段留安 古黃玲 楊曉勇** 嚴(yán)志忠 孫衛(wèi)東
1.中國科學(xué)技術(shù)大學(xué)地球和空間科學(xué)學(xué)院,合肥 230026
2.武警黃金第七支隊(duì),煙臺 264004
3.安徽省地勘局324 地質(zhì)隊(duì),池州 247100
4.中國科學(xué)院廣州地球化學(xué)研究所礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510640
5.中國科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101
長江中下游成礦帶是我國重要的銅金多金屬成礦帶,一直是地質(zhì)學(xué)家關(guān)注的熱點(diǎn)地區(qū)之一(常印佛等,1991;翟裕生等,1992;Pan and Dong,1999;Mao et al.,2006;毛景文等,2009),該成礦帶自西向東依次可分為鄂東、九瑞、安慶-貴池、廬樅、銅陵、寧蕪和寧鎮(zhèn)等7 個礦集區(qū)(Yang and Lee,2011;Deng et al.,2011),李灣銅多金屬礦床位于安慶-貴池礦集區(qū)之貴池地區(qū)(圖1a)。已有的研究顯示長江中下游銅金成礦作用主要集中在140 ±5Ma,與燕山期巖漿活動密切相關(guān)(Sun et al.,2003;Mao et al.,2006;Wang et al.,2006,2007;Xie et al.,2009,2012;Li et al.,2009,2010;宋國學(xué)等,2010;謝建成等,2012;周濤發(fā)等,2008,2012;段留安等,2012,2014)。
圖1 池州地區(qū)區(qū)域地質(zhì)圖(據(jù)宋國學(xué)等,2010 修改)Fig.1 Simplified geological map of the Chizhou area (modified after Song et al.,2010)
圖2 李灣礦區(qū)地質(zhì)簡圖Fig.2 Geological Map of the Liwan area
近年來安慶-貴池礦集區(qū)找礦工作取得了較大進(jìn)展,如池州市拋刀嶺金礦已經(jīng)是大型規(guī)模,并有望達(dá)到特大型規(guī)模(段留安等,2014)。此外,池州市黃山嶺鉛鋅礦深部及周邊地區(qū)、馬頭銅鉬礦、高家榜銅鉬礦,東至趙家?guī)X金礦等找礦工作也取得了較大進(jìn)展(圖1b)。然而安慶-貴池礦集區(qū)基礎(chǔ)地質(zhì)研究相對薄弱。目前人們將研究重點(diǎn)集中在140 ±5Ma 左右的巖漿活動及成礦作用上(宋國學(xué)等,2010;張智宇等,2011;劉圓圓等,2012;段留安等,2012,2014;楊貴才等,2014),而忽視了125 ±5Ma 左右的巖漿活動及成礦作用。究其原因,主要源于普遍認(rèn)為貴池地區(qū)花園鞏A 型花崗巖不成礦或成礦差,以及與125 ±5Ma 時間段目前沒有發(fā)現(xiàn)大型金屬礦產(chǎn)相關(guān)。目前為止,對池州地區(qū)125 ±5Ma 左右成礦的礦床實(shí)例還沒有報(bào)道,由于李灣礦床為接觸交代矽卡巖型礦床,其成礦應(yīng)接近或晚于成巖年齡,本文通過對該區(qū)與成礦相關(guān)的巖漿巖主微量元素、年代學(xué)、同位素等研究,對該地區(qū)成巖成礦進(jìn)行再認(rèn)識和總結(jié),進(jìn)而彌補(bǔ)貴池地區(qū)125 ±5Ma時間段成礦的空缺,對該區(qū)域地質(zhì)探礦工作提供理論支持。
安慶-貴池礦集區(qū)位于揚(yáng)子板塊的北東緣、大別造山帶與江南地塊之間的下?lián)P子臺褶帶中,屬于貴池-繁昌斷褶束中段,是大別造山帶和江南疊覆造山帶相互作用的地區(qū),其地質(zhì)構(gòu)造位置較特殊(圖1a)。該區(qū)構(gòu)造演化大體經(jīng)歷了前寒武紀(jì)基底形成、震旦紀(jì)-早二疊覆蓋沉積和中三疊以來的碰撞造山三個階段,隨后進(jìn)入太平洋構(gòu)造域,發(fā)生了地殼伸展和大規(guī)模巖漿活動。
區(qū)域地層發(fā)育以碳酸鹽建造為主、碎屑巖建造為輔的一套沉積蓋層,隸屬下?lián)P子地層分區(qū)貴池地層小區(qū)。古生代-早三疊世地層是本區(qū)W、Mo、Pb、Zn、Cu、Au、Ag 等金屬礦床主要的容礦層位(唐永成等,1998),本區(qū)地層對礦床的控制作用主要表現(xiàn)在礦化類型上的差異,如志留系砂頁巖地層易形成斑巖型、熱液型礦化及蝕變巖型礦化(段留安等,2013),奧陶系、石炭系碳酸鹽巖地層易形成矽卡巖型和熱液型礦化(董勝,2006)。該區(qū)燕山期巖漿巖發(fā)育,以中深-淺成侵入巖為主,大規(guī)模的巖體有青陽-九華巖體(750km2,139~142Ma)、譚山巖體(140km2,129~133Ma)、花園鞏巖體(220km2,125Ma)(Wu et al.,2012),均呈大型巖基產(chǎn)出的復(fù)式巖體,分布于區(qū)內(nèi)的中東部(圖1b),巖石類型主要為花崗閃長巖、二長花崗巖和鉀長花崗巖。小規(guī)模的有馬石、拋刀嶺、烏石、牛脊背等巖體,多呈小巖株產(chǎn)出,出露面積一般不足2km2(圖1b),多屬深熔高鉀鈣堿性系列,與銅多金屬礦密切相關(guān)。花園鞏巖體為A 型花崗巖類巖體,一般認(rèn)為是沿江地區(qū)中生代巖漿活動的最后階段產(chǎn)物,巖石偏堿性,成礦作用較差(董勝,2006)。
圖3 李灣礦區(qū)各類巖礦石照片(a)鉀長花崗巖;(b)閃長巖;(c)安山玄武玢巖;(d)含多金屬矽卡化閃長巖;(e)含輝鉬礦閃長巖;(f)含黃鐵礦條帶狀礦石;(g、h)多金屬礦化矽卡巖;(i)鉀長花崗巖中的閃長巖捕擄體Fig.3 Field photographs for Liwan area(a)moyite;(b)diorite;(c)basaltic-andesitic porphyrite;(d)multi-metal contained skarn diorite;(e)molybdenite bearing diorite;(f)pyrite bearing band ore;(g,h)polymetallic ore bearing skarn;(i)diorite xenoliths in the moyite
區(qū)域地質(zhì)構(gòu)造處于貴池背向斜帶之自來山背斜西段核部,巴山巖體西南外圍。自來山背斜總體呈北東-南西延伸,核部地層為奧陶系侖山組下段白云巖,北西翼因巖體侵入破壞支離破碎,南東翼出露地層為奧陶系下統(tǒng)侖山組上段灰?guī)r至志留系高家邊組砂頁巖,地層傾向南東,傾角44°~65°。沿自來山背斜核部常出露有中酸性花崗斑巖、花崗閃長斑巖等侵入巖,在巖體與圍巖的接觸帶蝕變-交代作用強(qiáng)烈,局部產(chǎn)出銅多金屬礦體。
李灣礦區(qū)出露地層為奧陶紀(jì)和志留紀(jì)地層(圖2)。礦區(qū)內(nèi)除褶皺構(gòu)造外,斷裂構(gòu)造也十分發(fā)育,主要有F1、F2和F3三條斷裂。F1斷裂位于礦區(qū)西北側(cè)邊緣,為左旋平移斷層,呈北北東向展布,為區(qū)域性梅村-墩上大斷層的一部分;F2斷裂位于本區(qū)南側(cè)邊緣,為北東向展布的逆斷層,斷層北盤為侖山組上、下段灰?guī)r、白云巖,南盤為紅花園、大灣組等地層,斷層走向長約4.5km,兩端均出勘查區(qū)外,斷層傾向南東,傾角約50°;F3斷裂僅在探礦坑道中見到,推測規(guī)模較小,傾向南東120°,傾角約70°,為成巖前正斷層,成礦巖體西延受阻,礦化就此中斷,斷層帶較窄,發(fā)育有角礫巖。
礦區(qū)巖漿巖發(fā)育,巖漿巖侵位受自來山背斜構(gòu)造和北北東左旋平行斷層的控制,形成淺成侵入巖體和次火山巖體。其中次火山巖,發(fā)育于礦區(qū)的北部,巖性為粗面質(zhì)熔結(jié)角礫凝灰?guī)r,覆蓋于花崗斑巖和白云巖之上;侵入巖巖性主要為鉀長花崗巖(圖3a,i)、石英斑巖、花崗斑巖、閃長巖(圖3b)及玄武安山玢巖脈(圖3c)等。鉀長花崗巖在礦區(qū)出露較廣,局部見有閃長巖捕虜體(圖3i),其與地層接觸帶未見明顯金屬礦化;安山玄武玢巖僅在+72m 水平坑道中發(fā)現(xiàn),呈近南北向向西突出的弧狀展布,傾向西或西北,傾角70°,寬2~3m,構(gòu)成了主礦體東部邊界;閃長巖地表未見出露,僅在坑道和鉆孔中見到,從野外地質(zhì)特征看,與本區(qū)銅多金屬礦密切相關(guān)。閃長巖與圍巖的接觸帶表現(xiàn)出強(qiáng)烈的蝕變和銅-鉬-鋅等多金屬礦化(圖3d-f),同時閃長巖內(nèi)部有時也見有黃銅礦、斑銅礦、閃鋅礦、黃鐵礦、輝鉬礦等金屬礦化(圖3d,e)。
李灣礦區(qū)多年來民企一直在采礦中,從鉆孔、坑道及采掘出來的巖礦石看該礦床屬于小而富的矽卡巖型銅多金屬礦,其礦石類型為含銅黃鐵礦、含銅硫矽卡巖、含鉛鋅矽卡巖等,礦石的主要有益組分為Cu、S,個別礦體含Mo、Pb、Zn、Fe。目前,經(jīng)稀疏鉆探及坑探控制礦體10 個,但多沒有完全控制。如Ⅱ號礦體,由ZK803 等3 個鉆孔控制,走向NEE,地表延伸56m,傾向SE,傾角60°,斜深200m,斜深大于延伸(斜深尚未完全控制)。礦體最大厚度16.94m,最小厚度1.08m,平均厚度6.96m,銅平均品位0.62%,硫平均品位17.34%,銅硫礦體賦存標(biāo)高為-106~76m;Ⅵ號礦體,由ZK801、ZK803 控制,總體呈透鏡狀,向上有分枝,傾向SE,傾角45°,斜深106m,最大厚度22.02m,最小厚度4.16m,平均厚度14.35m,厚度變化系數(shù)為64.06%,屬較穩(wěn)定礦體。銅平均品位0.70%,硫平均品位13.90%,銅硫礦體賦存標(biāo)高-114~-176m。
從區(qū)域成礦條件分析,李灣一帶銅多金屬具有較好的成礦前景,已知的地質(zhì)特征及坑道采出的閃長巖中發(fā)育的銅、鉬礦化等信息也顯示,淺部的閃長巖與地層的接觸帶形成高硫矽卡巖型銅多金屬礦,而在深部可能具有斑巖型銅鉬礦的找礦潛力。
為了揭示李灣礦區(qū)巖漿巖的地球化學(xué)特征及與銅多金屬成礦作用的關(guān)系,本文對礦區(qū)的鉀長花崗巖、閃長巖及玄武安山玢巖進(jìn)行了主量元素、微量元素、單顆粒鋯石U-Pb 定年和鋯石原位Hf 同位素分析。
全巖的主量元素和微量元素分析在廣州澳實(shí)礦物實(shí)驗(yàn)室完成。其中常量元素采用ME-XRF06 法,由X 熒光光譜儀測定,分析流程見劉穎等(1996);稀土元素采用ME-MS81法,由等離子體質(zhì)譜測定;微量元素采用ME-MS61 法,由等離子體質(zhì)譜測定,具體分析流程見Qi et al.(2000)。
鋯石單礦物分選由河北省地勘局廊坊實(shí)驗(yàn)室完成,將8~10kg 重的原巖樣品粉碎,經(jīng)常規(guī)重選和電磁選后在雙目鏡下挑選鋯石。雙目鏡下將分選好的鋯石根據(jù)顏色、自形程度、形態(tài)等特征初步分類,挑選出具有代表性的鋯石用環(huán)氧樹脂制靶、打磨和拋光。樣品測定之前用體積百分比為3%的HNO3清洗樣品表面,以除去樣品表面的污染。然后進(jìn)行鋯石顯微鏡照樣(反射光和透射光)和陰極發(fā)光(CL)照相,鋯石的透反射和陰極發(fā)光照相在中國科學(xué)技術(shù)大學(xué)殼-幔物質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室完成。
鋯石的激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)原位U-Pb 定年和微量元素分析在中國科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。儀器組成及實(shí)驗(yàn)參數(shù)見Li et al.(2012)。數(shù)據(jù)處理采用ICPMSDataCal軟件(Liu et al.,2008,2010a),年齡計(jì)算采用ISOPLOT(3.00版)軟件(Ludwig,2003)進(jìn)行。詳細(xì)分析方法見Yuan et al.(2004)和Liu et al.(2010a)。
圖4 李灣礦區(qū)侵入巖地球化學(xué)判別圖解(a)SiO2-Na2O+ K2O 判別圖解(據(jù)Le Base et al.,1986);(b)巖石系列SiO2-K2O 圖解(實(shí)線據(jù)Peccerillo and Taylor,1976;虛線據(jù)Middlemost,1985)Fig.4 Geochemical discrimination plot of the Liwan intrusions(a)SiO2 vs.Na2O+K2O plot (after Le Base et al.,1986);(b)K2O vs.SiO2 diagram (solid lines after Peccerillo and Taylor,1976;dashed lined after Middlemost,1985)
表1 李灣礦區(qū)侵入巖全巖主量組成(wt%)Table 1 Rock major element data for the Liwan intrusions (wt%)
表2 李灣礦區(qū)侵入巖微量元素組成(×10 -6)Table 2 Trace elements data for the Liwan intrusions (×10 -6)
圖5 李灣礦區(qū)侵入巖Harker 圖解Fig.5 Harker major element variation diagrams of Liwan intrusions
鋯石的微區(qū)原位Lu-Hf 同位素分析在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。所用質(zhì)譜為Nu Plasma 型多接收電感耦合等離子體質(zhì)譜(MC-ICP-MS),激光剝蝕系統(tǒng)為193nm ArF 準(zhǔn)分子激光器的GeoLas 2005。激光斑束直徑為44μm,激光脈沖頻率為8Hz。具體分析方法和儀器參數(shù)詳見Yuan et al.(2008)。用176Lu/175Lu=0.02655 (De Biévre and Taylor,1993)和176Yb/172Yb =0.58545 (Chu et al.,2001)作為校正因子來進(jìn)行同質(zhì)異位干擾校正,計(jì)算樣品的176Lu/177Hf和176Hf/177Hf。以標(biāo)準(zhǔn)鋯石MON-1、GJ-1、91500 作為外標(biāo),其推薦的標(biāo)準(zhǔn)值依次為0.282739 ± 0.000057,0.282015 ±0.000056,0.282307 ±0.000055。在進(jìn)行εHf(t)計(jì)算時,采用176Lu 衰變常數(shù)= 1.867 × 10-11year-1(Soderlund et al.,2004),球粒隕石現(xiàn)今的176Hf/177Hf =0.282772 和176Lu/177Hf = 0.0332(Blichert and Albarede,1997)。在進(jìn)行模式年齡計(jì)算時,采用現(xiàn)今的虧損地幔176Hf/177Hf = 0.28325 和176Lu/177Hf = 0.0384(Griffin et al.,2000),現(xiàn)今平均大陸殼的176Lu/177Hf =0.015(Griffin et al.,2002)。
主量元素分析結(jié)果見表1,微量元素分析結(jié)果見表2。
閃長巖具較低的SiO2(45.73%~52.5%,平均為50.61%)和Fe2O3T(6.83%~10.57%,平均為7.92%)含量;全堿含量(K2O + Na2O)為4.58%~6.7%,平均為5.22%;Mg#值為36.3~54.86,平均為45.38,CaO 含量為4.01%~8.27%,平均為5.95%。在TAS 圖中,落入閃長巖范圍(圖4a),巖石具有富鋁、鎂特征,屬于高鉀鈣堿性系列(圖4b)。
圖6 李灣礦區(qū)巖漿巖稀土元素配分圖(a)及微量元素蛛網(wǎng)圖(b)(球粒隕石標(biāo)準(zhǔn)值據(jù)Sun and McDonough,1989;原始地幔及其他地質(zhì)儲庫標(biāo)準(zhǔn)值據(jù)McDonough and Sun,1995)Fig.6 Chondrite-normalized REE patterns (a)and primitive mantle-normalized trace elements patterns (b)of Liwan intrusions(chondrite values are from Sun and McDonough,1989;primitive mantle and other geological storage standard values are from McDonough and Sun,1995)
鉀長花崗巖具有較高的SiO2(73.29%~74.61%,平均為74.09%)、Al2O3(12.61%~13.07%,平均為12.83%)和Fe2O3T(1.24%~1.38%,平均為1.32%)含量;全堿(K2O +Na2O)含量為3.62%~6.32%,平均為4.65%;TiO2含量為0.18%~0.21%,平均為0.19%;MgO 含量為0.49%~0.57%,平均為0.53%,Mg#值為41.29~47.66,平均為44.39,CaO 含量為1.12%~3.24%,平均為2.08%。在TAS圖中,落入花崗巖范圍(圖4a),屬于髙鉀鈣堿性系列。
玄武安山玢巖具有較低的SiO2含量(42%~43.88%,平均為42.95%),較高的Al2O3含量(22.51%~25.14%,平均為23.66%)。Fe2O3T含量為1.78%~3.4%,平均為2.44%;K2O + Na2O 含量為0.74%~2.44%,平均為1.55%;TiO2含量為0.79%~0.87%,平均為0.84%;MgO含量為2.94%~4.25%,平均為3.86%;Mg#值為69.44~82.17,平均為75.80;CaO 含量為18.19%~22.35%,平均為19.64%。
李灣礦區(qū)侵入巖A/CNK 比值為1.03~2.18,顯示強(qiáng)過鋁質(zhì)的特征。Harker 圖解中Al2O3、Fe2O3T、CaO、P2O5、TiO2與SiO2存在負(fù)相關(guān)性(圖5),表明在巖石形成過程中發(fā)生斜長石,輝石,角閃石,鈦鐵礦的分離結(jié)晶作用。
鉀長花崗巖ΣREE 為269.4 ×10-6~302.7 ×10-6,平均值為283.8 ×10-6。其LREE/HREE 值為7.54~7.91,平均值為7.69。(La/Yb)N的值為6.48~6.86,平均值為6.65;閃長巖ΣREE 為198.7 × 10-6~308.1 × 10-6,平均值為269.7 ×10-6。其LREE/HREE 值為7.06~10.26,平均值為9.27。(La/Yb)N的值為9.30~13.40,平均值為11.77;玄武安山玢巖ΣREE 為285.1 ×10-6~621.4 ×10-6,平均值為420.7 ×10-6,變化范圍較大。其LREE/HREE 值為15.95~25.04,平均值為21.07。(La/Yb)N的值為30.64~74.64,平均值為50.30。玄武安山玢巖稀土總量高,輕重稀土分異明顯,輕稀土顯著偏高,可能是受到了俯沖流體交代作用。三者整體上具有富集輕稀土、虧損重稀土,輕重稀土分異明顯的特點(diǎn)。鉀長花崗巖表現(xiàn)出明顯的Eu 負(fù)異常(圖6a),表明源區(qū)具有斜長石的分離結(jié)晶。稀土配分模式右傾型不同于一般的從地幔分離出來的巖石稀土配分模式(如MORB)(圖6a),說明李灣鉀長花崗巖巖漿源區(qū)并不是從原始地?;蛘咛潛p軟流圈地幔分離出來的,而可能是從巖石圈地幔分離的產(chǎn)物。
鉀長花崗巖具有典型的A 型花崗巖特征:高總堿(K2O+Na2O)和K2O 含量(3.59%~6.23%),低MgO、TiO2和P2O5含量,富集大離子親石元素(Rb、Th、U)和高場強(qiáng)元素(Zr、Hf、Nb 和Y),虧損Ba、P、Ti(圖6b)。在A 型花崗巖判別圖解中(圖7),李灣鉀長花崗巖落入A 型花崗巖區(qū)域,這與區(qū)域花園鞏A 型花崗巖一致。
鋯石定年分析結(jié)果見表3。
李灣礦區(qū)鉀長花崗巖鋯石多為無色透明-淺黃色自形晶體,多呈長柱狀,長寬比多介于1∶1~3∶1。CL 照片顯示多數(shù)鋯石震蕩環(huán)帶發(fā)育,Th/U 比值均大于0.4。這些特征表明其為巖漿成因鋯石(Hoskin,2000;Sun et al.,2002;吳元保和鄭永飛,2004)。27 顆鋯石的206Pb/238U 表面年齡為117 ±2Ma~130 ±2Ma,加權(quán)平均年齡為122.6 ±1.3Ma (圖8a);玄武安山玢巖大部分都是繼承鋯石,206Pb/238U 表面年齡為151.6±5Ma~2156.4 ±43Ma (圖8b);閃長巖鋯石多為無色透明-淺黃色自形晶體,多為長柱狀,長寬比多介于1∶1~3∶1。CL 照片顯示多數(shù)鋯石震蕩環(huán)帶發(fā)育,為典型巖漿成巖鋯石(Hoskin,2000;Sun et al.,2002;吳元保和鄭永飛,2004),其206Pb/238U 年齡變化于116.8 ±2Ma~147.1 ±2Ma 之間,加權(quán)平均年齡為123.4 ±2.4Ma (圖8c),說明閃長巖侵位比鉀長花崗巖稍早一點(diǎn),這從野外見鉀長花崗巖中含有閃長巖的包裹體等地質(zhì)現(xiàn)象也能看出(圖3i)。玄武安山玢巖繼承鋯石2156Ma 的年齡值暗示了揚(yáng)子板塊東北緣長江中下游地區(qū)存在古元古代基底,古元古代基底參與了長江中下游中生代花崗質(zhì)巖的形成,并產(chǎn)生了大量的斑巖型和矽卡巖型礦床(涂蔭玖等,2001;Gao et al.,2001;Zheng et al.,2006;Zhu et al.,2014)。鉀長花崗巖和閃長巖不同的結(jié)晶年齡說明李灣地區(qū)經(jīng)歷了不同的巖漿演化歷史,由于閃長巖與本區(qū)矽卡巖緊密相關(guān)且本身也含銅鉬礦(化),所以其年齡更接近銅多金屬成礦的年齡,且與長江中下游地區(qū)A 型花崗巖的形成時代相一致(125 ±2Ma;范裕等,2008;Wong et al.,2009;Li et al.,2011)。
表3 李灣礦區(qū)巖漿巖鋯石LA-ICP-MS U-Pb 定年分析結(jié)果Table 3 LA-ICP-MS zircon U-Pb data of the Liwan intrusions
圖7 李灣礦區(qū)巖體A 型花崗巖判別圖解(據(jù)Whalen et al.,1987)Fig.7 A-type granites discrimination diagram of Liwan intrusions (after Whalen et al.,1987)
所有鋯石微量元素測試數(shù)據(jù)見表4,Hf 同位素分析結(jié)果見表5。
鉀長花崗巖和閃長巖鋯石稀土元素配分模式均顯示典型的輕稀土虧損,重稀土富集,Ce 正異常、Eu 負(fù)異常的特征(圖9a,b)。閃長巖鋯石稀土總量(REE)范圍為598 ×10-6~2122 ×10-6,均值1587 ×10-6;鉀長花崗巖鋯石稀土總量(REE)范圍為746~2222 ×10-6,均值1343 ×10-6,說明兩者的鋯石稀土總量相似。閃長巖和鉀長花崗巖鋯石部分顯示較高的輕稀土富集特征,可能是在鋯石分析時激光點(diǎn)位置打在了部分富輕稀土礦物(磷灰石)或包裹體上(Wang et al.,2014)。通過晶格應(yīng)力模型計(jì)算獲得鋯石的Ce4+/Ce3+顯示了閃長巖鋯石具有較高的Ce4+/Ce3+,平均值分別為497;而鉀長花崗巖鋯石Ce4+/Ce3+偏低,平均值為246;鉀長花崗巖鋯石Ce4+/Ce3+變化極大(10~3868),可能顯示了鋯石結(jié)晶時氧逸度變化大導(dǎo)致。閃長巖和鉀長花崗巖鋯石Eu/Eu*均值為0.21;鋯石Ti 溫度計(jì)計(jì)算顯示,兩者的形成溫度大體一致,閃長巖及鉀長花崗巖的形成溫度均值分別為:708℃及721℃。
鉀長花崗巖巖漿鋯石均具有均一的Hf 同位素組成,鋯石176Hf/177Hf 初始比值為0.28254~0.28267,相應(yīng)的εHf(t)為-6.7~-2.1,均值為-4.7,二階段模式年齡為1.12~1.36Ga,平均為1.26Ga(圖9c)。李獻(xiàn)華等(1991)統(tǒng)計(jì)前人數(shù)據(jù),發(fā)現(xiàn)華南地殼幕式增長,主要有3 期:2.5Ga 或更早,1.8Ga,1.2~1.4Ga。鉀長花崗巖的源區(qū)對應(yīng)晚期華南地殼的幕式增長,其鋯石的二階段Hf 模式年齡與皖南地區(qū)出露的中元古時代基底的年齡值相近,εHf(t)說明李灣礦區(qū)侵入巖具有殼?;旌系膸r漿巖源區(qū)的性質(zhì)(圖10),鉀長花崗巖的初始巖漿可能屬于皖南基底的部分熔融和地幔物質(zhì)的混溶。
表4 李灣礦區(qū)巖體鋯石微量元素組成(×10 -6)Table 4 Zircon trace element data for the Liwan intrusions (×10 -6)
續(xù)表4Continued Table 4
表5 李灣礦區(qū)巖體鋯石Hf 同位素組成Table 5 Zircon Hf isotope data for the Liwan intrusions
圖8 李灣礦區(qū)巖體鋯石年齡圖解Fig.8 Zircon concordia diagrams of zircon from Liwan intrusions Ellipse dimensions are 1σ
圖9 李灣礦區(qū)巖體鋯石稀土配分圖(a、b,標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)及鉀長花崗巖二階模式年齡圖解(c)Fig.9 Chondrite-normalized REE patterns of zircons from Liwan intrusions (a,b,normalization values from Sun and McDonough,1989)and two second model age plot of Kfeldspar granites (c)
研究表明皖南地區(qū)A 型花崗巖初始(87Sr/86Sr)i約為0.707,εNd(t)為-4.2~-7.0,Nd 模式年齡為1.2~1.5Ga,這些巖體可能來源于中元古代的物源區(qū)的部分熔融(張舒等,2009)。李灣礦區(qū)A 型花崗巖樣品與皖南地區(qū)其它A 型花崗巖相比具有相似的地球化學(xué)特征,同時其鋯石εHf(t)為-6.7~- 2.1,均值為- 4.7,二階段模式年齡平均為1.26Ga,這些特征表明,其成巖可能與皖南A 型花崗巖類似,具有地幔物質(zhì)與皖南基底古老變質(zhì)巖混合的源區(qū)特征。
圖10 巖體U-Pb 年齡與Hf 圖解Fig.10 U-Pb age vs.Hf diagram of Liwan intrusions
在鋯石微量元素變異圖解中(圖11),總體上,鉀長花崗巖及閃長巖中鋯石微量元素具有一定的相關(guān)關(guān)系,暗示成因上聯(lián)系。閃長巖鋯石Ce4+/Ce3+比值和Eu/Eu*分別為7.28~814(均值327)和0.08~0.75(均值0.35);鉀長花崗巖則為10.3~3868(均值247)和0.12~0.28(均值0.21)。利用鋯石原位微量元素特征區(qū)分出大陸地殼和大洋地殼鋯石。在Yb-U 圖解中(圖12),所有鋯石樣品的Yb 和U 含量比較集中,具有正相關(guān)關(guān)系,大都落在鎂質(zhì)鋯石區(qū)域內(nèi),并主要集中在鎂質(zhì)、陸殼和洋殼鋯石相重疊區(qū)域,暗示本區(qū)侵入巖的源區(qū)存在巖漿混合的可能性。本區(qū)侵入巖中鋯石微量元素較明顯的相關(guān)關(guān)系反映其巖漿過程主要為共存結(jié)晶作用,并在鋯石結(jié)晶演化過程中得以記錄(Gagnevin et al.,2010)。值得注意的是,隨著Yb 和U 含量的增加,兩個樣品成分點(diǎn)均向洋殼鋯石區(qū)域偏移,暗示洋殼成分在巖漿源區(qū)占有重要的支配。
研究表明隨著Ti 含量減少或鋯石溫度降低,大洋地殼鋯石中Hf 和大多微量元素含量(如,U、Th、Y、P 和HREE)明顯富集,李灣樣品具有這個特征。從鋯石Ce4+/Ce3+和Eu異常特征看,顯示較高的氧逸度特征,有利于銅多金屬成礦(Sun et al.,2004,2011;Ling et al.,2009)。研究表明,俯沖帶具有比板內(nèi)更高的氧逸度特征(Sun et al.,2004,2010,2011;Ling et al.,2009)。該區(qū)巖漿巖鋯石氧逸度特征進(jìn)一步證明該地區(qū)可能先是經(jīng)歷了太平洋俯沖,而后在板塊后撤過程中保留了部分俯沖的信息。其閃長巖最有可能來源于殘留的俯沖洋殼部分熔融,并在其上升過程中與富集地幔發(fā)生相互作用。同時氧逸度還可以作為一個經(jīng)驗(yàn)性的指標(biāo)來區(qū)分成礦巖體與不成礦巖體,該區(qū)侵入巖具有較高的氧逸度,可能暗示了其具有較大的成礦潛力。
圖11 鋯石微量元素地球化學(xué)變異圖解Fig.11 Geochemical variation diagrams of zircon from the Liwan intrusive rocks
圖12 巖漿巖鋯石Yb-U (a)及U-Y (b)圖解(a)中陸殼、鎂質(zhì)和洋殼鋯石區(qū)域引自數(shù)據(jù)Grimes et al.(2009);(b)中(1)、(2)和(3)曲線代表了混合模式,來源于Langmuir et al.(1978),一個富U-Y 鋯石代表長英質(zhì)端元,三個貧U-Y 鋯石代表鎂質(zhì)端元Fig.12 Yb-U (a)and Th-Y (b)diagrams of zircon(a)continental,mafic and ocean zircon field are after Grimes et al.(2009);(b)(1),(2)and (3)mixing models following Langmuir et al.(1978)using one U-Y-rich zircon to represent the felsic end-member and three U-Y-poor zircons to represent mafic end-members
圖13 長江中下游A 型花崗巖Nd-Sr 圖解數(shù)據(jù)來源:MORB 和海相沉積物(Hofmann,2003),揚(yáng)子板塊下地殼(Chen and Jahn,1998;Xing et al.,1994),長江中下游地區(qū)A 型花崗巖(Yang et al.,2012;Jiang et al.,2005,2011;張舒等,2009;薛懷民等,2009;Chen et al.,2001)Fig.13 Nd-Sr isotopic components diagram for the A-type granites in the LYRBData source:MORB and marine sediments (Hofmann,2003);the lower crust of the Yangtze blocks (Chen and Jahn,1998;Xing et al.,1994);LYRB A-type granites (Yang et al.,2012;Jiang et al.,2005,2011;Zhang et al.,2009;Xue et al.,2009;Chen et al.,2001)
長江中下游A 型花崗巖的初始Sr-Nd 同位素組成,明顯不同于揚(yáng)子下地殼組成,表明板塊熔體遭受富集地幔成分的混染作用(圖13,Ling et al.,2009,2011)。其趨向于EMⅡ端元,表明巖漿源區(qū)有俯沖沉積物加入(Liu et al.,2010b)(圖13)。然而,沉積物通常Cu 含量低,因此不可能是李灣銅礦床的主要來源。鄂東、九瑞、安慶-貴池以及銅陵地區(qū),與銅礦床相關(guān)的含礦巖體侵位時間早于135Ma,εHf(t)隨著侵位時間變晚εHf(t)減小(Ding et al.,2006;Li et al.,2008;劉園園等,2009;Wu et al.,2012;Yang and Zhang,2012)。這種變化趨勢不能通過Hf 的儲存演化來解釋,而更可能是殼?;烊镜牟糠秩廴谛纬傻?。早期,深部地殼物質(zhì)拆沉并交代地幔物質(zhì),隨著時間推移,更多的淺部地殼物質(zhì)加入,從而造成了越老的斑巖具有更高的εHf(t)值。相對九瑞、鄂東、銅陵地區(qū),李灣礦區(qū)巖體具有高的εHf(t)和老的年齡值,說明在巖石形成過程中殼?;烊荆沟美顬炽~礦床更多的富集Cu。
綜上所述,這些明顯的地球化學(xué)特征表明李灣和長江中下游地區(qū)A 型花崗巖起源于有限俯沖沉積物貢獻(xiàn)的俯沖洋殼部分熔融,其上升過程中與富集地幔發(fā)生相互作用,同時混染了古元古代基底物質(zhì)。因此,李灣地區(qū)鉀長花崗巖是陸殼部分熔融與地幔混溶的結(jié)果,而閃長巖可能是板塊后撤過程中洋殼與地幔物質(zhì)的混合。
在構(gòu)造環(huán)境判別圖解中(圖14),閃長巖巖體都落在火山弧花崗巖范圍內(nèi),鉀長花崗巖落在板內(nèi)花崗巖范圍,玄武安山玢巖落在火山弧花崗巖范圍內(nèi),結(jié)合區(qū)域地質(zhì)背景,我們認(rèn)為閃長巖成因是殘留的洋殼部分熔融與地幔混合的產(chǎn)物,而鉀長花崗巖為陸殼部分熔融與地幔的混合的產(chǎn)物,兩者同位于板塊后撤過程中的拉張背景中,是地幔物質(zhì)與不同地質(zhì)體的混溶結(jié)果。閃長巖(Al2O3+ Fe2O3+MgO +TiO2)含量為28.15%~31.36%,Al2O3/(Fe2O3+ MgO + TiO2)比值變化在1.05~1.54,暗示熔體處在一個相對低壓的環(huán)境。因此,總體上李灣礦區(qū)的侵入巖形成于早白堊世高溫-低壓的板塊俯沖后撤拉張的環(huán)境。富水的閃長巖與銅多金屬成礦直接相關(guān),而稍后的鉀長花崗巖侵位則為本地區(qū)成礦提供了后期熱動力,使成礦元素更加富集。
圖14 李灣礦區(qū)巖體構(gòu)造判別圖解(據(jù)Pearce et al.,1984)WPG-板內(nèi)花崗巖;ORG-洋中脊花崗巖;VAG-島弧花崗巖;syn-COLG-同碰撞花崗巖Fig.14 Diagrams of tectonic environment for Liwan intrusive rocks by trace elements (after Pearce et al.,1984)
Mao et al.(2006)認(rèn)為長江中下游礦集區(qū)銅、金礦床的形成可能與古太平洋板塊或依澤納吉板塊向歐亞大陸俯沖有關(guān);Ling et al.(2009,2011)研究認(rèn)為長江中下游成礦帶中金屬礦床的分布與太平洋和依澤納吉板塊之間的洋脊俯沖有關(guān)。李灣礦區(qū)侵入巖鋯石微量元素顯示具有高的Ce 正異常特征,暗示巖漿形成于氧化環(huán)境。俯沖板片殘留的洋殼部分熔融產(chǎn)生具有高氧逸度的熔體。地幔楔熔融時,Cu、Au等趨向集中在硫化物熔體中,只有當(dāng)?shù)蒯H廴谠磪^(qū)呈現(xiàn)高氧化態(tài)時,S 元素才能更好地進(jìn)入硅酸鹽熔體,此時,Cu、Au 等成礦元素才能富集于硅酸鹽熔體中。因此,本地區(qū)經(jīng)歷了140 ±5Ma 的板塊俯沖,在隨后約20Myr 前后太平洋板塊后撤過程中,先期俯沖的殘留洋殼部分熔融為銅多金屬成礦提供了物質(zhì)來源。
李灣礦區(qū)侵入巖鋯石U-Pb 年代學(xué)研究表明其閃長巖形成于123.4 ±2.4Ma,鉀長花崗巖形成于122.6 ±1.3Ma,作為矽卡巖型銅多金屬礦床,其成礦應(yīng)接近或略晚于閃長巖的成巖年齡,因此其成巖成礦與長江中下游地區(qū)125Ma 左右的A型花崗巖巖漿活動及成礦時間大體一致。
李灣矽卡巖型銅多金屬礦床與閃長巖密切相關(guān),閃長巖全程參與了成礦,而隨后的鉀長花崗巖侵位為本區(qū)成礦提供了后續(xù)熱動力(熱源)。閃長巖可能是板塊后撤過程中殘留洋殼與地幔的混溶,而鉀長花崗巖則是陸殼部分熔融與地幔混溶的結(jié)果,兩者統(tǒng)一形成于太平洋板塊在125Ma 左右俯沖后撤過程中造成的拉張背景環(huán)境中。
李灣礦區(qū)巖體繼承鋯石2156Ma 代表了基底巖石年齡,不僅證明了揚(yáng)子板塊東北緣存在古元古代基底物質(zhì),同時暗示了有古元古代基底的物質(zhì)參與了本區(qū)深部物質(zhì)的循環(huán),最終形成殼?;旌闲蛶r體,在與奧陶系石灰?guī)r接觸部位產(chǎn)生了矽卡巖型銅多金屬礦床。
致謝 本文在成文過程中得到了鄧江洪、汪方躍等博士的幫助;兩位匿名審稿人給予了很好的指導(dǎo)和建議;在此一并致以衷心的感謝。
Blichert TJ and Albarede F.1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,148(1-2):243-258
Chang YF,Liu XP and Wu YC.1991.The Copper-Iron Belt of the Lower-Middle Research of the Changjiang River.Beijing:Geological Publishing House (in Chinese)
Chen JF and Jahn BM.1998.Crustal evolution of southeastern China:Nd and Sr isotopic evidence.Tectonophysics,284(1- 2):101-133
Chen JF,Yan J,Xie Z,Xu X and Xing F.2001.Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze Region in eastern China:Constraints on sources.Physics and Chemistry of the Earth,26(9-10):719-731
Chu NC,Taylor RN,Chavagnac V,Nesbitt RW,Boella RM,Milton JA,German CR,Bayon G and Burton K.2001.Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections.Journal of Analytical Atomic Spectrometry,17(12):1567-1574
De Biévre P and Taylor PDP.1993.Table of the isotopic compositions of the elements.International Journal of Mass Spectrometry and Ion Processes,123(2):149-166
Deng J,Wang QF,Xiao CH,Yang LQ,Liu H,Gong QJ and Zhang J.2011.Tectonic-magmatic-metallogenic system,Tongling ore cluster region,Anhui Province,China.International Geology Review,53(5-6):449-476
Ding X,Jiang SY,Zhao KD,Nakamura E,Kobayashi K,Ni P,Gu LX and Jiang YH.2006.In-situ U-Pb SIMS dating and trace element(EMPA)composition of zircon from a granodiorite porphyry in the Wushan copper deposit,China.Mineralogy and Petrology,86:29-44
Dong S.2006.Regional geochemical characteristics of Guichi area in Anhui Province and their ore-prospecting significance.Geochemical and Geochemical Exploration,30(3):215-223 (in Chinese with English abstract)
Duan LA,Yang XY,Wang FY,Deng JH and Sun WD.2012.Geochemistry and zircon U-Pb age of ore-bearing porphyry in the Paodaoling gold deposit in Guichi, Middle-Lower Yangtze metallogenic belt.Acta Petrologica Sinica,28(10):3241-3254(in Chinese with English abstract)
Duan LA,Yang XY,Liu XM and Sun WD.2013.Discovery of gold deposit in the Silurian System in Sujiadian,Tongling ore cluster region:Its significance.Geotectonica et Metallogenia,37(2):333-339 (in Chinese with English abstract)
Duan LA,Yang XY and Wang FY.2014.Characteristics and prospects of Paodaoling large porphyry gold deposit in the Middle-Lower Yangtze River metallogenic belt.Journal of Earth Sciences and Environment,36(1):161-170 (in Chinese with English abstract)
Fan Y,Zhou TF,Yuan F,Qian CC,Lu SM and Cooke D.2008.LAICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang)area and their geological significances.Acta Petrologica Sinica,24(8):1715-1724 (in Chinese with English abstract)
Gagnevin D,Daly JS and Kronz A.2010.Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system.Contributions to Mineralogy and Petrology,159(4):579-596
Gao S,Qiu YM,Ling WL,McNaughton NJ and Groves DI.2001.Single zircon U-Pb dating of the Kongling high-grade metamorphic terrain:Evidence for >3.2Ga old continental crust in the Yangtze craton.Science in China (Series D),44(4):326-335
Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XS and Zhou XM.2002.Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes.Lithos,61(3-4):237-269
Grimes CB,John BE,Cheadle MJ,Mazdab FL,Wooden JL,Swapp S and Schwartz JJ.2009.On the occurrence, trace element geochemistry,and crystallization history of zircon from in situ ocean lithosphere.Contributions to Mineralogy and Petrology,158(6):757-783
Hofmann AW.2003.Sampling mantle heterogeneity through oceanic basalts:Isotopes and trace elements.In:Carlson RW (ed.).The Mantle and Core.Treatise on Geochemistry.Oxford:Elsevier-Pergamon,61-101
Hoskin PWO.2000.Patterns of chaos:Fractal statistics and the oscillatory chemistry of zircon.Geochimica et Cosmochimica Acta,64(11):1905-1923
Jiang YH,Ling HF,Jiang SY,F(xiàn)an HH,Shen WZ and Ni P.2005.Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg,potassic,quenched enclaves at Xiangshan,Southeast China.Journal of Petrology,46(6):1121-1154
Jiang YH,Zhao P,Zhou Q,Liao SY and Jin GD.2011.Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift,SE China.Lithos,121(1-4):55-73
Langmuir CH,Vocke RDJR and Hanson GN.1978.A general mixing equation with applications to Icelandic basalts.Earth and Planetary Science Letters,37(3):380-392
Le Bas MJ,LeMaitre RW,Streckeisen A and Zanettin B.1986.A chemical classification of volcanic rocks based on the total alkalisilica diagram.Journal of Petrology,27(3):745-750
Li H,Zhang H,Ling MX,Wang FY,Ding X,Zhou JB,Yang XY,Tu XL and Sun WD.2011.Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:Implications for geological evolution of the Lower Yangtze River belt.International Geology Review,53(5-6):499-525
Li H,Ling MX,Li CY,Zhang H,Ding X,Yang XY,F(xiàn)an WM,Li YL and Sun WD.2012.A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction.Lithos,150:26-36
Li JW,Zhao XF,Zhou MF,Vasconcelos P,Ma CQ,Deng XD,Sérgio de Souza Z,Zhao YX and Wu G.2008.Origin of the Tongshankou porphyry-skarn Cu-Mo deposit,eastern Yangtze craton,eastern China:Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints.Mineralium Deposita,43(3):315-336
Li JW,Zhao XF,Zhou MF,Ma CQ,de Souza ZS and Vasconcelos P.2009.Late Mesozoic magmatism from the Daye region,eastern China:U-Pb ages,petrogenesis,and geodynamic implications.Contributions to Mineralogy and Petrology,157(3):383-409
Li XH,Zhao ZH,Gui XT and Yu JS.1991.Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust in Southeast China.Geochimica,20(3):255-264 (in Chinese with English abstract)
Li XH,Long WG,Li QL,Liu Y,Zheng YF,Yang YH,Chamberlain KR,Wan DF,Guo CH,Wang XC and Tao H.2010.Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age.Geostandards and Geoanalytical Research,34(2):117-134
Ling MX,Wang FY,Ding X,Yang YH,Zhou JB,Zartman RE,Yang XY and Sun WD.2009.Cretaceous ridge subduction along the Lower Yangtze River Belt,eastern China.Economic Geology,104(2):303-321
Ling MX,Wang FY,Ding X,Zhou JB and Sun WD.2011.Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt,eastern China:Geochemical constraints.International Geology Review,53(5-6):727-740
Liu SA,Li SG,He YS and Huang F.2010b.Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization.Geochemica et Cosmochimica Acta,74(24):7160-7178
Liu Y, Liu HC and Li XH.1996.Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS.Geochimica,25(6):552-558 (in Chinese with English abstract)
Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HL.2010a.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546
Liu YY,Ma CQ,Zhang C,She ZB and Zhang JY.2009.Petrogenesis of the Yueshan pluton:Zircon U-Pb dating and Hf isotope evidence.Geological Science and Technology Information,28(5):22-30 (in Chinese with English abstract)
Liu YY,Ma CQ,Lü ZY and Huang WP.2012.Zircon U-Pb age,element and Sr-Nd-Hf isotope geochemistry of Late Mesozoic magmatism from the Guichi metallogenic district in the Middle and Lower Reaches of the Yangtze River region.Acta Petrologica Sinica,28(10):3287-3305 (in Chinese with English abstract)
Ludwig KR.2003.ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication,4,1-70
Mao JW,Wang YT,Lehmann B,Yu JJ,Du AD,Mei YX,Li YF,Zang WS,Stein HJ and Zhou TF.2006.Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications.Ore Geology Reviews,29(3-4):307-324
Mao JW,Shao YJ,Xie GQ,Zhang JD and Chen YC.2009.Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt.Mineral Deposits,28(2):109-119 (in Chinese with English abstract)
McDonough WF and Sun SS.1995.The composition of the Earth.Chemical Geology,120(3-4):223-253
Middlemost EAK.1985.Magmas and Magmatic Rocks.London:Longman,1-266
Pan YM and Dong P.1999.The Lower Changjiang (Yangzi/Yangtze River)metallogenic belt,east central China:Intrusion-and wall rock-hosted Cu-Fe-Au,Mo,Zn,Pb,Ag deposits.Ore Geology Reviews,15(4):177-242
Pearce JA, Harris NBW and Tindle AG.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25(4):956-983
Peccerillo A and Taylor SR.1976.Geochemistry of Eocene calc-alkaline volcanic-rocks from Kastamonu area,northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81
Qi L,Hu J and Gregoire DC.2000.Determination of trace elements in granites by inductively coupled plasma mass spectrometry.Talanta,51(3):507-513
Soderlund U,Patchett JP,Vervoort JD and Isachsen CE.2004.The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions.Earth and Planetary Science Letters,219(3-4):311-324
Song GX,Qin KZ and Li GM.2010.Study on the fluid inclusions and SH-O isotopic compositions of skarn-porphyry-type W-Mo deposits in Chizhou area in the Middle-Lower Yangze Valley.Acta Petrologica Sinica,26(9):2768-2782 (in Chinese with English abstract)
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in Oceanic Basins.Geological Society,London,Special Publication,42(1):313-345
Sun WD,Li SG,Chen YD and Li YJ.2002.Timing of synorogenic granitoids in the South Qinling,central China:Constraints on the evolution of the Qinling-Dabie orogenic belt.Journal of Geology,110(4):457-468
Sun WD,Xie Z,Chen JF,Zhang X,Chai ZF,Du AD,Zhao JS,Zhang CH and Zhou TF.2003.Os-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of the Yangtze River,China.Economic Geology,98(1):175-180
Sun WD,Arculus RJ,Kamenetsky VS and Binns RA.2004.Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization.Nature,431(7011):975-978
Sun WD,Ling MX,Yang XY,F(xiàn)an WM,Ding X and Liang HY.2010.Ridge subduction and porphyry copper-gold mineralization:An overview.Science China (Earth Science),53(4):475-484
Sun WD,Zhang H,Ling MX,Ding X,Chuang SL,Zhou JB,Yang XY and Fan WM.2011.The genetic association of adakites and Cu-Au ore deposits.International Geology Review,53(5-6):691-703
Tang YC,Wu YC,Chu GZ,Xing FM,Wang YM,Cao FY and Chang YF.1998.Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province.Beijing.Geological Publishing House,1-351 (in Chinese)
Tu YJ,Yang XY,Zheng YF and Li HM.2001.U-Pb dating of zircon from gneiss at Nanhuang in East Anhui.Acta Petrologica Sinica,17(1):157-160 (in Chinese with English abstract)
Wang Q,Wyman DA,Xu JF,Zhao ZH,Jian P,Xiong XL,Bao ZW,Li CF and Bai ZH.2006.Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area,Anhui Province(eastern China ): Implications for geodynamics and Cu-Au mineralization.Lithos,89(3-4):424-446
Wang Q,Wyman DA,Xu JF,Zhao ZH,Jian P and Zi F.2007.Partial melting of thickened or delaminated lower crust in the middle of eastern China:Implications for Cu-Au mineralization.Journal of Geology,115(2):149-161
Wang FY,Liu SA,Li SG,Akhtar S and He YS.2014.Zircon U-Pb ages,Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen,eastern China:Constraints on their petrogenesis,tectonic implications and Cu mineralization.Lithos,200-201:299-316
Whalen BJ,Currie KL and Chappell BW.1987.A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407-419
Wong J,Sun M,Xing GF,Li XH,Zhao GC,Wong K,Yuan C,Xia XP,Li LM and Wu FY.2009.Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125~100Ma and its tectonic significance for South China.Lithos,112(3-4):289-305
Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(15):1554-1569
Wu FY,Ji WQ,Sun DH,Yang YH and Li XH.2012.Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province,China.Lithos,150:6-25
Xie JC,Yang XY,Sun WD,Du JG,Xu W,Wu LB,Wang KY and Du XW.2009.Geochronological and geochemical constraints on formation of the Tongling metal deposits, Middle Yangtze metallogenic belt,east-central China.International Geology Review,51(5):388-421
Xie JC,Yang XY,Sun WD and Du JG.2012.Early Cretaceous dioritic rocks in the Tongling region,eastern China:Implications for the tectonic settings.Lithos,150:49-61
Xie JC,Yang XY,Xiao YL,Du JG and Sun WD.2012.Petrogenesis of the Mesozoic intrusive rocks from the Tongling ore cluster region:The metallogenic significance.Acta Geologica Sinica,86(3):423-459 (in Chinese with English abstract)
Xing FM,Xu X and Li ZC.1994.Discovery of the Early Proterozoic basement in the Middle-Lower Reaches of Yangtze River and its significance.Chinese Science Bulletin,39(2):136-139
Xue HM,Wang YG,Ma F,Wang C,Wang DE and Zuo TL.2009.The Huangshan A-type granites with tetrad REE:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Cratons?Acta Geologica Sinica,83(2):247- 260 (in Chinese with English abstract)
Yang GC,Ge LS,Lu YC,Zou YL,Xing JB,Zhang F and Yuan SS.2014.Re-Os isotopic dating of molybdenite from the Matou iindgrenite deposit from Chizhou area in the south of Anhui Province and its geological implications.Journal of Mineralogy and Petrology,34(1):30-35 (in Chinese with English abstract)
Yang SY,Jiang SY,Zhao KD,Jiang YH,Ling HF and Li L.2012.Geochronology,geochemistry and tectonic significance of two Early Cretaceous A-type granite in the Gan-Hang Belt,Southeast China.Lithos,150:155-170
Yang W and Zhang HF.2012.Zircon geochronology and Hf isotopic composition of Mesozoic magmatic rocks from Chizhou,the Lower Yangtze region: Constraints on their relationship with Cu-Au mineralization.Lithos,150:37-48
Yang XY and Lee IS.2011.Review of the stable isotope geochemistry of Mesozoic igneous rocks and Cu-Au deposits along the Middle-Lower Yangtze Metallogenic Belt,China.International Geology Review,53(5-6):741-757
Yuan HL,Gao S,Liu XM,Li HM,Günther D and Wu FY.2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry.Geostandards and Geoanalytical Research,28(3):353-370
Yuan HL,Gao S,Dai MN,Zong CL,Güenther D,F(xiàn)ontaine GH,Liu XM and Diwu CR.2008.Simultaneous determinations of U-Pb age,Hf isotopes and trace element compositions of zircon by excimer laserablation quadrupole and multiple-collector ICP-MS.Chemical Geology,247(1-2):100-118
Zhai YS,Yao SZ,Lin XD,Zhou XR,Wan TF,Jin FQ and Zhou ZG.1992.Metallogeny of Iron and Copper Deposits in the Middle-Lower Yangtze River Region.Beijing:Geological Publishing House,1-194 (in Chinese)
Zhang S,Zhang ZC,Ai Y,Yuan WM and Ma LT.2009.The petrology,mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province.Acta Petrologica Sinica,25(1):25-38 (in Chinese with English abstract)
Zhang ZY,Du YS,Zhang J and Pang ZS.2011.SHRIMP Zircon U-Pb geochronology,petrochemical and geochemical characteristics of Tongshan intrusion in Guichi,Anhui Province.Geological Review,57(3):366-378 (in Chinese with English abstract)
Zheng YF,Zhao ZF,Wu YB,Zhang SB,Liu X and Wu FY.2006.Zircon U-Pb age,Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen.Chemical Geology,231(1-2):135-158
Zhu ZY,Jiang SY,Hu J,Gu LX and Li JW.2014.Geochronology,geochemistry,and mineralization of the granodiorite porphyry hosting the Matou Cu-Mo(±W)deposit,Lower Yangtze River metallogenic belt,eastern China.Journal of Asian Earth Sciences,79(B):623-640
Zhou TF,F(xiàn)an Y and Yuan F.2008.Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area.Acta Petrologica Sinica,24(8):1665-1678 (in Chinese with English abstract)
Zhou TF,F(xiàn)an Y and Yuan F.2012.Progress of geological study in the Middle-lower Yangtze River valley metallogenic belt.Acta Petrologica Sinica,28(10):3051-3066 (in Chinese with English abstract)
附中文參考文獻(xiàn)
常印佛,劉湘培,吳言昌.1991.長江中下游銅鐵成礦帶.北京:地質(zhì)出版社,294-312
董勝.2006.安徽省貴池地區(qū)區(qū)域地球化學(xué)特征及找礦意義.物探與化探,30(3):215-223
段留安,楊曉勇,汪方躍,鄧江洪,孫衛(wèi)東.2012.長江中下游成礦帶貴池拋刀嶺金礦含礦巖體年代學(xué)及地球化學(xué)研究.巖石學(xué)報(bào),28(10):3241-3254
段留安,楊曉勇,劉曉明,孫衛(wèi)東.2013.銅陵舒家店地區(qū)志留紀(jì)地層中金礦的發(fā)現(xiàn)及其意義.大地構(gòu)造與成礦學(xué),37(2):333-339
段留安,楊曉勇,汪方躍.2014.長江中下游成礦帶拋刀嶺大型斑巖型金礦特征及找礦前景.地球科學(xué)與環(huán)境學(xué)報(bào),36(1):161-170
范裕,周濤發(fā),袁峰,錢存超,陸三明,Cooke D.2008.安徽廬江-樅陽地區(qū)A 型花崗巖的LA-ICP-MS 定年及其地質(zhì)意義.巖石學(xué)報(bào),24(8):1715-1724
李獻(xiàn)華,趙振華,桂訓(xùn)唐,于津生.1991.華南前寒武紀(jì)地殼形成時代的Sm-Nd 和鋯石U-Pb 同位素制約.地球化學(xué),20(3):255-264
劉穎,劉海臣,李獻(xiàn)華.1996.用ICP-MS 準(zhǔn)確測定巖石樣品中的40余種微量元素.地球化學(xué),25(6):552-558
劉園園,馬昌前,張超,佘振兵,張金陽.2009.安徽月山閃長巖的成因探討——鋯石U-Pb 定年及Hf 同位素證據(jù).地質(zhì)科技情報(bào),28(5):22-30
劉圓圓,馬昌前,呂昭英,黃衛(wèi)平.2012.長江中下游貴池礦集區(qū)燕山期巖漿作用及其地質(zhì)意義:年代學(xué)、地球化學(xué)及Sr-Nd-Hf 同位素證據(jù).巖石學(xué)報(bào),28(10):3287-3305
毛景文,邵擁軍,謝桂青,張建東,陳毓川.2009.長江中下游成礦帶銅陵礦集區(qū)銅多金屬礦床模型.礦床地質(zhì),28(2):109-119
宋國學(xué),秦克章,李光明.2010.長江中下游池州地區(qū)矽卡巖-斑巖型W-Mo 礦床流體包裹體與H、O、S 同位素研究.巖石學(xué)報(bào),26(9):2768-2782
唐永成,吳言昌,儲國正,邢鳳鳴,王永敏,曹奮揚(yáng),常印佛.1998.安徽沿江地區(qū)銅金多金屬礦床地質(zhì).北京:地質(zhì)出版社,1-351
涂蔭玖,楊曉勇,鄭永飛,李惠民.2001.皖東南黃片麻巖的鋯石UPb 年齡.巖石學(xué)報(bào),17(1):157-160
吳元保,鄭永飛.2004.鋯石成因礦物學(xué)研究及其對U-Pb 年齡解釋的制約.科學(xué)通報(bào),49(16):1589-1604
謝建成,楊曉勇,肖益林,杜建國,孫衛(wèi)東.2012.銅陵礦集區(qū)中生代侵入巖成因及成礦意義.地質(zhì)學(xué)報(bào),86(3):423-459
薛懷民,汪應(yīng)庚,馬芳,汪誠,王德恩,左廷龍.2009.高度演化的黃山A 型花崗巖:對揚(yáng)子克拉通東南部中生代巖石圈減薄的約束?地質(zhì)學(xué)報(bào),83(2):247-260
楊貴才,葛良勝,路英川,鄒依林,邢俊兵,張峰,袁士松.2014.安徽省池州地區(qū)馬頭鉬礦輝鉬礦Re-Os 年齡及其地質(zhì)意義.礦物巖石,34(1):30-35
翟裕生,姚書振,林新多,周珣若,萬天豐,金福全,周宗桂.1992.長江中下游地區(qū)鐵銅(金)成礦規(guī)律.北京:地質(zhì)出版社,1-194
張舒,張招崇,艾羽,袁萬明,馬樂天.2009.安徽黃山花崗巖巖石學(xué)、礦物學(xué)及地球化學(xué)研究.巖石學(xué)報(bào),25(1):25-38
張智宇,杜楊松,張靜,龐振山.2011.安徽貴池銅山巖體SHRIMP鋯石U-Pb 年代學(xué)與巖石地球化學(xué)特征研究.地質(zhì)論評,57(3):366-378
周濤發(fā),范裕,袁峰.2008.長江中下游成礦帶成巖成礦作用研究進(jìn)展.巖石學(xué)報(bào),24(8):1665-1678
周濤發(fā),范裕,袁峰.2012.長江中下游成礦帶地質(zhì)與礦產(chǎn)研究進(jìn)展.巖石學(xué)報(bào),28(10):3051-3066