康東升, 喻 晶, 上官曉天
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074)
帶有不同Hardy位勢(shì)和多重Sobolev臨界指數(shù)方程組的基態(tài)解
康東升, 喻 晶, 上官曉天
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074)
利用變分方法和分析技巧,研究了帶有多重臨界指標(biāo)和不同Hardy位勢(shì)項(xiàng)的橢圓方程組,證明了方程組基態(tài)解的存在性以及瑞利商極小值的可達(dá)性.
橢圓方程組;極小值;臨界指數(shù);基態(tài)解;變分方法
本文考慮如下橢圓方程組:
(1)
本文主要在積空間D×D中研究問(wèn)題(1),并且定義其相應(yīng)的能量泛函為:
μ2|v|2*+ν|u|α|v|β)dx.
那么I∈C1(D×D,R),其對(duì)偶積定義如下:
其中u,ν,φ,φ∈D,若(u,v)≠(0,0),I′(u,v),(φ,φ)=0,?(φ,φ)∈D×D,則(u,v)∈D×D被稱為方程組(1)的解,其中I′(u,v)為能量泛函I在點(diǎn)(u,v)處的Fréchet導(dǎo)數(shù).
根據(jù)著名的Hardy不等式[1]:
(2)
那么在空間D上等價(jià)的范數(shù)表示為:
我們可以定義D1,2(RN){0}上的最佳常數(shù):
(3)
并且是方程:
的解.那么(3)式的解滿足:
同時(shí)在假設(shè)(H1)~(H3)下,通過(guò)Hardy不等式、Yong不等式和Sobolev不等式定義D1,2(RN){0}2上的最佳常數(shù):
(4)
A=A(λ1,λ2,ν,μ1,μ2):=
(5)
特別地,當(dāng)ν,λ1,λ2為非負(fù)常數(shù)時(shí),我們將A寫(xiě)作B:
B=B(λ1,λ2,ν,μ1,μ2):=
(6)
那么在全文中,我們假設(shè):
(H1) N≥3,N是整數(shù),μ1>0,μ2>0,ν>0,α,β>1,α+β=2*.
在本文中,在假設(shè)(H1)下,定義如下函數(shù):
(7)
其中τmin>0為f(t)在區(qū)間(0,+∞)中的最小值點(diǎn).
在最近幾年,許多學(xué)者研究半線性橢圓方程,并且得到了許多研究成果[2-5].特別地,帶有Hardy位勢(shì)和Sobolev臨界項(xiàng)的橢圓方程得到了更多學(xué)者的關(guān)注[6-12].本文將研究方程組(1)的基態(tài)解的存在性以及瑞利商的極小值的可達(dá)性.
定義1 假設(shè)一個(gè)方程組所有的解組成的集合為E,如果集合E滿足下面的條件:
則稱(u,v)∈D×D是該方程組的基態(tài)解,即極小能量解.對(duì)于本文,在所有可能存在的解中,我們研究方程組(1)的基態(tài)解.因?yàn)槭沟梅匠探M相應(yīng)Rayleigh商取得極小值的解就是原方程組的基態(tài)解.
定理1 假設(shè)(H1)~(H3)成立,并且N>4,α<2,β<2.
(ii) 如果μ1→∞,μ2≤1,則方程組(1)有正基態(tài)解.
(iii) 如果μ1≥1,μ2→0,則方程組(1)有正基態(tài)解.
(iv) 存在ν*>0,使得對(duì)于所有的ν∈(0,ν*),方程組(1)有正基態(tài)解.
下面我們首先證明(1)基態(tài)解的存在性;然后證明定理1.為了簡(jiǎn)潔起見(jiàn),我們將省略掉積分號(hào)里的“dx”.
在空間D*=D×D上我們定義能量泛函J(u,v):
(8)
證明 證明方法與文獻(xiàn)[11]中的引理1.1
類似.
證明 (i)當(dāng)N>4,α<2,β<2時(shí),
t≥0.
當(dāng)t→0+,則f′(t)<0并且當(dāng)t→+∞,f′(t)>0,那么存在tmin≥0使得:
fmin=f(tmin) (ii) 為了證明引理2,引用文獻(xiàn)[9]中定理1的方法,假設(shè)w∈D1,2(RN){0}, 那么我們選擇(u,v)=(w,tminw)代入到(5)式中可以得到: A(λi,λi,ν,μ1,μ2). (9) 在(9)式中取w∈D1,2(RN){0}的下界,可以得到: (10) 另一方面,取序列{(u,v)}?D×D為A(λi,λi,ν,μ1,μ2)的最小子列并且定義z=sv, (11) (12) 由Minkowski不等式得: 所以我們可以得到: (13) 通過(guò)(10)和(13)式可以推得: 引理3 在假設(shè)(H1)~(H3)下,當(dāng)N>4時(shí),α<2,β<2. (14) (15) A(λ1,λ2,ν,μ1,μ2)≤ (16) 那么當(dāng)N>4,α<2,β<2,μ1>0,μ2>0,ν>0,α+β=2*時(shí),根據(jù)引理2我們將t=tmin帶入到(16)式中: A(λ1,λ2,ν,μ1,μ2) (17) (ii) 如果μ1→∞,μ2≤1,那么(17)式成立. (iii) 如果μ1≥1,μ2→0,那么(17)式成立. J′(un,vn),(φ,φ)=o(‖(φ,φ)‖D×D). 通過(guò)引理3可以得到: (18) 再將(u,0)代入到(5)式中我們有: (19) 則通過(guò)(18)和(19)式可以得到: (20) 這就表明A(λ1,λ2,ν,μ1,μ2)僅僅只與λ1,μ1有關(guān),與λ2,μ2無(wú)關(guān),則從(20)式和引理2可以得到: (21) (22) [1] Hardy G, Littlewood J, Polya G. Inequalities [M].Cambridge: Cambridge University Press, 1988: 239-243. [2] Terracini S. On positive entire solutions to a class of equations with a singular coefficient and critical exponent [J]. Adv Differential Equations, 1996,1 (2): 241-264. [3] Cao D, Yan S. Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential [J]. Calc Var Partial Differential Equations,2010, 38: 471-501. [4] Felli V, Terracini S. Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity [J].Comm Partial Differential Equations, 2006, 31 (2): 469-495. [5] Jannelli E. The role played by space dimension in elliptic critical problems[J]. J Differential Equations,1999, 156 (2): 407-426. [6] Abdellaoui B, Felli V, Peral I. Some remarks on systems of elliptic equations doubly critical in the wholeRN[J]. Calc Var Partial Differential Equations, 2009,34 (1): 97-137. [7] Chen Z, Zou W. A remark on doubly critical elliptic systems [J]. Calc Var Partial Differential Equations,2014, 50 (3): 939-965. [8] Chen Z, Zou W. Existence and symmetry of positive ground states for a doubly critical Schroinger system [J]. Trans Amer Math Soc, 2015, 367: 3599-3646. [9] Huang Y, Kang D. On the singular elliptic systems involving multiple critical Sobolev exponents[J]. Nonlinear Anal, 2011,74(2):400-412. [10] Kang D. Elliptic systems involving critical nonlinearities and different Hardy-type terms [J]. J Math Anal Appl,2014, 420 (2): 930-941. [11] Kang D. Systems of elliptic equations involving multiple critical nonlinearities and different Hardy-type terms inRN[J]. J Math Anal Appl, 2014,420 (2): 917-929. [12] Kang D. Systems of quasilinear elliptic equations involving multiple homogeneous nonlinearities [J]. Appl Matt Lett, 2014,37 (11): 1-6. [13] Kang D, Yu J . Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters [J]. Appl Math Lett, 2015, 46: 77-82. [14] Vazquez J. A strong maximum principle for some quasilinear elliptic equations[J]. Appl Math Optim,1984,12 (1): 191-202. Ground State Solutions of Elliptic Equations Involving Different Hardy-Type Terms and Multiple Critical Sobolev Exponents KangDongsheng,YuJing,ShangguanXiaotian (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China) We study systems of equations involving critical nonlinearities and different Hardy-type terms.By variational methods,the existence of minimizers to Raleigh quotiens and ground state solutions to the systems is proved. elliptic equation; minimizer; critical exponent; ground state solutions; variational method 2015-07-22 康東升(1967-),男,教授,博士,研究方向:偏微分方程,E-mail:dongshengkang@scuec.edu.cn 國(guó)家民委科研基金資助項(xiàng)目(12ZNZ004);中南民族大學(xué)研究生創(chuàng)新基金資助項(xiàng)目(2015sycxjj127) O175 A 1672-4321(2015)03-0100-053 基態(tài)解的存在
——基于第三方科研機(jī)構(gòu)的策略選擇