国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

液化側(cè)擴(kuò)流場(chǎng)地橋梁群樁效應(yīng)分析①

2015-06-09 12:36劉春輝凌賢長(zhǎng)
地震工程學(xué)報(bào) 2015年2期
關(guān)鍵詞:群樁砂土單樁

劉春輝, 唐 亮,2, 凌賢長(zhǎng)

(1.哈爾濱工業(yè)大學(xué)土木工程學(xué)院,黑龍江 哈爾濱 150090;2.成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059)

液化側(cè)擴(kuò)流場(chǎng)地橋梁群樁效應(yīng)分析①

劉春輝1, 唐 亮1,2, 凌賢長(zhǎng)1

(1.哈爾濱工業(yè)大學(xué)土木工程學(xué)院,黑龍江 哈爾濱 150090;2.成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059)

基于u-p有限元公式模擬飽和砂土中水和土顆粒完全耦合效應(yīng),建立液化側(cè)向流場(chǎng)地群樁動(dòng)力反應(yīng)分析的三維數(shù)值模型。模型中,砂土采用多屈服面彈塑性本構(gòu)模型模擬、黏土采用多屈服面運(yùn)動(dòng)塑性模型模擬,群樁在計(jì)算過(guò)程中保持線彈性狀態(tài);采用20節(jié)點(diǎn)的六面體單元和考慮孔壓效應(yīng)的20-8節(jié)點(diǎn)分別劃分黏土層和飽和砂層;選用剪切梁邊界處理計(jì)算域的人工邊界,模擬地震過(guò)程中土層的剪切效應(yīng);應(yīng)用瑞利阻尼考慮體系的阻尼效應(yīng)。隨后對(duì)比分析2×2群樁中各單樁的地震反應(yīng)規(guī)律,結(jié)果表明,各單樁的彎矩、位移時(shí)程規(guī)律基本一致,峰值彎矩及峰值位移出現(xiàn)時(shí)刻滯后于輸入加速度峰值時(shí)刻,上坡向樁的彎矩和位移峰值大于下坡向的樁的反應(yīng)值。接著通過(guò)改變樁間距研究群樁效應(yīng),隨著樁間距增加,群樁中各單樁的彎矩最大值均出現(xiàn)在土層分界處,且各單樁的彎矩、樁頂位移逐漸增大。最后給出液化側(cè)向流場(chǎng)地群樁效應(yīng)的基本原因,得出該類(lèi)場(chǎng)地群樁抗震設(shè)計(jì)的基本認(rèn)識(shí)。

群樁效應(yīng); 液化側(cè)向流動(dòng); 樁-土相互作用; 地震; 非線性三維有限元分析

0 引言

歷次強(qiáng)震(如1964年阪神地震、1987年新西蘭地震、1995年神戶地震、1999年臺(tái)灣集集地震)震害調(diào)查表明[1-5],液化側(cè)向流動(dòng)是造成大量橋梁樁基嚴(yán)重破壞的主要原因。因此液化側(cè)向流場(chǎng)地橋梁樁基破壞便成為巖土地震工程領(lǐng)域的重要研究問(wèn)題。為了考察地震作用下液化側(cè)向流場(chǎng)地樁基破壞機(jī)制,眾多學(xué)者如McVay[6]、Rollins[7]、Tokimatsu[8]、Suzuki[9]、Ashford[10]及Abdoun[11]分別采用振動(dòng)臺(tái)試驗(yàn)和人工控制爆炸的方式研究液化側(cè)向流場(chǎng)地樁的側(cè)向承載特性。然而鮮有文獻(xiàn)定量研究液化側(cè)向流場(chǎng)地中群樁效應(yīng)以及樁間距對(duì)群樁中各樁受力特性的影響。因此,本文采用三維有限元法研究液化側(cè)向流場(chǎng)地2×2群樁地震反應(yīng)特性,分析前、后樁的受力差異,考察樁間距對(duì)群樁效應(yīng)的影響狀況,剖析液化側(cè)向流場(chǎng)地群樁效應(yīng)的基本原因。

1 群樁動(dòng)力反應(yīng)數(shù)值模擬與分析

1.1 數(shù)值模型

所有計(jì)算均基于OpenSees有限元計(jì)算平臺(tái)實(shí)現(xiàn)。模型中采用多屈服面模型(J2)考慮飽和砂土的非線性。該模型能夠考慮液化引起中密砂、密砂永久剪應(yīng)變積累效應(yīng),并引入合適的加載-卸載流動(dòng)法則模擬循環(huán)荷載輸入下砂土的偏體應(yīng)變耦合效應(yīng)(膨脹砂土的收縮、理想塑性和膨脹特性),可以重現(xiàn)試驗(yàn)中觀察在大的循環(huán)剪切荷載輸入下砂土出現(xiàn)的明顯膨脹趨勢(shì)及循環(huán)剪切剛度和強(qiáng)度增大(循環(huán)流滑機(jī)理)的現(xiàn)象。黏土視為非線性滯回材料,采用Von Mises多屈服面運(yùn)動(dòng)塑性模型模擬,塑性公式基于多屈服面概念提出,采用關(guān)聯(lián)流動(dòng)法則。該模型中土體塑性僅在偏應(yīng)力-應(yīng)變響應(yīng)下產(chǎn)生,體應(yīng)力-應(yīng)變響應(yīng)為線彈性,且與偏應(yīng)變響應(yīng)獨(dú)立,其能夠模擬土體的單調(diào)及循環(huán)響應(yīng)。模型中砂土和黏土參數(shù)見(jiàn)表1。

表1 土體計(jì)算參數(shù)

為縮短計(jì)算時(shí)間,利用模型的對(duì)稱性建立液化側(cè)向流場(chǎng)地群樁動(dòng)力反應(yīng)分析的有限元模型(圖1)。模型包括兩層土,上部為3 m厚的飽和砂層,下部為2 m厚的黏土層。地表傾斜3°。模型長(zhǎng)和寬均為15 m。地下水位線位于地表處。

圖1 有限元模型Fig.1 The finite element model

模型中采用有限元u-p方程(p為砂土的孔壓,u為土顆粒位移)模擬飽和砂土的液化過(guò)程[14];采用考慮孔壓效應(yīng)的20-8節(jié)點(diǎn)和不考慮孔壓效應(yīng)的20節(jié)點(diǎn)六面體等參單元分別剖分砂土層和黏土層。樁徑0.3 m,樁長(zhǎng)5 m,其中地上部分0.5 m。樁頂處于自由狀態(tài),不考慮承臺(tái)的約束效應(yīng)。樁采用線彈性梁-柱單元模擬,彈性模量為2.08×107kPa,慣性距為3.98×10-4m4,密度為2 400 kg/m3,樁與土采用徑向輻射狀桿單元連接[12]。

沿著振動(dòng)方向的人工邊界采用剪切梁邊界,模擬地震中土層的剪切效應(yīng)[12];土體底面、側(cè)面均為不透水邊界;垂直于振動(dòng)方向的對(duì)稱面和外面上的土體不在該平面外發(fā)生變形。計(jì)算中先施加重力,隨后在模型底部輸入El Centro地震波激勵(lì),加速度時(shí)程見(jiàn)圖2。

圖2 基底輸入的El Centro地震波Fig.2 El Centro wave input in the basement

使用瑞利阻尼C=αM+βK(β為剛度比例系數(shù),α為質(zhì)量比例系數(shù))考慮體系的阻尼特性,本文取α=0.062,β=0.006。計(jì)算中采用位移收斂準(zhǔn)則作為計(jì)算依據(jù)。

上述數(shù)值建模途徑已采用在大型層狀剪切土箱(12 m(長(zhǎng))×6 m(高)×3.5 m(寬))完成的液化側(cè)向流動(dòng)場(chǎng)地樁基動(dòng)力反應(yīng)振動(dòng)臺(tái)試驗(yàn)驗(yàn)證[13]。

1.2 樁的彎矩反應(yīng)

不同深度處樁的彎矩時(shí)程見(jiàn)圖3,可見(jiàn)樁的最大彎矩出現(xiàn)在4.89s,滯后于基底輸入加速度的峰值時(shí)刻(由圖2可知,峰值加速度時(shí)刻為2s)。這是由于地震引起土體液化,場(chǎng)地表面傾斜,造成土體發(fā)生側(cè)向流動(dòng),在峰值加速度出現(xiàn)時(shí)刻土體仍在流動(dòng),因此樁的彎矩不斷增加,在第二個(gè)加速度峰值(4.89s)處樁的彎矩也達(dá)到峰值。由圖還可以看出,在達(dá)到峰值彎矩之后樁的彎矩逐漸減小,但在地震動(dòng)輸入結(jié)束之后仍有一定殘余彎矩。這是由于樁的抗彎剛度較大,土體發(fā)生液化后喪失抗剪切能力,因此在達(dá)到峰值彎矩之后樁逐漸回彈,彎矩逐漸減小,但由于土體仍存在一定強(qiáng)度,因此在地震動(dòng)輸入結(jié)束后樁的彎矩值并不為零。

比較樁1與樁2的彎矩時(shí)程可見(jiàn),二者彎矩隨時(shí)間變化規(guī)律基本一致,都與輸入加速度時(shí)程關(guān)系密切。由圖3(a)和(b)得到,彎矩隨深度變化的規(guī)律也基本一致,都是在靠近土層分界處大,在地表及模型底部樁的彎矩接近于零。

1.3 樁的位移反應(yīng)

不同深度處樁的位移時(shí)程如圖4所示,由圖可以看出樁的位移最大值出現(xiàn)時(shí)刻在4.89s,與彎矩峰值出現(xiàn)時(shí)刻一致,滯后于輸入加速度峰值時(shí)刻。樁的位移在靠近地表處最大,隨著深度增加逐漸減小,說(shuō)明液化后上層砂土發(fā)生流動(dòng)產(chǎn)生的位移要大于較深處砂土產(chǎn)生的位移;在4.5m深度處樁的位移接近于零,說(shuō)明黏土層產(chǎn)生的位移很小,并且2m厚的黏土層對(duì)樁有較強(qiáng)的約束作用。

比較圖4(a)與(b)可見(jiàn),樁1的位移反應(yīng)要大于樁2,這一結(jié)論與現(xiàn)有研究結(jié)果相符,這是由于樁1處于上坡向,由于“陰影效應(yīng)”,樁1對(duì)樁2有一定“保護(hù)”作用,所以樁1所承受的土體側(cè)向力大,樁2則較小。

圖3 樁的彎矩時(shí)程Fig.3 Bending moment time-history of piles

圖4 樁的位移時(shí)程Fig.4 Displacement time-history of piles

2 樁間距對(duì)樁的反應(yīng)的影響

將樁間距為3D、5D、7D(D為樁徑)的群樁進(jìn)行模擬,進(jìn)一步考察樁間距對(duì)群樁效應(yīng)的影響,其彎矩隨深度變化規(guī)律見(jiàn)圖5。圖中3D-樁 1代表樁間距為3倍樁徑的群樁中第一個(gè)樁的彎矩,其他各符號(hào)意義類(lèi)似。由圖可以看出,彎矩隨著深度的增加先增大后減小,峰值彎矩出現(xiàn)在樁土分界面處,這一結(jié)果與現(xiàn)有理論及我國(guó)抗震規(guī)范規(guī)定一致[15]。比較不同樁間距的群樁中各單樁的彎矩可以看出,隨著樁間距增大,樁基彎矩峰值逐漸增大,這是由于隨著樁間距增大“陰影效應(yīng)”逐漸減弱,群樁中各單樁地震響應(yīng)逐漸與單樁響應(yīng)接近。比較相同樁間距群樁中各單樁峰值彎矩可以看出,樁1(上坡向的樁)彎矩峰值要大于樁2(下坡向的樁),并且隨著樁間距增大,群樁中各單樁的峰值彎矩差值逐漸減小,這說(shuō)明隨著樁間距增大,群樁中各單樁地震彎矩響應(yīng)逐漸接近,群樁中各單樁響應(yīng)特性逐漸與單樁相同。

圖5 群樁中各單樁最大彎矩隨深度變化規(guī)律Fig.5 Maximum bending moment versus depth of individual pile in pile group

為比較不同樁間距群樁中各單樁峰值彎矩的差值,本文對(duì)深度3 m處的峰值彎矩進(jìn)行歸一化處理,結(jié)果如圖6所示,圖中符號(hào)所代表意義與圖5相同。由于在本文分析中7倍樁間距群樁中樁1的彎矩最大,以其為基準(zhǔn)進(jìn)行歸一化。由圖可以看出,在7倍樁間距下兩單樁的彎矩峰值非常接近,僅僅相差3%;而在3倍樁間距群樁中兩單樁的彎矩峰值差別最大,相差10%;在5倍樁間距群樁中彎矩峰值相差4%左右。因此,在液化側(cè)向流場(chǎng)地樁基設(shè)計(jì)中,在保證安全的前提下,應(yīng)當(dāng)考慮樁間距較小時(shí)群樁中各單樁動(dòng)力響應(yīng)的不同,提高建設(shè)的經(jīng)濟(jì)性,群樁樁間距較大時(shí)不應(yīng)考慮各單樁響應(yīng)的差異。

圖6 不同樁間距群樁中各單樁峰值彎矩比較Fig.6 Maximum bending moment of individual pile in pile group of different pile spacings

3 結(jié)論

采用非線性有限元方法對(duì)地表傾斜3°的液化側(cè)向流場(chǎng)地2×2群樁地震反應(yīng)進(jìn)行分析,得到以下結(jié)論:

(1) 液化側(cè)向流場(chǎng)地中,群樁的地震反應(yīng)與輸入地震動(dòng)密切相關(guān),樁的峰值彎矩和峰值位移出現(xiàn)時(shí)刻滯后于輸入地震動(dòng)的峰值時(shí)刻。

(2) 場(chǎng)地為上層飽和砂土下伏黏土的液化側(cè)向流場(chǎng)地中,樁頂自由的群樁峰值彎矩出現(xiàn)在土層分界處,峰值位移出現(xiàn)在樁頂處。

(3) 相同地震動(dòng)輸入下,隨著樁間距增大,群樁中各單樁峰值彎矩逐漸增大,且均出現(xiàn)在樁土分界面位置。

(4) 隨著樁間距增大,群樁中各單樁峰值彎矩差異逐漸減??;當(dāng)樁間距為7倍樁徑時(shí)二者差異僅為3%,此時(shí)可忽略群樁中單樁響應(yīng)差異。

(5) 樁間距較小時(shí)群樁中各單樁彎矩反應(yīng)差別較大,建議在進(jìn)行液化側(cè)向流場(chǎng)地中樁基抗震設(shè)計(jì)時(shí)考慮群樁中各單樁地震響應(yīng)差異。

References)

[1] Hamada M,Yasuda S,Isoyama R,et al.Study on Liquefaction Induced Permanent Ground Displacements[M].Tokyo:Association for the Development of Earthquake Prediction,1986.

[2] Tokimatsu K,Asaka Y.Effects of Liquefaction-induced Ground Displacements on Pile Performance in the 1995 Hyogoken-Nambuearthquake[J].Soilsand Foundations,1998,(Special issue):163-77.

[3] Ishihara K.Terzaghi Oration:Geotechnical Aspects of the Kobe Earthquake[R].Proc,ICSMFE,Hamburg,1995:2047-2073.

[4] Idriss I M,Abrahamson N A.7 Geotechnical Aspects of the Earthquake Ground Motions Recorded During the 1999 Chi-chi Earthquake[C]//Proc Int Workshop on Annual Commemoration of Ji-Ji Earthquake,National Center for Research on Earthquake Engineering.2000,18(20):9-22.

[5] He L,Elgamal A,Abdoun T,et al.Liquefaction-induced Lateral Load on Pile in a Medium Dr Sand Layer[J].Journal of Earthquake Engineering,2009,13:916-38.

[6] McVay M,Zhang L,Molnit T,et al.Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(10):1016-1026.

[7] Rollins K M,Gerber T M,Lane J D,et al.Lateral Resistance of a Full Scale Pile Group in Liquefied Sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):115-125.

[8] Tokimatsu K,Suzuki H.Pore Water Pressure Response Around Pile and Its Effects onp-yBehavior During Soil Liquefaction[J].Soils and Foundations,2004,44(6):101-110.

[9] Tokimatsu K,H Suzuki,M Sato.Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation[J].Soil Dynamics and Earthquake Engineering,2005,25(7-10):753-762.

[10] Ashford S A,Juirnarongrit T,Sugano T,et al.Soil-pile Response to Blast-induced Lateral Spreading.I:Field Test[J].Journal of Geotechnical and Geoenvironmental Engineering,2006,132(2):152-162.

[11] Abdoun T, Dobry R, O’Rourke T,et al.Single Piles in Lateral Spreads: Field Bending Moment Evaluation[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):879-89.

[12] 唐亮,凌賢長(zhǎng),艾哈邁德·艾格瑪.液化側(cè)向流動(dòng)場(chǎng)地樁基動(dòng)力反應(yīng)振動(dòng)臺(tái)試驗(yàn)三維有限元數(shù)值模擬方法[J].土木工程學(xué)報(bào),2013,46(S1):180-184.TANG Liang,LIANG Xian-zhang,Ahmed Elgamal.Three-dimensional Finite Element Analysis of Shake-TableTest for Dynamic Pile Behavior in Liquefaction-induced Lateral Spreading Ground[J].China Civil Engineering Journal,2013,46(S1):180-184.(in Chinese)

[13] 唐亮,凌賢長(zhǎng),徐鵬舉,等.液化場(chǎng)地樁-土地震相互作用振動(dòng)臺(tái)試驗(yàn)數(shù)值模擬[J].土木工程學(xué)報(bào),2012,45(增刊1):302-306.TANG Liang,LIANG Xian-zhang,XU Peng-ju,et al.Numerical Simulation of Shaking TableTest for Seismic Soil-pile Interaction in Liquefying Ground[J].China Civil Engineering Journal,2012,45(Supp1):302-306.(in Chinese)

[14] 唐亮.液化場(chǎng)地樁-土動(dòng)力相互作用p-y曲線模型研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2010.TANG Liang,p-yModel of Dynamic Pile-soil Interaction on Iiquefying Ground[D].Harbin:Harbin Institute of Technology,2010.(in Chinese)

[15] 中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn)編寫(xiě)組.GB 50011-2010,建筑抗震設(shè)計(jì)規(guī)范[S].北京:中國(guó)建筑工業(yè)出版社,2010.Standars Complication Group of People’s Republic of China.GB 50011-2010,Code for Seismic Design of Buildings[S].Beijing:China Architecture & Building Press,2010.(in Chinese)

Analysis of the Bridge Pile Group Effect in Liquefaction-induced Lateral Spreading Sites

LIU Chun-hui1, TANG Liang1,2, LING Xian-zhang1

(1.SchoolofCivilEngineering,HarbinInstituteofTechnology,Harbin,Heilongjiang150090,China;2.StateKeyLaboratoryofGeologicalDisasterPreventionandGeologicalEnvironmentProtection,ChengduUniversityofTechnology,Chengdu,Sichuan610059,China)

The Finite Element method was used to analyze the dynamic response of pile groups in the ground subjected to the liquefaction-induced lateral flow of soils.Theu-pFinite Element formulation was used to depict the coupling effect of water and sand soil particles in the Finite Element analysis.A 3D numerical model was developed to analyze the effect of a 2×2 pile group subjected to liquefaction-induced lateral spreading.In this model,sand was simulated using a pressure-independent multi-yield surface plastic model.Clay material served as a nonlinear hysteretic material with a multi-surface kinematic plasticity model,and the pile group maintained its linear behavior in the process of calculation.The clay layer and saturated sand layer were meshed in a 20-node brick element and separately in a 20-8 node element.The boundary of the numerical model was considered as the shear beam boundary,which simulated the shear effect of the soil layer during the earthquake.Finally,the Rayleigh damping method was used to model the damping of the system.The dynamic response of each pile in pile group was compared,and it showed that the bending moment and displacement time history of piles at different depths developed in the same way,and the time of maximum bending moment and displacement of the pile appears to lag behind the time of peak acceleration of the input seismic wave.The maximum bending moment and displacement of the leading pile were larger than the those of the back piles.By comparing the maximum bending moment and displacement,it can also be concluded that,as depth increases,the maximum bending moment first increases and then decreases.The bending moment of the pile at the 2.5 m depth was greater than those at other depths.In terms of displacement,as depth increased,the maximum pile displacement decreased,and the maximum displacement of the pile head was greater than other observed points on the pile.This demonstrated the different behaviors of the pile bending moment response.In order to consider the effect of pile spacing on the pile group effect,several Finite Element models were developed for different pile spacing.This modeling concluded that the maximum bending moment appeared to occur in the boundary of different soil layers.As pile spacing increased,the maximum bending moment and pile head displacement in the group increased.In the pile group with pile spacing equal to 7D(diameter),the maximum bending moment of the each pile was very close.The difference was about 3% when pile spacing was equal to 5D,and the difference was about 4%,when pile spacing was equal to 3D.The maximum bending moment of the first pile group was 10% larger than the bending moment of the second pile group.In the last part of the study,the cause of the pile group effect was analyzed and a basic understanding of the seismic design requirements for this type of pile group was obtained.

pile group effect; liquefaction-induced lateral spreading; soil-pile interaction; earthquake-nonlinear 3D finite element analysis

2014-08-20

國(guó)家自然科學(xué)基金項(xiàng)目(51378161);國(guó)家青年科學(xué)基金項(xiàng)目(51108134);地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(SKLGP2013K011);黑龍江省應(yīng)用技術(shù)研究與開(kāi)發(fā)計(jì)劃項(xiàng)目(GZ13A009)

劉春輝(1986-),男,博士研究生,主要從事液化側(cè)向流場(chǎng)地橋梁樁基抗震研究.E-mail:lch_hit@163.com.

唐 亮(1981-),男,博士,副教授,主要從事土動(dòng)力學(xué)與巖土地震工程研究.E-mail:hit_tl@163.com.

TU43

A

1000-0844(2015)02-0298-06

10.3969/j.issn.1000-0844.2015.02.0298

猜你喜歡
群樁砂土單樁
偏心荷載
單樁豎向抗壓靜載試驗(yàn)與研究
飽和砂土地層輸水管道施工降水方案設(shè)計(jì)
三維復(fù)雜群樁水流力特性數(shù)值模擬研究
基于單樁豎向承載力計(jì)算分析研究
龍之中華 龍之砂土——《蟠龍壺》創(chuàng)作談
鉆孔灌注樁單樁豎向承載力判定方法在武漢某工程中的對(duì)比研究
不規(guī)則波作用下9樁串列群樁效應(yīng)的實(shí)驗(yàn)研究
城市淺埋隧道穿越飽和砂土復(fù)合地層時(shí)適宜的施工工法
基于ABAQUS軟件的單樁靜載試驗(yàn)數(shù)值模擬