馬度芳,姜萍,楊金龍,李曉△
(1山東中醫(yī)藥大學(xué),山東 濟(jì)南 250355;2山東中醫(yī)藥大學(xué)附屬醫(yī)院,山東 濟(jì)南 250011)
調(diào)節(jié)自主神經(jīng)系統(tǒng):心血管疾病抗炎治療的新領(lǐng)域*
馬度芳1,姜萍1,楊金龍2,李曉2△
(1山東中醫(yī)藥大學(xué),山東 濟(jì)南 250355;2山東中醫(yī)藥大學(xué)附屬醫(yī)院,山東 濟(jì)南 250011)
自主神經(jīng)系統(tǒng);膽堿能抗炎通路;交感神經(jīng)系統(tǒng);迷走神經(jīng);心血管疾病;炎癥
目前普遍認(rèn)為高血壓、動(dòng)脈粥樣硬化、血脂異常、糖尿病等疾病的發(fā)生、發(fā)展和轉(zhuǎn)歸與炎癥免疫反應(yīng)有著密切聯(lián)系。同時(shí),心血管疾病中也伴有自主神經(jīng)病變,表現(xiàn)為交感神經(jīng)和迷走神經(jīng)支配紊亂或結(jié)構(gòu)損傷,其主要的病理特征是迷走神經(jīng)張力減低而交感神經(jīng)張力亢進(jìn)。因此,改善自主神經(jīng)紊亂同時(shí)減輕機(jī)體低度炎癥反應(yīng)將成為防治心血管疾病的重要方向。近60年的研究表明神經(jīng)系統(tǒng)可接受免疫系統(tǒng)信號(hào),并可傳出神經(jīng)沖動(dòng)調(diào)節(jié)免疫系統(tǒng)活動(dòng)。“膽堿能抗炎通路(cholinergic anti-inflammation pathway,CAP)”的提出進(jìn)一步明確自主神經(jīng)系統(tǒng)與免疫系統(tǒng)之間的關(guān)系[1],這為通過(guò)調(diào)節(jié)自主神經(jīng)系統(tǒng)控制機(jī)體炎癥反應(yīng)或免疫反應(yīng),進(jìn)而防治心血管疾病提供重要的理論依據(jù)。
1 自主神經(jīng)系統(tǒng)對(duì)炎癥反應(yīng)的調(diào)節(jié)
大量的研究證明中樞神經(jīng)系統(tǒng)可接受免疫系統(tǒng)的信號(hào),并可傳出神經(jīng)沖動(dòng)調(diào)節(jié)免疫活動(dòng),兩者間可相互作用來(lái)協(xié)調(diào)機(jī)體的防御體制,維持機(jī)體穩(wěn)態(tài)。Tracey[1]描述了中樞神經(jīng)系統(tǒng)抑制炎癥反應(yīng)的3條途徑:(1)以迷走神經(jīng)為主構(gòu)成的“膽堿能抗炎通路”;(2)垂體—腎上腺皮質(zhì)軸參與的體液抗炎通路; (3)交感神經(jīng)興奮釋放的去甲腎上腺素激活β2受體-cAMP-蛋白激酶A通路。
1.1 迷走神經(jīng)及CAP調(diào)節(jié)炎癥反應(yīng)早期研究表明,體內(nèi)刺激迷走神經(jīng)可減少炎癥因子的產(chǎn)生。之后,Tracey等[1-2]發(fā)現(xiàn)了迷走神經(jīng)炎癥反射即“膽堿能抗炎通路”,感染或損傷時(shí)炎癥信號(hào)傳至孤束核,繼而興奮迷走神經(jīng)傳出纖維即膽堿能抗炎通路,增加外周乙酰膽堿(acetylcholine,Ach)釋放,Ach與免疫細(xì)胞如巨噬細(xì)胞、單核細(xì)胞、淋巴細(xì)胞以及樹突狀細(xì)胞表面的α7煙堿型乙酰膽堿受體(α7 nicotinic acetylcholine receptor,α7nAChR)結(jié)合后可通過(guò)阻斷NF-κB信號(hào)通路,阻止促炎因子合成。此外,α7nAChR激活后也可通過(guò)JAK2/STAT3通路抑制NF-κB與DAN結(jié)合,減少促炎因子合成(圖1A)。
脾臟是人體最大的免疫器官,也是膽堿能抗炎通路的重要組成部分[3],但研究證明迷走神經(jīng)并未到達(dá)脾臟,支配脾臟的神經(jīng)主要是起源于腹腔-腸系膜上叢神經(jīng)節(jié)的腎上腺素能神經(jīng)[4]。那么脾臟中膽堿能抗炎通路的結(jié)構(gòu)是怎樣的呢?Rosas-Ballina等[5]在Tracey的研究基礎(chǔ)上證明脾臟中膽堿能抗炎通路解剖結(jié)構(gòu)是由2種神經(jīng)元構(gòu)成,節(jié)前神經(jīng)由迷走神經(jīng)運(yùn)動(dòng)背核發(fā)出止于腹腔-腸系膜上叢神經(jīng)節(jié),在此處又發(fā)出節(jié)后腎上腺素能神經(jīng)延著脾神經(jīng)到達(dá)脾臟,分布在脾臟中巨噬細(xì)胞和淋巴細(xì)胞周圍。刺激脾神經(jīng)或腹腔神經(jīng)節(jié)以上的迷走神經(jīng)可抑制內(nèi)毒素血癥時(shí)脾臟巨噬細(xì)胞釋放腫瘤壞死因子(tumor necrosis factor,TNF)[5-6],而當(dāng)手術(shù)切除脾神經(jīng),迷走神經(jīng)的抗炎作用則大大減弱,而不能減少TNF的產(chǎn)生。這表明迷走神經(jīng)是通過(guò)脾神經(jīng)中的腎上腺素能神經(jīng)纖維來(lái)抑制TNF產(chǎn)生。之后,Vida等[7]證明迷走神經(jīng)刺激不能抑制膿毒血癥誘導(dǎo)的β2受體基因敲除的裸鼠體內(nèi)TNF升高,而給予β2受體激動(dòng)劑后可減輕小鼠炎癥反應(yīng)和器官損傷,證明T淋巴細(xì)胞表面的β2受體參與膽堿能抗炎通路。激動(dòng)β2受體可刺激T淋巴細(xì)胞分泌Ach,后者與巨噬細(xì)胞表面的α7nAChR結(jié)合抑制炎癥因子產(chǎn)生[8]。由此可知,機(jī)體處于炎癥反應(yīng)時(shí),膽堿能神經(jīng)系統(tǒng)和腎上腺素能神經(jīng)系統(tǒng)均對(duì)脾臟中免疫細(xì)胞活性和炎癥因子釋放起到重要調(diào)節(jié)作用,脾臟中完整的膽堿能抗炎通路應(yīng)如圖1B所示。已證明脾臟中免疫細(xì)胞參與動(dòng)脈粥樣硬化和心肌梗死過(guò)程中炎癥反應(yīng)[9-10],因此激活膽堿能抗炎通路來(lái)調(diào)節(jié)脾臟中免疫細(xì)胞對(duì)于減輕心血管病中炎癥反應(yīng)有潛在應(yīng)用價(jià)值。
Figure 1.Anatomical structures and mechanism of cholinergic anti-inflammatory pathway.圖1 膽堿能抗炎通路的結(jié)構(gòu)及發(fā)生機(jī)制
1.2 交感神經(jīng)系統(tǒng)對(duì)炎癥反應(yīng)的雙向調(diào)節(jié)作用
交感神經(jīng)支配初級(jí)和二級(jí)淋巴器官,且神經(jīng)纖維在免疫器官中分布臨近實(shí)質(zhì)性免疫細(xì)胞,如脾臟中交感神經(jīng)由腸系膜上叢神經(jīng)節(jié)發(fā)出后輻射到T、B淋巴細(xì)胞和巨噬細(xì)胞聚集區(qū)域。交感神經(jīng)與免疫器官或免疫細(xì)胞的解剖結(jié)構(gòu)是其調(diào)節(jié)免疫反應(yīng)的基礎(chǔ)。
早期研究表明交感神經(jīng)以非定向形式釋放去甲腎上腺素(norepinephrine,NE)作用于免疫細(xì)胞β2受體,激活β2受體-cAMP-蛋白激酶A通路而抑制促炎因子的產(chǎn)生,同時(shí)增加抗炎因子IL-10和轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)的生成[11]。相反,當(dāng)NE作用于α1和α2受體時(shí)可促使巨噬細(xì)胞產(chǎn)生TNF-α而表現(xiàn)出促炎作用[12]。Martinolle等[13]發(fā)現(xiàn)免疫細(xì)胞表面的腎上腺素能受體表達(dá)具有可塑性,因此推測(cè)免疫細(xì)胞表面的腎上腺素能受體亞型可影響交感神經(jīng)對(duì)炎癥的調(diào)節(jié)。此外,在炎癥反應(yīng)過(guò)程中,炎癥反應(yīng)局部交感神經(jīng)支配密度和神經(jīng)遞質(zhì)濃度是變化的。炎癥反應(yīng)早期交感神經(jīng)激活使局部NE濃度增加,可通過(guò)β2受體-cAMP-蛋白激酶A信號(hào)通路抑制免疫細(xì)胞釋放抗炎物質(zhì)。但之后,炎癥局部神經(jīng)支配出現(xiàn)重構(gòu),表現(xiàn)為局部交感神經(jīng)支配降低,局部?jī)翰璺影奉惿窠?jīng)遞質(zhì)濃度降低,此時(shí)免疫細(xì)胞表面與NE有高親和力的α受體表達(dá)增加,高于低親和力的β受體,交感神經(jīng)釋放NE作用于α受體產(chǎn)生的促炎作用大于抗炎作用[14]。除交感神經(jīng)釋放的兒茶酚胺類神經(jīng)遞質(zhì)外,交感神經(jīng)釋放的其它遞質(zhì)如神經(jīng)肽也參與免疫反應(yīng)調(diào)節(jié),神經(jīng)肽與單核細(xì)胞、巨噬細(xì)胞以及淋巴細(xì)胞表面的神經(jīng)肽受體結(jié)合后抑制促炎因子釋放[15]。因此,交感神經(jīng)對(duì)炎癥反應(yīng)的調(diào)節(jié)因受到神經(jīng)遞質(zhì)和免疫細(xì)胞所表達(dá)的受體亞型影響,而表現(xiàn)為促炎和抗炎的雙向作用,如圖2所示。
Figure 2.Anti-inflammation and pro-inflammation of sympathetic nervous system.圖2 交感神經(jīng)抗炎與促炎作用
2 自主神經(jīng)調(diào)節(jié)心血管疾病中炎癥反應(yīng)
2.1 CAP在心血管疾病中的抗炎作用炎癥反應(yīng)參與高血壓及其器官損害過(guò)程,Li等[16]證明α7nAChR表達(dá)缺陷的高血壓小鼠其血清中促炎因子和器官損害程度重于野生型小鼠。并且,在自發(fā)性高血壓大鼠的心臟、腎臟和動(dòng)脈組織中,乙酰膽堿轉(zhuǎn)運(yùn)囊泡和α7nAChR表達(dá)比正常大鼠減少,同時(shí)器官中炎癥因子含量增加。而給予α7nAChR激動(dòng)劑PNU-282987后可抑制自發(fā)性高血壓大鼠NF-κB活化,降低組織中促炎因子,表明在高血壓及器官損害過(guò)程中存在膽堿能抗炎通路缺陷而使得炎癥反應(yīng)增加。
糖尿病中炎癥因子如TNF-α可加重胰島素抵抗?fàn)顟B(tài),TNF-α與血漿中胰島素水平和血糖有正相關(guān)性。Marrero等[17]報(bào)道α7nAChR選擇性激動(dòng)劑TC-7020可降低肥胖2型糖尿病小鼠血糖和糖化血紅蛋白,降低血漿中甘油三酯和TNF-α水平。而α7nAChR選擇性阻斷劑甲基牛扁堿可阻斷TC-7020的上述作用。當(dāng)給予另一種煙堿型受體α4/ α2nAChR選擇性激動(dòng)劑或Janus激酶2抑制劑后未能表現(xiàn)出上述改善作用,這證明了α7nAChR具有特異性,它通過(guò)JAK/STAT3通路降低肥胖糖尿病小鼠體內(nèi)炎癥反應(yīng),改善機(jī)體代謝狀態(tài)。
炎癥介質(zhì)在損傷心肌的愈合過(guò)程中發(fā)揮重要作用,但過(guò)度的炎癥反應(yīng)可進(jìn)一步加重缺血和再灌注過(guò)程中的心肌損傷。Calvillo等[18]證明迷走神經(jīng)刺激可以減少缺血再灌注大鼠心肌梗死面積,并可降低梗死區(qū)周邊巨噬細(xì)胞、中性粒細(xì)胞和凋亡細(xì)胞數(shù)量以及血漿中炎癥因子水平,而煙堿受體阻斷劑可增加大鼠心肌梗死面積。表明煙堿途徑介導(dǎo)的抗炎和抗細(xì)胞凋亡作用是迷走神經(jīng)保護(hù)梗死心肌的重要機(jī)制,并且這種保護(hù)機(jī)制與迷走神經(jīng)降低心率無(wú)關(guān)。在心肌缺血再灌注損傷中同時(shí)存在遠(yuǎn)端血管如腸系膜動(dòng)脈的結(jié)構(gòu)損傷和功能障礙。迷走神經(jīng)刺激在減輕梗死面積,改善心功能同時(shí)可減輕缺血再灌注導(dǎo)致的腸系膜上動(dòng)脈血管舒縮功能障礙,減輕血管內(nèi)皮損傷,降低血管壁和血清中TNF-α和IL-1β含量。進(jìn)一步研究證明迷走神經(jīng)對(duì)腸系膜血管的這種保護(hù)作用是通過(guò)M3膽堿能受體和α7nAChR實(shí)現(xiàn)的。迷走神經(jīng)興奮激活α7nAChR后增加STAT3磷酸化,同時(shí)抑制NF-κB活化從而抑制血管中炎癥[19]。這提示α7nAChR存在于血管壁中,啟示我們進(jìn)一步研究膽堿能抗炎通路是否可減輕動(dòng)脈粥樣硬化時(shí)血管壁的炎癥反應(yīng)。
上述研究表明膽堿能抗炎通路可降低高血壓、心肌梗死以及糖尿病等動(dòng)物模型中存在的炎癥反應(yīng)。通過(guò)增強(qiáng)迷走神經(jīng)信號(hào)傳出或增加α7nAChR在免疫細(xì)胞和組織細(xì)胞中表達(dá)可降低心血管疾病中的炎癥反應(yīng)。
2.2 交感神經(jīng)在心血管病中促炎作用目前多數(shù)研究認(rèn)為交感神經(jīng)亢進(jìn)可增加心血管疾病中的炎癥反應(yīng),Dutta等[20]認(rèn)為急性心肌梗死時(shí),緊張、疼痛或心衰等因素可激活交感神經(jīng)系統(tǒng)釋放NE作用于骨髓中β3受體,促使免疫細(xì)胞祖細(xì)胞轉(zhuǎn)移至脾臟,增加髓外單核細(xì)胞生成,大量單核細(xì)胞重新聚集在動(dòng)脈管壁可增大動(dòng)脈中斑塊面積,再次加速加重梗死后動(dòng)脈粥樣硬化進(jìn)程。自發(fā)性高血壓大鼠骨髓中交感神經(jīng)支配增加與炎性細(xì)胞增多有相關(guān)性[21]。高血壓前期,血管緊張素II、高鹽等物質(zhì)作用于中樞自主神經(jīng)區(qū)域,改變中樞神經(jīng)傳出信號(hào)造成交感神經(jīng)對(duì)外周免疫器官如骨髓和脾臟的支配增加而迷走神經(jīng)支配減弱,交感神經(jīng)作用于免疫器官中β3和β2受體增加免疫器官中促炎因子和炎性細(xì)胞產(chǎn)生,抑制內(nèi)皮祖細(xì)胞外滲。與此同時(shí),骨髓感覺神經(jīng)再次將炎性信號(hào)返回至中樞,如此形成前饋環(huán)路,造成永久性迷走神經(jīng)抗炎能力下降,而交感神經(jīng)促炎作用增加。炎癥反應(yīng)增加和內(nèi)皮損傷修復(fù)能力降低最終造成永久性高血壓,出現(xiàn)血管、心臟及腎臟等器官損害[22]。
盡管目前多數(shù)研究認(rèn)為交感神經(jīng)亢進(jìn)可增加心血管疾病中炎癥反應(yīng),而且β受體阻斷劑的應(yīng)用可降低炎癥反應(yīng)[23]。但交感神經(jīng)在心血管疾病中的有利和不利影響仍是值得研究的問(wèn)題。Shinohara等[24]發(fā)現(xiàn)心衰患者經(jīng)改善交感神經(jīng)障礙后可降低機(jī)體炎癥反應(yīng),而且減低的炎癥與改善的心臟交感神經(jīng)功能明顯相關(guān)。這反映了交感神經(jīng)對(duì)炎癥的雙向調(diào)節(jié)作用,因此我們推測(cè)過(guò)度抑制交感神經(jīng)或交感神經(jīng)損毀并不一定有利于減輕心血管疾病中炎癥反應(yīng),而恢復(fù)正常的交感神經(jīng)支配可能更有利于減輕炎癥反應(yīng)。
3 調(diào)節(jié)自主神經(jīng)是心血管疾病抗炎治療的新領(lǐng)域
目前認(rèn)為阿司匹林、血管緊張素II受體拮抗劑和他汀類等藥物可減輕心血管病中的低度炎癥反應(yīng)。相比而言,調(diào)節(jié)自主神經(jīng)是有別于上述藥物抗炎的新途徑。由膽堿能抗炎通路的生理及解剖基礎(chǔ)推測(cè)可從以下3條途徑對(duì)其調(diào)節(jié):(1)增加中樞迷走神經(jīng)信號(hào)傳出,如使用毒蕈堿受體激動(dòng)劑或乙酰膽堿酯酶抑制劑[25];(2)體內(nèi)安裝迷走神經(jīng)刺激裝置增加迷走神經(jīng)傳出信號(hào);(3)使用外周α7nAChR激動(dòng)劑。對(duì)于交感神經(jīng)可通過(guò)激活細(xì)胞表面β2受體來(lái)抑制炎癥反應(yīng)。
研究證明應(yīng)用中樞毒蕈堿受體激動(dòng)劑卡巴膽堿或使用乙酰膽堿酯酶抑制劑加蘭他敏可增加中樞迷走神經(jīng)信號(hào)傳出,提高外周迷走神經(jīng)活性[26-27]。但藥物激活中樞膽堿能系統(tǒng)后在體內(nèi)作用廣泛而選擇性差,尤其能對(duì)心率或血壓產(chǎn)生抑制作用,這在極大程度限制其臨床應(yīng)用。除此之外,Giuliani等[28]報(bào)道應(yīng)用黑皮質(zhì)素激活中樞黑皮質(zhì)素受體MC3和MC4也可激活膽堿能抗炎通路,減輕心肌缺血損傷,降低機(jī)體炎癥反應(yīng),這值得進(jìn)一步研究。
動(dòng)物實(shí)驗(yàn)證明迷走神經(jīng)刺激具有抗炎、抗心律失常、抗心肌纖維化、逆轉(zhuǎn)心室重構(gòu)等作用,因而引起心血管醫(yī)生的廣泛關(guān)注。但是其在臨床應(yīng)用中的研究結(jié)果仍存在分歧,一項(xiàng)多中心臨床研究表明慢性迷走神經(jīng)刺激可改善患者的左室功能和生活質(zhì)量[29]。相反,最近NECTAR-HF研究顯示迷走神經(jīng)刺激不能改善患者心室重構(gòu)和心功能,而僅能改善患者生活質(zhì)量[30]。這可能與刺激方法、強(qiáng)度和研究對(duì)象等有關(guān)。研究認(rèn)為刺激頸部迷走神經(jīng)激活膽堿能抗炎通路所需電壓不足以引起心臟迷走神經(jīng)興奮,因而不會(huì)造成血流動(dòng)力學(xué)改變[31],但迷走神經(jīng)刺激可引起咳嗽、發(fā)聲障礙和刺激相關(guān)性疼痛等副作用,而且不恰當(dāng)?shù)刂踩爰夹g(shù)和刺激強(qiáng)度等可造成術(shù)后肺水腫以及呼吸系統(tǒng)和循環(huán)系統(tǒng)不穩(wěn)定,這些問(wèn)題限制了其在臨床中的推廣。
隨著α7nAChR研究的深入,發(fā)現(xiàn)心肌細(xì)胞、血管內(nèi)皮細(xì)胞和血管平滑肌細(xì)胞均可表達(dá)α7nAChR。盡管動(dòng)物實(shí)驗(yàn)證明煙堿可激活α7nAChR,但因其較大的毒副作用而不適用于臨床。因此尋找低毒且特異性的α7nAChR受體激動(dòng)劑對(duì)于降低心血管疾病中炎癥反應(yīng)具有較大應(yīng)用價(jià)值。
對(duì)于交感神經(jīng),體外研究證明β2受體激動(dòng)劑可降低炎性細(xì)胞活性,減少炎癥因子產(chǎn)生,但臨床應(yīng)用中β2受體激動(dòng)劑并未表現(xiàn)出抗炎作用,因此交感神經(jīng)抗炎途徑還需更深入研究[32]。
綜上,膽堿能抗炎通路可抑制機(jī)體炎癥反應(yīng),而交感神經(jīng)系統(tǒng)同時(shí)具有促炎和抗炎作用。激活膽堿能抗炎通路,恢復(fù)正常的交感神經(jīng)支配可降低心血管疾病中機(jī)體炎癥反應(yīng),為心血管疾病中抗炎治療開辟新領(lǐng)域。盡管如此,尋找理想的實(shí)施方法還需進(jìn)行更深入具體的研究。
[1]Tracey KJ.The inflammatory reflex[J].Nature,2002,420(6917):853-859.
[2]Tracey KJ.Reflex control of immunity[J].Nat Rev Immunol,2009,9(6):418-428.
[3]Huston JM,Ochani M,Rosas-Ballina M,et al.Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis[J].J Exp Med,2006,203(7):1623-1628.
[4]Berthoud HR,Powley TL.Characterization of vagal innervation to the rat celiac,suprarenal and mesenteric ganglia[J].J Auton Nerv Syst,1993,42(2):153-169.
[5]Rosas-Ballina M,Ochani M,Parrish WR,et al.Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia[J].Proc Natl Acad Sci U S A,2008,105(31):11008-11013.
[6]Kees MG,Pongratz G,Kees F,et al.Via beta-adrenoceptors,stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen[J].J Neuroimmunol,2003,145(1-2):77-85.
[7]Vida G,Pe~na G,Kanashiro A,et al.β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system[J].FASEB J,2011,25(12):4476-4485.
[8]Andersson U,Tracey KJ.Neural reflexes in inflammation and immunity[J].J Exp Med,2012,209(6):1057-1068.
[9]Swirski FK,Nahrendorf M,Etzrodt M,et al.Identification of splenic reservoir monocytes and their deployment to inflammatory sites[J].Science,2009,325(5940):612-616.
[10]Nahrendorf M,Swirski FK,Aikawa E,et al.The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions[J].J Exp Med,2007,204(12):3037-3047.
[11]Elenkov IJ,Wilder RL,Chrousos GP,et al.The sympathetic nerve——an integrative interface between two supersystems:the brain and the immune system[J].Pharmacol Rev,2000,52(4):595-638.
[12]Bai A,Lu N,Guo Y,et al.Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis[J].Clin Exp Immunol,2009,156(2):353-362.
[13]Martinolle JP,More J,Dubech N,et al.Inverse regulation of alpha-and beta-adrenoceptors during trinitrobenzenesulfonic acid(TNB)-induced inflammation in guinea-pig small intestine[J].Life Sci,1993,52(18):1499-1508.
[14]Pongratz G,Straub RH.Role of peripheral nerve fibres in acute and chronic inflammation in arthritis[J].Nat Rev Rheumatol,2013,9(2):117-126.
[15]Chandrasekharan B,Nezami BG,Srinivasan S.Emerging neuropeptide targets in inflammation:NPY and VIP[J].Am J Physiol Gastrointest Liver Physiol,2013,304(11): G949-G957.
[16]Li DJ,Evans RG,Yang ZW,et al.Dysfunction of the cholinergicanti-inflammatorypathwaymediatesorgan damage in hypertension[J].Hypertension,2011,57 (2):298-307.
[17]Marrero MB,Lucas R,Salet C,et al.An α7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes[J].J Pharmacol Exp Ther,2010,332(1):173-180.
[18]Calvillo L,Vanoli E,Andreoli E,et al.Vagal stimulation,through its nicotinic action,limits infarct size and the inflammatory response to myocardial ischemia andreperfusion[J].J Cardiovasc Pharmacol,2011,58(5): 500-507.
[19]Zhao M,He X,Bi XY,et al.Vagal stimulation triggers peripheral vascular protection through the cholinergic antiinflammatory pathway in a rat model of myocardial ischemia/reperfusion[J].Basic Res Cardiol,2013,108(3): 345.
[20]Dutta P,Courties G,Wei Y,et al.Myocardial infarction acceleratesatherosclerosis[J].Nature,2012,487 (7407):325-329.
[21]Zubcevic J,Jun JY,Kim S,et al.Altered inflammatory response is associated with an impaired autonomic input to the bone marrow in the spontaneously hypertensive rat[J].Hypertension,2014,63(3):542-550.
[22]Santisteban MM,Zubcevic J,Baekey DM,et al.Dysfunctional brain-bone marrow communication:a paradigm shift in the pathophysiology of hypertension[J].Curr Hypertens Rep,2013,15(4):377-389.
[23]Serg M,Kampus P,Kals J,et al.Nebivolol and metoprolol:long-term effects on inflammation and oxidative stress in essential hypertension[J].Scand J Clin Lab Invest,2012,72(5):427-432.
[24]Shinohara T,Takahashi N,Saito S,et al.Effect of cardiac resynchronization therapy on cardiac sympathetic nervous dysfunction and serum C-reactive protein level[J].Pacing Clin Electrophysiol,2011,34(10):1225-1230.
[25]Ji H,Rabbi MF,Labis B,et al.Central cholinergic acti
vation of a vagus nerve-to-spleen circuit alleviates experimental colitis[J].Mucosal Immunol,2014,7(2):335-347.
[26]Zhou G,Hu S,Lv Y,et al.Carbachol alleviates rat cytokine release and organ dysfunction induced by lipopolysaccharide[J].J Trauma,2011,71(1):157-162.
[27]Pavlov VA,Parrish WR,Rosas-Ballina M,et al.Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway[J].Brain Behav Immun,2009,23(1):41-45.
[28]Giuliani D,Ottani A,Altavilla D,et al.Melanocortins and the cholinergic anti-inflammatory pathway[J].Adv Exp Med Biol,2010,681:71-87.
[29]De Ferrari GM,Crijns HJ,Borggrefe M,et al.Chronic vagus nerve stimulation:a new and promising therapeutic approach for chronic heart failure[J].Eur Heart J,2011,32(7):847-855.
[30]Zannad F,De Ferrari GM,Tuinenburg AE,et al.Chronic vagal stimulation for the treatment of low ejection fraction heart failure:results of the neural cardiac therapy for heart failure(NECTAR-HF)randomized controlled trial[J].Eur Heart J,2014,pii:ehu345
[31]Johnston GR,Webster NR.Cytokines and the immunomodulatory function of the vagus nerve[J].Br J Anaesth,2009,102(4):453-462.
[32]Theron AJ,Steel HC,Tintinger GR,et al.Can the antiinflammatory activities of β2-agonists be harnessed in the clinical setting?[J].Drug Des Devel Ther,2013,7: 1387-1398.
Regulating autonomic nerve system:a new field of anti-inflammatory therapy for cardiovascular diseases
MA Du-fang1,JIANG Ping1,YANG Jin-long2,LI Xiao2
(1Shandong University of Traditional Chinese Medicine,Jinan 250355,China;2Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Jinan 250011,China.E-mail:lixiao617@163.com)
The role of chronic inflammation and autonomic neuropathy in the crucial underlying process contributing to the initiation and the progression of various cardiovascular diseases is well established.It is well known that the immune system is innervated by the autonomic nervous system,and the inflammatory reaction and immune reaction are regulated by the autonomic nerve system.Vagus nerve depresses inflammatory reaction via cholinergic anti-inflammatory pathway(CAP),while sympathetic nervous system has bidirectional regulation of pro-inflammation and anti-inflammation,which are affected by several factors such as the concentration of neurotransmitters or types of receptors.In this paper,we reviewed different effects of CAP and sympathetic nervous system on cardiovascular inflammatory reaction.Activation of CAP and regaining normal sympathetic function will improve the chronic inflammation in the process of cardiovascular diseases.Low-toxic and selective α7nAchR agonist is expected to be applied in cardiovascular diseases to alleviate chronic inflammation.
Autonomic nervous system;Cholinergic anti-inflammatory pathway;Sympathetic nervous system; Vagus nerve;Cardiovascular diseases;Inflammation
R363
A
10.3969/j.issn.1000-4718.2015.02.033
1000-4718(2015)02-374-06
2014-09-23
2014-10-23
國(guó)家自然科學(xué)基金項(xiàng)目資助(No.81072962)
△通訊作者Tel:0531-68616064;E-mail:lixiao617@163.com