李柱
論文摘要:如何減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān)?如何提高我們高中數(shù)學(xué)教學(xué)的實(shí)效性?本文通過對(duì)高中學(xué)生數(shù)學(xué)思維障礙的成因及突破方法的分析,以起到拋磚引玉的作用。
關(guān)鍵詞:數(shù)學(xué)思維、數(shù)學(xué)思維障礙
【分類號(hào)】G633.6
思維是人腦對(duì)客觀現(xiàn)實(shí)的概括和間接的反映,反映的是事物的本質(zhì)及內(nèi)部的規(guī)律性。所謂高中學(xué)生數(shù)學(xué)思維,是指學(xué)生在對(duì)高中數(shù)學(xué)感性認(rèn)識(shí)的基礎(chǔ)上,運(yùn)用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數(shù)學(xué)內(nèi)容而且能對(duì)具體的數(shù)學(xué)問題進(jìn)行推論與判斷,從而獲得對(duì)高中數(shù)學(xué)知識(shí)本質(zhì)和規(guī)律的認(rèn)識(shí)能力。
然而,在學(xué)習(xí)高中數(shù)學(xué)過程中,我們經(jīng)常聽到學(xué)生反映上課聽老師講課,聽得很"明白",但到自己解題時(shí),總感到困難重重,無從入手;有時(shí),在課堂上待我們把某一問題分析完時(shí),常??吹綄W(xué)生拍腦袋:"唉,我怎么會(huì)想不到這樣做呢?"事實(shí)上,有不少問題的解答,同學(xué)發(fā)生困難,并不是因?yàn)檫@些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在著差異,也就是說,這時(shí)候,學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來自于我們教學(xué)中的疏漏,而更多的則來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識(shí)結(jié)構(gòu)和思維模式。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對(duì)于增強(qiáng)高中學(xué)生數(shù)學(xué)教學(xué)的針對(duì)性和實(shí)效性有十分重要的意義。
一、?高中學(xué)生數(shù)學(xué)思維障礙的形成原因
根據(jù)布魯納的認(rèn)識(shí)發(fā)展理論,學(xué)習(xí)本身是一種認(rèn)識(shí)過程,在這個(gè)課程中,個(gè)體的學(xué)習(xí)總是要通過已知的內(nèi)部認(rèn)知結(jié)構(gòu),對(duì)"從外到內(nèi)"的輸入信息進(jìn)行整理加工,以一種易于掌握的形式加以儲(chǔ)存,也就是說學(xué)生能從原有的知識(shí)結(jié)構(gòu)中提取最有效的舊知識(shí)來吸納新知識(shí),即找到新舊知識(shí)的"媒介點(diǎn)",這樣,新舊知識(shí)在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識(shí)結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識(shí)。但是這個(gè)過程并非總是一次性成功的。如果教師的教學(xué)脫離學(xué)生的實(shí)際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識(shí)不能順利"交接",那么這時(shí)就勢(shì)必會(huì)造成學(xué)生對(duì)所學(xué)知識(shí)認(rèn)知上的不足、理解上的偏頗,從而在解決具體問題時(shí)就會(huì)產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。
二、?高中數(shù)學(xué)思維障礙的具體表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:
1.數(shù)學(xué)思維的膚淺性:由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對(duì)一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實(shí)的片面性而把握事物的本質(zhì)。由此而產(chǎn)生的后果:
學(xué)生在分析和解決數(shù)學(xué)問題時(shí),往往只順著事物的發(fā)展過程去思考問題,注重由因到果的思維習(xí)慣,不注重變換思維的方式,缺乏沿著多方面去探索解決問題的途徑和方法。例如在課堂上我曾要求學(xué)生證明:如| a |≤1,| b |≤1,則 .讓學(xué)生思考片刻后提問,有相當(dāng)一部分的同學(xué)是通過三角代換來證明的(設(shè)a=cosα,b=sinα),理由是| a |≤1,
| b |≤1(事后統(tǒng)計(jì)這樣的同學(xué)占到近20%)。這恰好反映了學(xué)生在思維上的膚淺,把兩個(gè)毫不相干的量(a,b)建立了具體的聯(lián)系。
2.數(shù)學(xué)思維的差異性:由于每個(gè)學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點(diǎn),因此不同的學(xué)生對(duì)于同一數(shù)學(xué)問題的認(rèn)識(shí)、感受也不會(huì)完全相同,從而導(dǎo)致學(xué)生對(duì)數(shù)學(xué)知識(shí)理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問題時(shí),一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。
3.數(shù)學(xué)思維定勢(shì)的消極性:由于高中學(xué)生已經(jīng)有相當(dāng)豐富的解題經(jīng)驗(yàn),因此,有些學(xué)生往往對(duì)自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經(jīng)驗(yàn),思維陷入僵化狀態(tài),不能根據(jù)新的問題的特點(diǎn)作出靈活的反應(yīng),常常阻抑更合理有效的思維甚至造成歪曲的認(rèn)識(shí)。如:z∈c,則復(fù)數(shù)方程所表示的軌跡是什么?可能會(huì)有不少學(xué)生不假思索的回答是橢圓,理由是根據(jù)橢圓的定義。又如剛學(xué)立體幾何時(shí),一提到兩直線垂直,學(xué)生馬上意識(shí)到這兩直線必相交,從而造成錯(cuò)誤的認(rèn)識(shí)。
由此可見,學(xué)生數(shù)學(xué)思維障礙的形成,不僅不利于學(xué)生數(shù)學(xué)思維的進(jìn)一步發(fā)展,而且也不利于學(xué)生解決數(shù)學(xué)問題能力的提高。所以,在平時(shí)的數(shù)學(xué)教學(xué)中注重突破學(xué)生的數(shù)學(xué)思維障礙就顯得尤為重要。
三、?高中學(xué)生數(shù)學(xué)思維障礙的突破
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識(shí)狀況,尤其在講解新知識(shí)時(shí),要嚴(yán)格遵循學(xué)生認(rèn)知發(fā)展的階段性特點(diǎn),照顧到學(xué)生認(rèn)知水平的個(gè)性差異,強(qiáng)調(diào)學(xué)生的主體意識(shí),發(fā)展學(xué)生的主動(dòng)精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時(shí)要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進(jìn)一步明確學(xué)習(xí)的目的性,針對(duì)不同學(xué)生的實(shí)際情況,因材施教,分別給他們提出新的更高的奮斗目標(biāo),使學(xué)生有一種"跳一跳,就能摸到桃"的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識(shí)。數(shù)學(xué)意識(shí)是學(xué)生在解決數(shù)學(xué)問題時(shí)對(duì)自身行為的選擇,它既不是對(duì)基礎(chǔ)知識(shí)的具體應(yīng)用,也不是對(duì)應(yīng)用能力的評(píng)價(jià),數(shù)學(xué)意識(shí)是指學(xué)生在面對(duì)數(shù)學(xué)問題時(shí)該做什么及怎么做,至于做得好壞,當(dāng)屬技能問題,有時(shí)一些技能問題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對(duì)數(shù)學(xué)問題,首先想到的是套那個(gè)公式,模仿那道做過的題目求解,對(duì)沒見過或背景稍微陌生一點(diǎn)的題型便無從下手,無法解決,這是數(shù)學(xué)意識(shí)落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強(qiáng)調(diào)基礎(chǔ)知識(shí)的準(zhǔn)確性、規(guī)范性、熟練程度的同時(shí),我們應(yīng)該加強(qiáng)數(shù)學(xué)意識(shí)教學(xué),指導(dǎo)學(xué)生以意識(shí)帶動(dòng)雙基,將數(shù)學(xué)意識(shí)滲透到具體問題之中。
3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢(shì)的消極作用。在高中數(shù)學(xué)教學(xué)中,我們不僅僅是傳授數(shù)學(xué)知識(shí),培養(yǎng)學(xué)生的思維能力也應(yīng)是我們的教學(xué)活動(dòng)中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對(duì)于突破學(xué)生的數(shù)學(xué)思維障礙會(huì)起到極其重要的作用。
當(dāng)前,素質(zhì)教育已經(jīng)向我們傳統(tǒng)的高中數(shù)學(xué)教學(xué)提出了更高的要求。但只要我們堅(jiān)持以學(xué)生為主體,以培養(yǎng)學(xué)生的思維發(fā)展為己任,則勢(shì)必會(huì)提高高中學(xué)生數(shù)學(xué)教學(xué)質(zhì)量,擺脫題海戰(zhàn)術(shù),真正減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān),從而為提高高中學(xué)生的整體素質(zhì)作出我們數(shù)學(xué)教師應(yīng)有的貢獻(xiàn)。