Geochemical Journal,32(2):71-89
Zheng YF,F(xiàn)u B,Gong B et al.2003a.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime.Earth-Science Reviews,62(1-2):105-161
Zheng YF,Zhao ZF,Li SG et al.2003b.Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm-Nd and Rb-Sr chronometers.Geological Society,London,Special Publications,220(1):93-117
Zheng YF,Gao TS,Wu YB et al.2007.Fluid flow during exhumation of deeply subducted continental crust:Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite.Journal of Metamorphic Geology,25(2):267-283
Zheng YF.2008.A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt.Chinese Science Bulletin,53(20):3081-3104
Zheng YF.2009.Fluid regime in continental subduction zones:Petrological insights from ultrahigh-pressure metamorphic rocks.Journal of the Geological Society,166(4):763-782
Zheng YF,Xia QX,Chen RX et al.2011.Partial melting,fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision.Earth-Science Reviews,107(3-4):342-374
Zheng YF.2012.Metamorphic chemical geodynamics in continental subduction zones.Chemical Geology,328:5-48
Zong KQ,Liu YS,Hu ZC et al.2010.Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane.Lithos,120(3-4):490-510
附中文參考文獻(xiàn)
侯振輝,王晨香.2007.電感耦合等離子體質(zhì)譜法測(cè)定地質(zhì)樣品中35 種微量元素.中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào),37(8):940-944
盛英明,鄭永飛,吳元保.2011.超高壓巖石中變質(zhì)脈的研究.巖石學(xué)報(bào),27(2):490-500
曾令森,高利娥,于俊杰等.2011.蘇魯仰口超高壓巖石SHRIMP 鋯石U/Pb 定年與部分熔融時(shí)限.巖石學(xué)報(bào),27(4):1085-1094