熊大斌,曹玲瓏,李冬兵,鄧 利,尹 鈞,牛洪斌
(河南農(nóng)業(yè)大學國家小麥工程技術研究中心,河南鄭州450002)
鹽害是限制作物生長和生產(chǎn)力的主要逆境因子之一。據(jù)統(tǒng)計,世界耕地中20%以上的雨養(yǎng)種植區(qū),近50%的灌溉面積均受到不同程度的鹽害影響[1]。鹽脅迫直接和間接影響植物的多種生理生化過程,包括蛋白質(zhì)合成,能量和脂質(zhì)代謝和光合作用[2]。其中包括影響光合關鍵酶Rubisco(核酮糖 -1,5 -二磷酸羧化酶/加氧酶;EC4.1.1.39)的活性。研究表明,鹽脅迫在提高Rubisco加氧酶活性的同時降低其羧化酶活性[3]。為應對包括鹽脅迫在內(nèi)的逆境脅迫,植物體形成了一系列的應對措施,其中最主要的方式之一就是通過滲透調(diào)節(jié)緩解傷害[4-7]。植物體內(nèi)參與滲透調(diào)節(jié)的物質(zhì)種類眾多,主要是各種類型的低相對分子質(zhì)量分子,如脯氨酸、谷氨酸、氨基乙酸、甜菜堿、肉堿、甘露醇、山梨醇、果糖、多元醇、海藻糖、蔗糖和多種低聚糖[8-12]。脯氨酸作為最重要的滲透調(diào)節(jié)物質(zhì)可維護植物細胞膜的完整性,保護多種重要蛋白質(zhì)的功能[13-14],并可以提高植物細胞內(nèi)各種活性氧清除酶的活性,緩解上述脅迫條件下產(chǎn)生的各種活性氧對植物的傷害[2]。此外,脯氨酸還可以作為碳、氮源儲備,以供植物生長發(fā)育的需求[14-15]。大麥(Hordeum vulgare)是重要的耐非生物脅迫的作物之一[16]。本研究分析鹽脅迫條件下外源脯氨酸對大麥幼苗的保護作用,為深入探究麥類作物耐鹽機制奠定基礎。
大麥(Hordeum vulgare cv.Yupi No.1)幼苗培養(yǎng)在生長箱中,溫度設置為24℃/20℃,12 h光照/12 h黑暗,光照度為 3 000 lx,相對濕度為45%,每天更換Hoagland培養(yǎng)液。在苗齡為15 d時進行外源脯氨酸和鹽脅迫處理,共設置3個處理:P(50 mmol·L-1脯氨酸),N(50 mmol·L-1NaCl) 和 N+P(50 mmol·L-1NaCl+50 mmol·L-1脯氨酸),以及對照(無添加劑)。每個處理200株,至少5次重復。在不同的脅迫時間下(0,2,4,8,12 d)收取各處理的葉片,迅速用液氮冷凍并儲存在-80℃,測定核酮糖-1,5-二磷酸羧化酶和加氧酶活性,抗氧化酶活性和類囊體膜蛋白。所有酶活性分析均采用大麥幼苗上部頂葉。
核酮糖-1,5-二磷酸羧化酶/加氧酶的粗提取、純化及活性激活采用 SIVAKUMAR等[17]和SERVAITES等[18]的方法?;静僮鞒绦蛉缦?將50 g 的葉片在 100 mL pH 8.0 的 50 mmol·L-1Tris-acetate buffer(20 mmol·L-1Mg(OAc)2,0.1 mmol·L-1EDTA,50 mmol·L-1β-mercaptoethanol,和 2%PVP) 中勻漿,16 000 r·min-1離心 15 min后取上清液,并先后用含有17.5%的PEG-4000柱和CL-6B柱。純化后的Rubisco溶解于50 mmol·L-1Tris-acetate buffer(pH 8.0,20 mmol·L-1Mg(OAc)2,6 mmol·L-1NaHCO3,0.1 mmol·L-1EDTA,0.1 mmol·L-1DTT)28 ℃放置10 min,終質(zhì)量濃度調(diào)整為5 g·L-1。羧化酶和氧化酶的測定均采用SIVAKUMAR等[19]的方法。
各取150 mg大麥幼苗葉片,分別用1 mL pH 7.6 含有 0.1 mmol·L-1EDTA 的 50 mmol·L-1HEPES-KOH緩沖液勻漿[用于超氧化物歧化酶(SOD)分析],1 mL pH 7.6 的 50 mmol·L-1磷酸緩沖液(含有質(zhì)量濃度為2%PVP,體積分數(shù)為1%Triton X-100,用于抗壞血酸過氧化物酶(APX)分析),1 mL pH 6.8 的50 mmol·L-1磷酸緩沖液[用于過氧化氫酶(CAT)分析]。SOD活性的測定采用分光光度計法,APX活性的測定采用ASADA等[20]方法,CAT 活性的測定采用 CAKMAK 等[21]改良法。酶活性通過每分每毫克蛋白質(zhì)分解成過氧化氫的量來計算,采用的過氧化氫消光系數(shù)是3.94 ×104L·mol-1·cm-1。
大麥類囊體膜蛋白質(zhì)的分離采用LI等[22]的方法,SDS-PAGE電泳根據(jù)REZNICK等[23]的方法進行。利用軟件VDS(Pharmacia Biotech,Uppsala,Sweden)對目的蛋白質(zhì)Rubisco的含量進行測定,并以空白泳道背景信號作為對照。
SDS-PAGE電泳及蛋白質(zhì)染色后,切去差異表達蛋白質(zhì)(約55 kD),無菌水沖洗并送交公司(Gene Core Bio Technologies公司,上海)進行MALDI-TOF和串聯(lián)質(zhì)譜(MS/MS)分析,鑒定該蛋白質(zhì)。利用MASCOT軟件對測定數(shù)據(jù)進行分析,并判定蛋白質(zhì)種類。
在鹽脅迫下大麥葉片中羧化酶的活性被抑制,外源脯氨酸的添加可以延緩活性的喪失。與N處理相比,在脅迫4,8和12 d時N+P處理組羧化酶活性喪失分別降低了6.7%,11.6%和30.7%(圖1)。相比之下,鹽脅迫可以顯著激活Rubisco的氧化酶活性,外源脯氨酸的添加可以延緩該活性的上升。經(jīng)過脅迫處理8 d時N處理組樣品的Rubisco的氧化酶活性比CK提高了42.2%,N+P處理組樣品的活性在2,4,8,12 d時的氧化活性分別是N處理樣品的88.4%,78.1%,88.9%和93.5%(圖2)。
圖1 外源脯氨酸的添加對鹽脅迫條件下大麥葉片中Rubisco羧化酶酶活性的影響Fig.1 The interaction between exogenously supplied proline and salinity stress on the activity of ribulose-1,5-bisphosphate carboxylase
在鹽脅迫條件下,N處理組大麥葉片來源類囊體膜蛋白質(zhì)電泳顯示,在55 kD處出現(xiàn)差異表達蛋白質(zhì),而在非脅迫樣品中未檢測到相應條帶(圖3-a)。肽指紋圖譜分析結果顯示,該差異蛋白質(zhì)與Rubisco大亞基高度同源,與小麥(GenBank登錄號 14017580和 32966580),Psathyrostachys huashanica(GenBank登錄號51859667),冰草屬Cristatum(GenBank登錄號61378600)和大麥屬Bulbosum(GenBank登錄號31087905)等Rubisco大亞基的覆蓋率分別為32%,31%,30%和30%,覆蓋區(qū)段氨基酸一致性在98.6%以上,據(jù)此推斷該特異誘導蛋白質(zhì)為大麥Rubisco大亞基(表1)。
圖2 外源脯氨酸的添加對鹽脅迫條件下大麥葉片中Rubisco氧化酶酶活性的影響Fig.2 The interaction between exogenously supplied proline and salinity stress on the activity of ribulose-1,5-bisphosphate oxygenase in barley
在脯氨酸存在條件下,在鹽脅迫2 d后N+P組電泳圖譜顯示可以微弱地誘導出Rubisco大亞基,并在12 d(圖3-b)時達到表達高峰 (圖3-b)。與N+P組相比,N組Rubisco大亞基在各處理時間段上的表達量分別是N+P組的219.6%(2 d),119.6%(4 d)和257.3%(8 d)(圖4),表明添加脯氨酸可以緩解Rubisco大亞基在類囊體膜上的富集降解。
圖3 鹽脅迫條件下大麥類囊體膜蛋白質(zhì)的SDS-PAGE電泳結果Fig.3 SDS-PAGE electrophoresis of barley thylakoid membrane protein in salinity stress
表1 類囊體膜上Rubisco大亞基(~55 kD)的LC-MALDI-MS/MS鑒定結果Table 1 Tryptic peptide fragment sequences released from the ~55 kD protein,as determined by LC-MALDI-MS/MS
外源添加脯氨酸對大麥葉片中SOD,APX和CAT活性影響結果見表2。相對于N處理,脯氨酸的存在可以提高SOD的活性(11%~64%)。在鹽脅迫處理2和4 d后,APX活性在N和N+P處理組間無顯著差異,然而至第8天,N+P處理組的活性比N處理組高19%,第12天時高出15%。CAT的活性變化與APX類似,在處理2和4 d時N和N+P處理組間的活性無顯著差異,但是在第8天時,N+P處理組比N處理組高23%,在第12天時高出48%。
在50 mmol·L-1NaCl脅迫處理下,大麥幼苗葉片中的Rubisco羧化酶活性顯著降低,氧化酶活性升高。前人研究報道,在脯氨酸存在下可以緩解鹽脅迫引起的Rubisco氧化酶活性增加[19],這與本研究結果相符。外源添加脯氨酸對植物的另一個顯著效果是可以有效地緩解鹽脅迫逆境下植物葉片中的羧化酶活性的降低。Rubisco在植物葉片中大量存在,在C3植物葉片可溶性蛋白質(zhì)中約占50%[24],在 C4植物中含量約為 1/3[25]。Rubisco全酶是由8個55 kD的大亞基和8個15 kD的小亞基組成的復合體。前者是由葉綠體的Rubisco L基因編碼的[26],后者小亞基是由一種細胞核Rubisco L基因家族編碼的[27]。Rubisco非常敏感,尤其是在非生物脅迫條件下更易被降解[28-32]。對于小麥來說,在非生物脅迫條件下Rubisco的羧化酶活性和氧化酶活性均非常敏感,并極易與葉綠體內(nèi)膜上的可溶性酶復合物交聯(lián)和易位,并被迅速地降解[33]。體外試驗表明,體外氧化條件可以刺激Rubisco與葉綠素中的不溶性蛋白質(zhì)組交聯(lián)聚合,并被部分降解[34]。本研究同樣發(fā)現(xiàn),在鹽脅迫條件下Rubisco異常地在葉綠體類囊體組分中積累,表明了即使在低鹽濃度脅迫下也會產(chǎn)生和氧化條件下的類似反應,而體外施加脯氨酸可以有效地緩解上述效應,表明外源脯氨酸可以緩解鹽脅迫對大麥植株的危害。由鹽脅迫導致的植物體內(nèi)滲透壓失調(diào)和離子紊亂可以刺激細胞內(nèi)活性氧濃度的上升[2],因此,包括 APX,SOD 和 CAT在內(nèi)的抗氧化酶在清除活性氧方面所發(fā)揮的作用極其重要[2]。前人研究結果表明,脯氨酸可以保護因干旱[35]、鹽[36]或者紫外線的輻射[4]而誘發(fā)的氧化脅迫。本研究表明,外源脯氨酸可以激活SOD,APX和CAT等抗氧化酶的活性,并與HOQUE等[37]的研究結果相吻合。
圖4 不同鹽脅迫處理后大麥幼苗葉片Rubisco大亞基含量的變化Fig.4 Changes of Rubisco large subunit content in barley seedling leaf after different treatments
表2 外源添加脯氨酸對鹽脅迫條件下大麥葉片中抗氧化酶類活性的影響Table 2 The interaction between exogenously supplied proline and salinity stress on the activity of the antioxidant enzymes SOD,APX and CAT
上述研究結果表明,脯氨酸可以對鹽脅迫下的大麥提供有效的保護作用,主要是通過減緩Rubisco羧化酶活性的降低,以及減少Rubisco在類囊體膜上異常積累程度等方式發(fā)揮作用的。
[1] ZHU J K.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.
[2] PARIDA A K,DAS A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60(3):324-349.
[3] REDDY M P,SANISH S,IYENGAR E R R.Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb.under saline conditions[J].Photosynthetica,1992,26:173 -179.
[4] ZHU J K.Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247.
[5] HONGBO S,ZONGSUO L,MINGAN S.Osmotic regulation of 10 wheat(Triticum aestivum L.)genotypes at soil water deficits[J].Colloids Surf B Biointerfaces,2006,47(2):132-139.
[6] VALLIYODAN B,NGUYEN H T.Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J].Curr Opin Plant Biol,2006,9(2):189-195.
[7] CHEN S,GOLLOP N,HEUER B.Proteomic analysis of salt-stressed tomato(Solanum lycopersicum)seedlings:effect of genotype and exogenous application of glycinebetaine[J].J Exp Bot,2009,60(7):2005-2019.
[8] FOUGERE F,LE R D,STREETER J G.Effects of salt stress on amino acid,organic acid and carbohydrate composition of roots,bacteroids and cytosol of alfalfa(Medicago sativa L.) [J].Plant Physiol,1991,96(4):1228-1236.
[9] YOSHIBA Y,KIYOSUE T,NAKASHIMA K,et al.Regulation of levels of proline as an osmolyte in plants under water stress[J].Plant Cell Physiol,1997,38(10):1095-1102.
[10] SMIRNOFF N.Plant resistance to environmental stress[J].Current Opinion in Biotechnology,1998,9(2):214-219.
[11] JOUVE L,HOFFMANN L,F(xiàn)HAUSMAN J.Polyamine,carbohydrate,and proline content changes during salt stress exposure of aspen(Populus tremula L.):involvement of oxidation and osmoregulation metabolism[J].Plant Biol(Stuttg),2004,6(1):74-80.
[12]PETERSEN C R,HOLMSTRUP M,MALMENDAL A,et al.Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons(Dendrobaena octaedra savigny)[J].J Exp Biol,2008,211(12):1903 -1910.
[13] HOQUE M A,BANU M N,OKUMA E,et al.Exogenous proline and glycinebetaine increase nacl-induced ascorbate-glutathione cycle enzyme activities,and proline improves salt tolerance more than glycinebetaine in tobacco bright yellow-2 suspension-cultured cells[J].J Plant Physiol,2007,164(11):1457 -1468.
[14] SOBAHAN M A,ARIAS C R,OKUMA E,et al.Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na(+)uptake in rice seedlings[J].Bioscience,Biotechnology and Biochemistry,2009,73(9):2037-2042.
[15] HARE P D,CRESS W A.Metabolic implications of stress-induced proline accumulation in plants[J].Plant Growth Regulation,1997,21(2):79-102.
[16] WIDOD O,PATTERSON J H,NEWBIGIN E,et al.Metabolic responses to salt stress of barley(Hordeum vulgare L.)cultivars,Sahara and Clipper,which differ in salinity tolerance[J].J Exp Bot,2009,60(14):4089-4103.
[17] SIVAKUMAR P,SHARMILA P,SARADHI P P.Proline suppresses rubisco activity in higher plants[J].Biochem Biophys Res Commun,1998,252(2):428-432.
[18] SERVAITES J C.Binding of a phosphorylated inhibitor to ribulose bisphosphate carboxylase oxygenase during the night[J].Plant Physiol,1985,78(4):839 - 843.
[19] SIVAKUMAR P,SHARMILA P.Proline alleviates saltstress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity[J].Biochem Biophys Res Commun,2000,279(2):512-515.
[20] ASADA K.Chloroplasts:formation of active oxygen and its scavenging[J].Methods in Enzymology,1984,105:422-429.
[21] CAKMAK I,HORST W J.Effect of aluminum on lipid peroxidation,superoxide dismutase,catalase and peroxides activities in root tips of soybean(Glycine max)[J].Plant Physiol,1991,83:463 -468.
[22] LI Q Y,NIU H B,YIN J,et al.Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley(Hordeum vulgare)[J].Colloids Surf B Biointerfaces,2008,65(2):220 -225.
[23] REZNICK A Z,PACKER L.Oxidative damage to proteins:spectrophotometric method for carbonyl assay[J].Methods in Enzymology,1994,233:357.
[24] SPREITZER R J,SALVUCCI M E.Rubisco:structure,regulatory interactions and possibilities for a better enzyme[J].Annu Rev Plant Biol,2002,53:449-475.
[25] SUGIYAMA T, MIZUNO M, HAYASHIM.Partitioning of nitrogen among ribulose-1,5-bisphosphate carboxylase/oxygenase,phosphoenolpyruvate carboxylase,and pyruvate orthophosphate dikinase as related to biomass productivity in maize seedlings[J].Plant Physiol,1984,75(3):665 -669.
[26] COEN D M,BEDBROOK J R,BOGORAD L,et al.Maize chloroplast DNA fragment encoding the large subunit of ribulose bisphosphate carboxylase[J].Proc Natl Acad Sci,1977,74:5487 -5491.
[27] JENSEN R G,BAHR J G.Ribulose-1,5-bisphosphate carboxylase-oxygenase[J].Annu Rev Plant Physiol,1977,28:379 -400.
[28] DEMIREVSKA-KEPOVA K,F(xiàn)ELLER U.Heat sensitivity of rubisco,rubisco activase and rubisco binding protein in higher plants[J].Acta Physiologiae Plantarum,2004,26(1):103-114.
[29] HERRMANN B,F(xiàn)ELLER U.CO2,light and temperature influence senescence and protein degradation in wheat leaf segments[J].Physiologia Plantarum,1998,103(3):320-326.
[30] MARTINEZ D E,COSTA M L,GUIAMET J J.Senescence-associated degradation of chloroplast proteins inside and outside the organelle[J].Plant Biol(Stuttg),2008,10:15-22.
[31]NAKANO R,ISHIDA H,MAKINO A,MAE T.In vivo rragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions[J].Plant Cell Physiol,2006,47(2):270 -276.
[32]GREGERSEN P L,HOLM P B,KRUPINSKA K.Leaf senescence and nutrient remobilisation in barley and wheat[J].Plant Biol(Stuttg),2008,10:37 -49.
[33] MEHTA R A,F(xiàn)AWCETT T W,PORATH D,et al.Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase[J].J Biol Chem,1992,267(4):2810-2816.
[34] DESIMONE M,HENKE A,WAGNER E.Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley[J].Plant Physiol,1996,111:789-796.
[35] SHETTY K.Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications:a review[J].Process Biochemistry,2004,39:789-804.
[36] JALEEL C A,MANIVANNAN P,LAKHMANAN G M,et al.NaCl as a physiological modulator of proline metabolism and antioxidant potential in phyllanthus amarus[J].C R Biol,2007,330(11):806 -813.
[37]HOQUE M A,OKUMA E,BANU M N,et al.Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities[J].J Plant Physiol,2007,164(5):553-561.