国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

半群CPOn(A)的格林關(guān)系

2015-05-26 06:32游泰杰
關(guān)鍵詞:等價(jià)格林刻畫

趙 頤,游泰杰

(貴州師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,貴陽 550001)

半群CPOn(A)的格林關(guān)系

趙 頤,游泰杰*

(貴州師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,貴陽 550001)

設(shè)POn是X n={1,2,…,n}上的保序部分變換半群,A是X n的非空子集,令CPOn(A)={α∈POn:(A∩dom(α))α?A,且?x,y∈(A∩dom(α)),|xα-yα|≤|x-y|},則CPOn(A)是POn的子半群.利用變換半群的保序和壓縮性,刻畫了半群CPOn(A)的格林關(guān)系.

變換半群;保序部分變換;格林關(guān)系

在半群的眾多分支中,變換半群是半群代數(shù)理論中一個(gè)重要研究方向,許多學(xué)者對部分變換半群Pn的各種子半群的格林關(guān)系進(jìn)行了研究.Pei等[1-2]先后研究了保等價(jià)關(guān)系且保序變換半群、保等價(jià)關(guān)系變換半群的變種半群的格林關(guān)系;Sun等[3]研究了保等價(jià)關(guān)系且保方向變換半群的格林關(guān)系;Deng等[4-6]先后探討了反向保等價(jià)關(guān)系變換半群、雙向保等價(jià)關(guān)系變換半群及雙向保等價(jià)關(guān)系且保序變換半群的格林關(guān)系;Zhao等[7]刻畫了部分保序且壓縮變換半群的格林關(guān)系;鐘艷林等[8]給出了歐氏空間中升序變換半群的格林關(guān)系的一些刻畫;Sangkhanan等[9]討論了具有穩(wěn)定值域的部分線性變換半群的格林關(guān)系.本文將研究半群CPOn(A)的格林關(guān)系,并給出若干等價(jià)刻畫.

1 預(yù)備知識

設(shè)X n={1,2,…,n}且賦予自然序,A是X n的非空子集,Pn是X n上的部分變換半群.設(shè)α∈Pn,若對任意x,y∈dom(α),x≤y?xα≤yα,則稱α是保序的.設(shè)POn是P n中所有保序部分變換之集(不含X n上的恒等變換),則POn是P n的子半群,并稱POn為X n上的保序部分變換半群.令CPOn(A)={α∈POn:(A∩dom(α))α?A,且?x,y∈(A∩dom(α)),|xα-yα|≤|x-y|},則易驗(yàn)證CPOn(A)是POn的子半群.

設(shè)S是半群,用S1表示在S上添加單位元.設(shè)a,b∈S,若a和b生成相同的主左理想,S1a=S1b,則稱a與b是L等價(jià)的,并記為(a,b)∈L.類似可利用主右理想定義a與b是R等價(jià)的,并記為(a,b)∈R.本文未定義的術(shù)語及記法可參見文獻(xiàn)[10].

2 半群CPOn(A)的格林關(guān)系

顯然,若ker(α,A)=?,則ker(β,A)=?;若ker(α,A)={A k}(k∈{1,…,r}),則ker(β,A)={Bk}.現(xiàn)在,若|ker(α,A)|=t≥2,設(shè)ker(α,A)={Al1,A l2,…,Alt}(l1<l2<…<l t),則由(1)式可得ker(β,A)={Bl1,Bl2,…,Blt}.由δ,γ∈(CPOn(A))1,知(A∩dom(α))δ?A,(A∩dom(α))γ?A.注意到A∩Al1<A∩Al2<…<A∩Alt,A∩Bl1<A∩Bl2<…<A∩Blt,任取i,j∈{1,…,t}且i≤j,由Akδ?Bk,Bkγ?Ak,得

令d=max (A∩Al1)-max (A∩Bl1),則min (A∩A lt)-min (A∩Blt)=max (A∩A l1)-max(A∩Bl1)=d.若|ker(α,A)|=t≥3,則斷言

若A li\A≠?,則任取x∈A li\A,設(shè)A∩A li中到點(diǎn)x距離最小者為.若Bli\A≠?,則任取y∈Ali\B,設(shè)A∩Bli中到點(diǎn)y距離最小者為.令

則由(6)式可得,α=δβ且β=γα.下面證明δ,γ∈CPOn(A).注意到

再由(6)式可得δ,γ∈POn,顯然(A∩dom(δ))δ?A,(A∩dom(γ))γ?A.任取x,y∈A∩dom(δ)且x≤y.注意到A∩dom(δ)=(A∩A l1)∪(A∩A l2)∪…∪(A∩Alt),現(xiàn)分以下5種情形討論.

情形1x,y∈A∩A li,i=1,t.顯然xδ-yδ=0,因此|xδ-yδ|≤|x-y|.

情形2x∈A∩A l1,y∈A li,i∈[2,t-1].由(5),(7)式可得|xδ-yδ|=|max(A∩Bl1)-(yd)|=|y-(d+max(A∩Bl1))|=|y-max(A∩A l1)|≤|x-y|.

情形3x∈A∩Al1,y∈A∩Alt.由(5),(7)式可得|xδ-yδ|=|max(A∩Bl1)-min(A∩Blt)|=max (A∩Al1)-min (A∩Alt) ≤|x-y|.

情形4x∈A∩Ali,y∈A∩Alj,i,j∈[2,t-1].顯然,|xδ-yδ|=|(x-d)-(y-d)|=|x-y|,因此|xδ-yδ|≤|x-y|.

情形5x∈A∩A l1,i∈[2,t-1],y∈A∩Alt.由(5),(7)式可得|xδ-yδ|=|(x-d)-min(A∩Blt)|= min (A∩Blt)-(x-d) = (min (A∩Blt)+d)-x= min (A∩A lt)-x≤|x-y|.

綜上,證得δ∈CPOn(A).同理可證,γ∈CPOn(A);因此,(α,β)∈L.

定理3 設(shè)α,β∈CPOn(A),則(α,β)∈D當(dāng)且僅當(dāng)

[1]PEI Huisheng,ZOU Dingyu.Green’s equivalences on semigroups of transformations preserving order and an equivalence[J].Semigroup Forum,2005,71(2):241-251.

[2]PEI Huisheng,SUN Lei,ZHAI Hongcun.Green’s relations for the variants of transformation semigroups preserving an equivalence relation[J].Comm Algebra,2007,35(6):1971-1986.

[3]SUN Lei,PEI huisheng,Cheng Zhengxing.Regularity and Green’s relations for semigroups of transformations preserving orientation and an equivalences[J].Semigroup Forum,2007,74(3):473-486.

[4]DENG Lunzhi,ZENG Jiwen,XU Bo.Green’s relations and regularity for semigroups of transformations that preserve double direction equivalence[J].Semigroup Forum,2010,80(3):416-425.

[5]DENG Lunzhi,ZENG Jiewen,YOU Taijie.Green’s relations and regularity for semigroups of transformations that preserve reverse direction equivalence[J].Semigroup Forum,2011,83(3):489-498.

[6]DENG Lunzhi,ZENG Jiewen,YOU Taijie.Green’s relations and regularity for semigroups of transformations that preserve order and a double direction equivalence[J].Semigroup Forum,2011,84(1):59-68.

[7]ZHAO Ping,YANG Mei.Regularity and Green’s relations on semigroups of transformation preserving order and compression[J].Bull Korean Math Soc,2012,49(5):1015-1025.

[8]鐘艷林,鄧倫治.歐氏空間中升序變換半群的格林關(guān)系和正則元 [J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2013,43(24):198-201.

[9]SANGKHANAN K,SANWONG J.Green’s relations and partial orders on semigroups of partial linear transformations with restricted range[J].Thai J Math,2014,12(1):81-93.

[10]HOWIE J M.Fundamentals of semigroup theory[M].Oxford:The Clarendon Press,1995:1-349.

Green’s relations on the semigroupCPOn(A)

ZHAO Yi,YOU Taijie*

(Sch of Math &Comput Sci,Guizhou Norm Univ,Guiyang 550001,China)

LetPOnbe the partial order-preserving transformation semigroup onX n={1,…,n}.For each nonempty subsetAofXn,letCPOn(A)= {α∈POn:(A∩dom(α))α?A,?x,y∈(A∩dom(α)),|xα-yα|≤|x-y|}.ThenCPOn(A)is a subsemigroup ofPOn.In this paper,using order-preserving and compression properties of the transformation semigroup,Green’s relations on the semigroupCPOn(A)are characterized.

transformation semigroup;partial order-preserving transformation;Green’s relations

O 152.7

A

1007-824X(2015)04-0005-04

2015-07-02.* 聯(lián)系人,E-mail:youtaijie1959@163.com.

國家自然科學(xué)基金資助項(xiàng)目(11461014).

趙頤,游泰杰.半群CPOn(A)的格林關(guān)系 [J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,18(4):5-8,12.

(責(zé)任編輯 青 禾)

猜你喜歡
等價(jià)格林刻畫
等價(jià)轉(zhuǎn)化
麻辣老師
我喜歡小狼格林
刻畫人物如何『傳神』
綠毛怪格林奇
刻畫細(xì)節(jié),展現(xiàn)關(guān)愛
刻畫細(xì)節(jié),凸顯人物
n次自然數(shù)冪和的一個(gè)等價(jià)無窮大
格林的遺憾
將問題等價(jià)轉(zhuǎn)化一下再解答
磴口县| 海林市| 和林格尔县| 龙海市| 双鸭山市| 辽阳县| 曲麻莱县| 永平县| 饶河县| 蒙阴县| 新宁县| 赤水市| 刚察县| 尼勒克县| 大石桥市| 江西省| 濮阳市| 全南县| 高淳县| 五台县| 乐亭县| 聂拉木县| 镇平县| 同江市| 观塘区| 凤山县| 阳泉市| 湟中县| 句容市| 朝阳县| 永胜县| 二连浩特市| 西乡县| 岳西县| 娄底市| 柞水县| 林甸县| 洞头县| 石台县| 利川市| 潜江市|