馮雙雙等
摘要:分別計(jì)算理想流體和黏性流體中沿軸向運(yùn)動(dòng)圓柱的附加質(zhì)量.基于相對(duì)運(yùn)動(dòng)原理得出在無(wú)限流體域中不同長(zhǎng)細(xì)比圓柱的附加質(zhì)量,驗(yàn)證附加質(zhì)量與流體黏性無(wú)關(guān)的這一結(jié)論,并發(fā)現(xiàn)長(zhǎng)細(xì)比越大,附加質(zhì)量因數(shù)越小.利用動(dòng)網(wǎng)格技術(shù)的數(shù)值模擬結(jié)果表明:圓管中沿軸向運(yùn)動(dòng)圓柱的附加質(zhì)量隨管徑比減小而增大,且流體的流動(dòng)形態(tài)會(huì)對(duì)物體的附加質(zhì)量產(chǎn)生一定的影響.以長(zhǎng)細(xì)比和管徑比為參數(shù)給出無(wú)限和有限流體域中圓柱附加質(zhì)量與相應(yīng)參變量的擬合函數(shù).
關(guān)鍵詞:圓柱; 附加質(zhì)量; 相對(duì)運(yùn)動(dòng); 流體黏性; 長(zhǎng)細(xì)比; 管徑比; 動(dòng)網(wǎng)格
中圖分類號(hào): O351.2
文獻(xiàn)標(biāo)志碼:A
Abstract:The added mass of a cylinder moving along its axis in ideal fluid and viscous fluid is calculated. The added mass of the cylinders with different slenderness ratios in infinite fluid domain is calculated on the basis of the principle of relative motion. It is concluded that, the added mass has nothing to do with fluid viscosity, and the larger slender ratio, the smaller added mass factor. The numerical simulation results obtained by moving mesh technique show that, the added mass of the cylinder moving along its axis in tube increases with the decrease of tube diameter ratio, and the flow pattern of fluid has some effect on the added mass. Taking the slenderness ratio and diameter ratio as the parameters, the fitting function of the cylinder in infinite and finite fluid domain with the corresponding variables is given.
Key words:cylinder; added mass; relative motion; fluid viscosity; slenderness ratio; tube diameter ratio; moving mesh
0引言
物體在流體中進(jìn)行加速運(yùn)動(dòng)時(shí),會(huì)受到與物體加速度成正比的阻力.這是因?yàn)槲矬w會(huì)使周圍的流體產(chǎn)生加速度,從而受到流體的反作用力.該阻力與物體的加速度之比即為附加質(zhì)量,其對(duì)于研究流體中物體的運(yùn)動(dòng)特性非常關(guān)鍵.
早期文獻(xiàn)[1]介紹基于勢(shì)流理論在無(wú)界域中和固壁附近運(yùn)動(dòng)回轉(zhuǎn)體的附加質(zhì)量計(jì)算方法.20世紀(jì)末,隨著計(jì)算機(jī)技術(shù)和硬件設(shè)施的快速發(fā)展,CFD得到空前開發(fā),并取得一定成就.林超友等[2]采用Hess-Smith方法編制程序計(jì)算近海底水下航行體的附加質(zhì)量;馬燁等[3]利用FLUENT的動(dòng)網(wǎng)格技術(shù),計(jì)算飛艇在6個(gè)自由度方向上的附加質(zhì)量;朱仁傳等[4]和羅敏莉等[5]對(duì)船體二維橫剖面繞流進(jìn)行數(shù)值模擬,計(jì)算船體的附加質(zhì)量和阻尼;黃旋等[6]和弓三偉等[7]研究帶空泡彈性物體的附加質(zhì)量的數(shù)值分析方法;傅慧萍等[8]采用動(dòng)網(wǎng)格技術(shù)計(jì)算在全黏流體中運(yùn)動(dòng)物體的附加質(zhì)量;周景軍等[9]基于相對(duì)運(yùn)動(dòng)的思路,在動(dòng)量方程中添加源項(xiàng)計(jì)算水下航行體附加質(zhì)量.
本文采用CFD軟件CFX,研究流體中沿軸向運(yùn)動(dòng)圓柱的附加質(zhì)量.理論上,流體的黏性對(duì)物體的附加質(zhì)量沒(méi)有影響,但在實(shí)際中會(huì)存在差異,本文分別采用理想流體和黏性流體計(jì)算物體的附加質(zhì)量.首先,基于相對(duì)運(yùn)動(dòng)原理使來(lái)流加速流過(guò)靜止的圓柱體,得出在無(wú)限流體域中不同長(zhǎng)細(xì)比圓柱的附加質(zhì)量,由此探究流體黏性和圓柱的長(zhǎng)細(xì)比對(duì)附加質(zhì)量因數(shù)的影響;然后,利用動(dòng)網(wǎng)格技術(shù)研究在管流中沿圓管軸向運(yùn)動(dòng)的圓柱的附加質(zhì)量,數(shù)值模擬結(jié)果表明圓柱的附加質(zhì)量隨管徑比的減小而增大,并進(jìn)一步揭示理想流體和黏性流體中流場(chǎng)運(yùn)動(dòng)形態(tài)的差異;最后,根據(jù)計(jì)算結(jié)果給出理想流體域中圓柱附加質(zhì)量與長(zhǎng)細(xì)比和管徑比的擬合函數(shù).
1流體中物體附加質(zhì)量的數(shù)值計(jì)算
理論分析表明,因物體在流體中加速運(yùn)動(dòng)引起的附加質(zhì)量?jī)H與物體的形狀和周圍流體的密度有關(guān)[10],與物體自身的加速度和流體的黏性無(wú)關(guān).根據(jù)附加質(zhì)量與阻力的關(guān)系,只要確定物體在加速運(yùn)動(dòng)時(shí)所受的流體總阻力與定常阻力之差,即可計(jì)算出物體的附加質(zhì)量.
當(dāng)考察物體在無(wú)限流體域中進(jìn)行定加速運(yùn)動(dòng)時(shí),采用相對(duì)運(yùn)動(dòng)的原理求解其附加質(zhì)量較為簡(jiǎn)單,即認(rèn)為流體以恒加速度繞流過(guò)靜止的物體,相當(dāng)于整個(gè)流體域在作與物體運(yùn)動(dòng)反向的加速運(yùn)動(dòng).根據(jù)相對(duì)性原理,相當(dāng)于流場(chǎng)受到等效“重力”的作用,其“重力加速度”即為物體運(yùn)動(dòng)的加速度.按此方法計(jì)算出流體總阻力
根據(jù)式(1),分別采用密度為1 kg/m3的理想流體和黏性流體進(jìn)行計(jì)算.設(shè)置無(wú)限流體域的邊界條件:入口處的均勻來(lái)流以Vx=0.1t m/s規(guī)律線性變化,即物體的加速度為0.1 m/s2;流域的出口設(shè)定為開放邊界.當(dāng)流體為理想流體時(shí),流體沿壁面可以相對(duì)滑動(dòng)[10],故側(cè)面邊界和圓柱壁面均為自由滑移邊界;采用黏性動(dòng)力系數(shù)為10-6
Pa·s的流體時(shí),考慮無(wú)限流體域不計(jì)邊界尺寸的影響,設(shè)置側(cè)面邊界為自由滑移邊界,圓柱壁面為無(wú)滑移壁面.采用層流
模型進(jìn)行分析.時(shí)間離散均采用2階向后歐拉差分格式,總時(shí)間為0.060 s,計(jì)算時(shí)間步長(zhǎng)為0.002 s.
以β=1的模型為例,圓柱總阻力時(shí)程曲線見圖3.理想流體在對(duì)應(yīng)的每個(gè)時(shí)間步計(jì)算相應(yīng)的定常阻力值為0,與理論計(jì)算一致.[10]由式(2)計(jì)算理想流體中t=0.060 s時(shí)圓柱的附加質(zhì)量因數(shù)為0.501 1.當(dāng)流體為黏性流體時(shí),計(jì)算t=0.060 s時(shí)圓柱所受的定常阻力為
3.708 03×10-6 N,修正后的附加質(zhì)量因數(shù)為0.501 3.數(shù)值計(jì)算得到不同長(zhǎng)細(xì)比圓柱的附加質(zhì)量因數(shù),見表1.
β=1時(shí)圓柱變?yōu)閳A球,其在無(wú)限流體域中的附加質(zhì)量因數(shù)理論解為0.5,由表1可知,計(jì)算誤差在1%以內(nèi),表明此方法具有較高的精度.由圖3可知,圓柱在理想流體和黏性流體中總阻力的收斂情況差異不大,在最初幾個(gè)時(shí)間步有較大的波動(dòng),隨后都收斂為一個(gè)穩(wěn)定的值,由此得到的圓柱附加質(zhì)量差異較小,驗(yàn)證物體的附加質(zhì)量與流體的黏性無(wú)關(guān)這一結(jié)論.表1中圓柱的附加質(zhì)量因數(shù)隨β的增大而相應(yīng)減小,可認(rèn)為當(dāng)β足夠大時(shí),附加質(zhì)量因數(shù)的值很小,相應(yīng)的慣性阻力作用的影響也很小.
為探究β與附加質(zhì)量的關(guān)系,且根據(jù)附加質(zhì)量與流體黏性無(wú)關(guān)的結(jié)論,由表1的數(shù)據(jù)擬合理想流體中圓柱附加質(zhì)量因數(shù)C*與β的變化關(guān)系,即
3有限流體域中圓柱的附加質(zhì)量
物體在有限流體域(管流)中進(jìn)行變速運(yùn)動(dòng)時(shí),由于圓管邊界到圓柱壁面的距離較近,在無(wú)限流體域中均勻來(lái)流繞過(guò)靜止圓柱的情況不再適用,故采用動(dòng)網(wǎng)格技術(shù)模擬物體運(yùn)動(dòng),使周圍的靜止流體跟隨物體一起運(yùn)動(dòng).圓柱沿軸向進(jìn)行定加速運(yùn)動(dòng)時(shí),計(jì)算域前后兩端尺寸的影響較大,因此將圖1中的尺寸擴(kuò)大為L(zhǎng)1=L2=150d,圓柱的兩端仍分別放置2個(gè)d=1 m的半球體,L=6 m.
為研究在有限域中固壁邊界距離對(duì)物體附加質(zhì)量的影響,以圓管直徑與圓柱直徑比即管徑比α=Dt/dm分別為5.0,2.0,1.5,1.4,1.3,1.2和1.1等7種情況建立模型,計(jì)算圓柱的附加質(zhì)量,其中Dt為圓管直徑,dm為圓柱直徑.
仍采用單位密度的理想流體和黏性流體,采用動(dòng)網(wǎng)格技術(shù)模擬圓柱在靜止管流中的運(yùn)動(dòng),加速度為0.01 m/s2.圓管出入口邊界均設(shè)置為網(wǎng)格靜止的開放邊界.對(duì)于理想流體,圓管壁面設(shè)定為網(wǎng)格靜止的自由滑移壁面,圓柱壁面為指定網(wǎng)格位移Dx=0.5at2的自由滑移壁面;對(duì)于黏性流體,圓管壁面設(shè)定為網(wǎng)格靜止的固壁面,圓柱壁面為無(wú)滑移壁面,并指定網(wǎng)格位移Dx=0.5at2,湍流模型采用SST模型.計(jì)算均采用2階向后歐拉差分格式進(jìn)行時(shí)域積分,總時(shí)間為1 s,時(shí)間步長(zhǎng)為0.05 s.
以α=1.1的計(jì)算模型為例,對(duì)其數(shù)值結(jié)果進(jìn)行分析.圓柱總阻力時(shí)程曲線見圖5.理想流體中的黏性阻力為0,由式(3)計(jì)算得到t=1 s時(shí)圓柱的附
加質(zhì)量因數(shù)C=4.140 2.流體為黏性流體時(shí),計(jì)算t=1.00 s時(shí)刻圓柱所受的定常阻力,包括黏性阻力和壓差阻力.對(duì)流場(chǎng)進(jìn)行穩(wěn)態(tài)分析,繪制其對(duì)稱面上圓柱尾部流場(chǎng)的流線(見圖6a),觀察到圓柱尾部的流場(chǎng)有漩渦產(chǎn)生,流體發(fā)生嚴(yán)重分離,此時(shí)定常阻力值較大,為0.001 642 66 N,扣除定常阻力值,由式(3)計(jì)算得到圓柱的附加質(zhì)量因數(shù)C=4.124 3.α取其他不同值時(shí)黏性流體中圓柱尾部的流場(chǎng)形態(tài)見圖6,附加質(zhì)量因數(shù)C的計(jì)算值見表2.
由表2可知,圓柱的附加質(zhì)量隨α的減小快速增大,這是由于固壁邊界限制圓柱前部的流體向側(cè)向運(yùn)動(dòng),使得圓柱需要推動(dòng)前方更多的流體進(jìn)行加速運(yùn)動(dòng),從而引起附加質(zhì)量的增大.表中的數(shù)據(jù)顯示,α=1.1時(shí)黏性流體中圓柱的附加質(zhì)量因數(shù)偏小,推斷是由于黏性流體中圓柱尾部流場(chǎng)發(fā)生嚴(yán)重分離,圓柱運(yùn)動(dòng)時(shí)帶動(dòng)的流體質(zhì)量減少.由圖6可知,在有界域中理想流體和黏性流體流場(chǎng)的流動(dòng)形態(tài)差異較大,黏性流體中圓柱尾部易產(chǎn)生漩渦,發(fā)生嚴(yán)重的流體分離現(xiàn)象,故黏性流中圓柱所受的定常阻力值較大,但隨著α的增大,圓柱末端有漩渦的尾流運(yùn)動(dòng)逐漸減弱.由表2擬合理想流體中附加質(zhì)量因數(shù)C與α的變化函數(shù),繪制相應(yīng)的擬合曲線,見圖7.
比較表3中的數(shù)據(jù)可知,利用動(dòng)網(wǎng)格技術(shù)計(jì)算得到的附加質(zhì)量因數(shù)與基于相對(duì)運(yùn)動(dòng)原理計(jì)算得到的附加質(zhì)量因數(shù)差異較小,驗(yàn)證動(dòng)網(wǎng)格技術(shù)計(jì)算結(jié)果的可靠性.
4結(jié)論
通過(guò)建立一系列計(jì)算模型,得出在不同邊界條件下不同尺寸圓柱的附加質(zhì)量,結(jié)論如下.
1)基于相對(duì)運(yùn)動(dòng)的原理,在無(wú)限流體域中可采用均勻來(lái)流繞流靜止圓柱的方法精確地計(jì)算不同長(zhǎng)細(xì)比圓柱的附加質(zhì)量,且長(zhǎng)細(xì)比越大圓柱的附加質(zhì)量因數(shù)越小,驗(yàn)證在無(wú)限流體域中圓柱的附加質(zhì)量因數(shù)與流體黏性無(wú)關(guān)這一結(jié)論.
2)采用動(dòng)網(wǎng)格技術(shù)模擬圓柱在不同直徑的圓管中進(jìn)行定加速運(yùn)動(dòng)的情況,得知隨著圓管直徑的減小,圓柱的附加質(zhì)量快速地增大,意味著圓柱要推動(dòng)更多的流體作加速運(yùn)動(dòng).
3)在有限黏性流體域中,圓柱尾部的流體發(fā)生嚴(yán)重分離,形成有漩渦運(yùn)動(dòng)的尾流,使圓柱受到較大的壓差阻力.
4)理論認(rèn)為物體的附加質(zhì)量與流體的黏性無(wú)關(guān),但在有限流體域中,理想流體與黏性流體的流場(chǎng)形態(tài)有較大的差異,對(duì)物體的附加質(zhì)量有一定影響.
5)給出圓柱的附加質(zhì)量因數(shù)與長(zhǎng)細(xì)比及管徑比的函數(shù)關(guān)系,具有很大的應(yīng)用價(jià)值.
參考文獻(xiàn):
[1]許維德, 林建國(guó). 細(xì)長(zhǎng)回轉(zhuǎn)體附加質(zhì)量的數(shù)值計(jì)算[J]. 水動(dòng)力學(xué)研究與進(jìn)展, 1986, 1(2):70-81.
XU Weide, LIN Jianguo. Numerical calculation of added masses of slender bodies of revolution[J]. Adv Hydrodynamics, 1986, 1(2): 70-81.
[2]林超友, 朱軍. 潛艇近海底航行附加質(zhì)量數(shù)值計(jì)算[J]. 船舶工程, 2003, 25(1): 26-29.
LIN Chaoyou, ZHU Jun. Numerical computation of added mass of submarine maneuvering with small clearance to sea-bottom[J]. Ship Eng, 2003, 25(1): 26-29.
[3]馬燁, 單雪雄. 數(shù)值計(jì)算復(fù)雜外形物體附加質(zhì)量的新方法[J]. 計(jì)算機(jī)仿真, 2007, 24(5): 75-78.
MA Ye, SHAN Xuexiong. A new numerical computation method for added masses of complicated object[J]. Comput Simulation, 2007, 24(5): 75-78
[4]朱仁傳, 郭海強(qiáng), 繆國(guó)平, 等. 一種基于CFD理論船舶附加質(zhì)量與阻尼的計(jì)算方法[J]. 上海交通大學(xué)學(xué)報(bào), 2009, 43(2): 198-203.
ZHU Renchuan, GUO Haiqiang, MIAO Guoping, et al. A computational method for evaluation of added mass and damping of ship based on CFD theory[J]. J Shanhai Jiaotong Univ, 2009, 43(2): 198-203.
[5]羅敏莉, 毛筱菲, 王曉俠. 強(qiáng)迫運(yùn)動(dòng)柱體附加質(zhì)量與阻尼系數(shù)的CFD計(jì)算[J]. 水動(dòng)力學(xué)研究與進(jìn)展: A輯, 2011, 26(4): 509-514.
LUO Minli, MAO Xiaofei, WANG Xiaoxia. CFD-based added mass and damping coefficients calculation to forced motion cylinder[J]. Chin J Hydrodynamics: A, 2011, 26(4): 509-514.
[6]黃旋, 魯傳敬, 李杰. 帶空泡運(yùn)動(dòng)航行體的附加質(zhì)量研究[J]. 水動(dòng)力學(xué)研究與進(jìn)展: A輯, 2009, 24(6): 800-806.
HUANG Xun, LU Chuanjing, LI Jie. Research on added mass of a cavity running vehicle[J]. Chin J Hydrodynamics: A, 2009, 24(6): 800-806.
[7]弓三偉, 陸宏志, 鄒正平, 等. 彈性體和帶空泡體的附加質(zhì)量動(dòng)態(tài)數(shù)值計(jì)算[J]. 計(jì)算機(jī)仿真, 2010, 27(4): 349-353.
GONG Sanwei, LU Hongzhi, ZOU Zhengping, et al. Hydrodynamic numerical computation of the added mass of elastic body & cavitation bubble[J]. Comput Simulation, 2010, 27(4): 349-353.
[8]傅慧萍, 李杰. 附加質(zhì)量CFD計(jì)算方法研究[J]. 哈爾濱工程大學(xué)報(bào), 2011, 32(2): 148-152.
FU Huiping, LI Jie. Numerical studies of added mass based on CFD method[J]. J Harbin Eng Univ, 2011, 32(2): 148-152.
[9]周景軍, 李育英, 項(xiàng)慶睿. 一種水下航行體附加質(zhì)量數(shù)值計(jì)算方法[J]. 魚雷技術(shù), 2013, 21(4): 246-249.
ZHOU Jingjun, LI Yuying, XIANG Qingrui. A numerical computation method of additional mass for underwater vehicle[J]. Torpedo Technol, 2013, 21(4): 246-249.
[10]茅春浦. 流體力學(xué)[M]. 上海: 上海交通大學(xué)出版社, 1995: 340-353.
(編輯武曉英)