朱 珍,祝超瑜,高清歌,徐 立,喻 晶,蔣伏松,魏 麗
?
尿L-FABP與2型糖尿病患者腎功能變化的縱向研究
朱 珍,祝超瑜,高清歌,徐 立,喻 晶,蔣伏松,魏 麗*
(上海市交通大學(xué)附屬第六人民醫(yī)院內(nèi)分泌代謝科,上海 201306)
尿肝臟型脂肪酸結(jié)合蛋白(L-FABP)是早期預(yù)測急性和慢性腎功能損傷的優(yōu)良生物學(xué)標(biāo)志物。本項研究旨在前瞻性地探討尿L-FABP水平預(yù)測2型糖尿病患者腎病進(jìn)展及估算的腎小球濾過率(eGFR)下降率的價值。對2010年1月至2012年6月于我院內(nèi)分泌科住院的288名2型糖尿病患者進(jìn)行分組(正常尿白蛋白組、微量尿白蛋白組、大量尿白蛋白組)并隨訪2年,測定各組隨訪前后尿L-FABP水平、尿白蛋白排泄率(UAER)和eGFR。隨著研究的進(jìn)展,微量尿白蛋白組和大量尿白蛋白組隨訪后的L-FABP水平均高于隨訪前水平(<0.05),而僅大量白蛋白尿組隨訪后的UAER高于隨訪前水平(<0.05)。Pearson線性相關(guān)分析結(jié)果顯示:隨訪前,大量尿白蛋白組和微量尿白蛋白組的尿L-FABP水平與UAER均呈顯著正相關(guān)(分別為=0.573,=0.219;<0.05);隨訪后,大量尿白蛋白組和微量尿白蛋白組的尿L-FABP水平亦均與UAER呈顯著正相關(guān)(分別為=0.689,=0.203;<0.05)。多元逐步回歸分析結(jié)果提示,隨訪前和隨訪后大量尿白蛋白組尿L-FABP水平與eGFR變化率顯著相關(guān)(分別為=-0.397,=-4.376;=-0.455,=-4.854;<0.05);隨訪前和隨訪后微量尿白蛋白組的尿L-FABP水平與eGFR變化率亦顯著相關(guān)(分別為=-0.327,=-2.987;=-0.378,=-4.298;<0.05)。尿L-FABP水平與糖尿病患者的腎功能相關(guān),動態(tài)監(jiān)測尿L-FABP可早期預(yù)測2型糖尿病腎病的進(jìn)展。尿L-FABP可能早期獨立預(yù)測2型糖尿病腎病患者的eGFR下降情況。
糖尿病腎??;肝臟型脂肪酸結(jié)合蛋白;尿白蛋白排泄率;腎小球濾過率
糖尿病腎病是導(dǎo)致慢性腎臟疾?。╟hronic kidney disease,CKD)的主要病因之一,也是主要的糖尿病遠(yuǎn)期微血管并發(fā)癥之一[1]。近年研究發(fā)現(xiàn),肝臟型脂肪酸結(jié)合蛋白(liver-type fatty acid binding protein,L-FABP)與腎損傷關(guān)系密切,是早期預(yù)測急性腎損傷的優(yōu)良生物學(xué)標(biāo)志物[2]。然而,L-FABP在臨床預(yù)測糖尿病患者腎功能變化方面的作用尚不確定[3?5]。本前瞻性研究擬探討尿L-FABP水平與2型糖尿病患者腎功能進(jìn)展的關(guān)系,以及其預(yù)測腎小球濾過率(glomerular filtration rate,GFR)變化情況的價值。
收集2010年1月至2012年6月上海市第六人民醫(yī)院內(nèi)分泌代謝科住院的2型糖尿病患者。納入標(biāo)準(zhǔn):60~80歲之間、且符合1999年世界衛(wèi)生組織(World Health Organization,WHO)制定的2型糖尿病診斷標(biāo)準(zhǔn)的糖尿病患者。排除標(biāo)準(zhǔn):糖尿病急性并發(fā)癥、惡性腫瘤、伴有其他急、慢性腎臟疾病和肝功能異常者;過去3個月內(nèi)患有心腦血管疾病者(包括冠心病、心肌缺血、腦血管疾病或周圍動脈疾?。贿^去3個月內(nèi)因感染而住院的患者;血壓未控制者。共納入符合條件者350例,受試者均已簽署知情同意書。
對所有研究對象隨訪2年,在研究初始和結(jié)束時分別收集人口學(xué)資料和臨床數(shù)據(jù),包括:研究對象的年齡、性別、身高、體質(zhì)量、血壓和糖尿病病程等,并計算體質(zhì)量指數(shù)。空腹抽取靜脈血,測定空腹血糖(fasting blood glucose,F(xiàn)BG)、糖化血紅蛋白(glycosylated hemoglobin A1c,HbA1c)、血肌酐(serum creatinine,Scr)、甘油三酯(triglycerides,TC)、總膽固醇(total cholesterol,TC)、高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-C)等生化指標(biāo)的水平。血糖、血脂和Scr測定使用酶法,HbA1c用高壓液相法。研究初始和研究結(jié)束分別收集1次24h尿液樣本,采用免疫透射比濁法測定尿白蛋白排泄率(urinary albumin excretion rate,UAER)。L-FABP用免疫酶聯(lián)法測定(人L-FABP ELISA試劑盒,Hycult Biotech公司,荷蘭)。根據(jù)試劑盒說明書,每個L-FABP標(biāo)本測2次,所得的平均值進(jìn)行進(jìn)一步的統(tǒng)計分析。
估算腎小球濾過率(estimated glomerular filtration rate,eGFR)根據(jù)慢性腎臟病流行病學(xué)合作研究(Chronic Kidney Disease Epidemiology collaboration,CKD-EPI)公式[6]通過Scr計算,女性:當(dāng)Scr≤62μmol/L時,eGFR=144×(Scr/62)-0.329×(0.993)年齡;當(dāng)Scr>62μmol/L時,eGFR=144×(Scr/62)-1.209×(0.993)年齡;男性:當(dāng)Scr≤80μmol/L時,eGFR=141×(Scr/80)-0.411×(0.993)年齡;當(dāng)Scr>80μmol/L時,eGFR=141×(Scr/80)-1.209×(0.993)年齡。GFR變化率通過以下的公式計算:GFR變化率=(研究結(jié)束時eGFR?基線eGFR)/(基線eGFR×隨訪時間)。
本研究的納入群體根據(jù)研究初始的UAER情況分為3組:正常白蛋白尿組(group 1),UAER<30mg/24h;微量白蛋白尿組(group 2),UAER在30~300mg/24h之間;大量白蛋白尿組(group 3),UAER≥300mg/24h。所有入選糖尿病患者根據(jù)美國糖尿病聯(lián)合會(American Diabetes Association,ADA)糖尿病治療指南的方案進(jìn)行治療[7]。
350例研究對象中,有54例未能完成隨訪且失訪,8例在隨訪期間死亡(其中4例死于冠心病,2例死于腦血管意外,2例死于腎功能衰竭)。因此,最終分析288例的結(jié)果(回訪率82.3%)。研究初始,研究對象的年齡(66.1±9.2)歲,糖尿病病程為(7.8±6.5)年。在288例2型糖尿病患者中,正常尿白蛋白組有111例,占回訪病例總數(shù)的38.5%,其中男性57例(51.4%);微量尿白蛋白組有100例(34.7%),男49例(49.0%);大量尿白蛋白組有77例(26.7%),男50例(64.9%)。
研究群體相關(guān)臨床指標(biāo)隨訪前后的變化情況具體見表1。研究初始(隨訪前),3組患者的年齡、體質(zhì)量指數(shù)、舒張壓、血糖、血脂情況差異無統(tǒng)計學(xué)意義(>0.05);胰島素、血管緊張素轉(zhuǎn)換酶抑制劑、血管緊張素受體拮抗劑、貝特類降脂藥、他汀類降脂藥物使用情況也無明顯差異(>0.05);大量尿白蛋白組和微量尿白蛋白組的糖尿病病程均比正常白蛋白尿組延長(<0.05),大量尿白蛋白組的收縮壓(systolic blood pressure,SBP)、尿素氮(blood urea nitrogen,BUN)、Scr也高于正常尿白蛋白組(<0.05)。隨著研究的進(jìn)展,隨訪后各組研究對象的體質(zhì)量指數(shù)、血壓、血糖、血脂水平較隨訪前無明顯改變(>0.05),胰島素、血管緊張素轉(zhuǎn)換酶抑制劑、血管緊張素受體拮抗劑、貝特類降脂藥、他汀類降脂藥物使用情況較隨訪前也無明顯改變(>0.05),但大量尿白蛋白組的BUN和Scr較隨訪前有明顯升高(<0.05)。
隨訪前和隨訪后,大量尿白蛋白組的eGFR均低于正常尿白蛋白組、微量尿白蛋白組(<0.05),微量尿白蛋白組的eGFR與正常尿白蛋白組無明顯差異(>0.05)。隨訪后微量尿白蛋白組和大量尿白蛋白組的eGFR水平較隨訪前降低(<0.05)。
隨訪前和隨訪后,大量尿白蛋白組的UAER均顯著高于正常尿白蛋白組和微量尿白蛋白組(<0.05),微量尿白蛋白組的UAER也均高于正常尿白蛋白組(<0.05)。而隨訪后僅大量尿白蛋白組的UAER水平較隨訪前升高(<0.05)。
表1 各組患者相關(guān)臨床指標(biāo)隨訪前后的變化情況
BMI: body mass index; DM: diabetes mellitus; SBP: systolic blood pressure; DBP: diastolic blood pressure; FBG: fasting blood glucose; HbA1c: glycosylated hemoglobin A1c; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; BUN: blood urea nitrogen; Scr: serum creatinine; ACEI: angiotensin-converting-enzyme inhibitor; ARB: angiotensin receptor blocker. Group 1: normo-albuminuria group; group 2: micro-albuminuria group; group 3: macro-albuminuria group. Compared with group 1,*<0.05; compared with baseline level,#<0.05
隨訪前和隨訪后,大量尿白蛋白組的L-FABP均高于正常尿白蛋白組和微量尿白蛋白組(<0.05),微量尿白蛋白組的L-FABP也高于正常尿白蛋白組(<0.05)。隨訪后微量尿白蛋白組和大量尿白蛋白組的L-FABP水平均較隨訪前升高(<0.05,表2)。提示L-FABP在糖尿病患者腎臟功能變化早期即出現(xiàn)升高,動態(tài)監(jiān)測尿L-FABP可能是早期預(yù)測2型糖尿病腎病的進(jìn)展的生物學(xué)指標(biāo)。
Pearson線性相關(guān)結(jié)果提示:研究初始,大量尿白蛋白組和微量尿白蛋白組的尿L-FABP水平與eGFR呈負(fù)相關(guān)(分別為=-0.461,=-0.194;<0.05),大量尿白蛋白組和微量尿白蛋白組的尿L-FABP基線水平與UAER呈正相關(guān)(=0.573,=0.219;<0.05);其他與尿L-FABP呈正相關(guān)的指標(biāo)有收縮壓、HbA1c、BUN和Scr。隨訪后,尿大量白蛋白組和微量尿白蛋白組的尿L-FABP水平仍與eGFR呈負(fù)相關(guān)(分別為=-0.379,=-0.199;<0.05),大量尿白蛋白組和微量尿白蛋白組的尿L-FABP水平與UAER顯著正相關(guān)(=0.689,=0.203;<0.05);其他與尿L-FABP呈正相關(guān)的指標(biāo)有SBP、FBG、HbA1c、BUN和Scr(表3)。
計算各組患者eGFR變化率,并與各項腎損傷指標(biāo)包括血壓、BUN、Scr、UAER、尿F-LABP等進(jìn)行多元回歸分析。結(jié)果提示,隨訪前微量尿白蛋白組和大量尿白蛋白組的尿L-FABP水平與eGFR變化率顯著相關(guān)(分別為=-0.327,=-2.987;=-0.397,=-4.376;<0.05);其他與eGFR變化率顯著相關(guān)的因素包括:大量尿白蛋白組的UAER水平和SBP;隨訪后微量尿白蛋白組和大量尿白蛋白組的尿L-FABP水平與eGFR變化率顯著相關(guān)(分別為=-0.378,=-4.298;=-0.455,=-4.854;<0.05),其他與eGFR變化率顯著相關(guān)的因素包括隨訪后大量尿白蛋白組的BUN、Scr和SBP(表4)。結(jié)果提示尿L-FABP可早期獨立預(yù)測2型糖尿病腎病患者的eGFR下降情況。
表2 隨訪前后3組患者eGFR、UAER、尿L-FABP的變化
eGFR: estimated glomerular filtration rate; UAER: urinary albumin excretion rate; L-FABP: liver-type fatty acid binding protein. Group1: normo-albuminuria group; Group 2: micro-albuminuria group; Group 3: macro-albuminuria group. Compared with group 1,*<0.05; compared with group 2,#<0.05; compared with baseline level,▲<0.05
表3 尿L-FABP和各項臨床生化指標(biāo)的線性關(guān)系
SBP: systolic blood pressure; DBP: diastolic blood pressure; FBG: fasting blood glucose; HbA1c:glycosylated hemoglobin A1c; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; BUN: blood urea nitrogen; Scr: serum creatinine; eGFR: estimated glomerular filtration rate: UAER: urinary albumin excretion rate. Group 1: normo-albuminuria group; group 2: micro-albuminuria group; group 3: macro-albuminuria group. Significantly correlated with urine L-FABP level,*<0.05
表4 各組患者eGFR變化率與隨訪前后尿L-FABP的多元逐步回歸分析
SBP: systolic blood pressure; DBP: diastolic blood pressure; BUN: blood urea nitrogen; Scr: serum creatinine; UAER: urinary albumin excretion rate; L-FABP: liver-type fatty acid binding protein; G1: group 1, normo-albuminuria group; G2: group 2, micro-albuminuria group; G3: group 3, macro-albuminuria group
糖尿病腎病是CKD的主要原因[8]。糖尿病腎病進(jìn)入大量尿白蛋白階段或CKD階段時,腎臟損傷常不可逆[9]。早期檢測和干預(yù)是治療糖尿病腎病的關(guān)鍵[10,11]。微量尿白蛋白為糖尿病腎病的早期表現(xiàn),與疾病進(jìn)展至終末期腎臟疾病和心血管事件相關(guān)[12?15]。但多項研究表明,長期患有糖尿病的患者在微量尿白蛋白的發(fā)生前即可出現(xiàn)腎臟病理性異常[16],甚至出現(xiàn)嚴(yán)重腎功能受損[17?19]。故尋找一個能早期預(yù)測糖尿病患者腎功能變化的生物標(biāo)志物是國內(nèi)外學(xué)者目前研究的熱點。
雖然大多數(shù)糖尿病腎病患者由于出現(xiàn)腎小球改變而導(dǎo)致蛋白尿,但是否最終形成終末期腎功能衰竭,還是取決于腎小管間質(zhì)纖維化改變[20?22],故腎小管損傷的標(biāo)志物可有助于確定腎功能衰退的程度。最近的幾項研究表明,腎小管損傷標(biāo)志物,如腎損傷分子?1(kidney injury molecule-1,KIM-1)、中性粒細(xì)胞明膠酶相關(guān)脂質(zhì)運載蛋白(neutrophil gelatinase associated lipocalin,NGAL)和L-FABP,可能是確定糖尿病患者腎功能減退程度的潛在的臨床標(biāo)志物[23?26]。L-FABP在腎小管上皮細(xì)胞中表達(dá),近期一些學(xué)者發(fā)現(xiàn)腎小管周圍毛細(xì)血管血流量減少引起缺氧時,L-FABP則脫落到尿液中,進(jìn)一步研究發(fā)現(xiàn),2型糖尿病患者尿L-FABP水平與eGFR下降率顯著相關(guān),尿L-FABP可能成為反映糖尿病患者腎功能減退的臨床生物標(biāo)志物[27?29]。據(jù)上,國外專家對尿L-FABP和糖尿病腎病的研究較為熱門,但均在初步階段,研究不夠全面,也不夠深入,研究病例數(shù)也均較少。國內(nèi)尚無尿L-FABP和糖尿病腎病或糖尿病腎功能受損方面的研究,我們首先進(jìn)行了這方面的研究,具有創(chuàng)新性。本研究包括288名不同程度的糖尿病腎病患者,使用腎小管損傷的生物標(biāo)志物尿L-FABP來預(yù)測2型糖尿病腎病患者的腎功能變化。通過前瞻性研究,我們發(fā)現(xiàn),尿L-FABP水平與糖尿病患者的腎功能改變相關(guān),動態(tài)監(jiān)測尿L-FABP可早期預(yù)測2型糖尿病腎病的進(jìn)展,進(jìn)一步研究發(fā)現(xiàn),尿L-FABP可能早期獨立預(yù)測2型糖尿病腎病患者的eGFR下降情況。
綜上,我們的結(jié)果顯示尿L-FABP水平與2型糖尿病腎病的進(jìn)展和腎功能下降情況密切相關(guān),尤其尿L-FABP可能是早期獨立預(yù)測2型糖尿病患者腎功能下降的潛在臨床標(biāo)志物。定期檢測尿L-FABP水平和積極治療,對預(yù)防和延緩糖尿病患者腎功能惡化尤其是尿毒癥的發(fā)生發(fā)展可能有一定作用。本研究仍存在一些局限,由于本篇主要為隨訪觀察研究,未將正常糖耐量人群的資料作為對照,同時也缺乏干預(yù),但我們的試驗數(shù)據(jù)提示橫斷面分析與縱向分析結(jié)果一致,而這項研究也正在不斷進(jìn)行和完善中,相信進(jìn)一步的研究將提供更有力的臨床依據(jù)。
[1] Gray SP, Cooper ME. Diabetic nephropathy in 2010: alleviating the burden of diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(2): 71?73.
[2] McMahon BA, Murray PT. Urinary liver fatty acid-binding protein: another novel biomarker of acute kidney injury[J]. Kidney Int, 2010, 77(8): 657?659.
[3] Fu WJ, Li BL, Wang SB,. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration[J]. Diabetes Res Clin Pract, 2012, 95(1): 105?109.
[4] Fu WJ, Xiong SL, Fang YG,. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study[J]. Endocrine, 2012, 41(1): 82?88.
[5] Nielsen SE, Andersen S, Zdunek D,. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy[J]. Kidney Int, 2011, 79(10): 1113?1118.
[6] Wang HB, Xia XK, Wu JH. Assessment of CKD-EPI equation estimating glomerular filtration rate[J]. Int J Lab Med, 2011, 32(9): 936?941. [王宏斌, 夏先考, 吳建華. CKD-EPI方程估算腎小球濾過率的評價[J]. 國際檢驗醫(yī)學(xué)雜志, 2011, 32(9): 936?941.]
[7] American Diabetes Association. Standards of medical care in diabetes—2012[J]. Diabetes care, 2012, 35 (Suppl 1): S11?S63.
[8] Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history[J]. Curr Diab Rep, 2006, 6(6): 479?483.
[9] Nielsen SE, Schjoedt KJ, Astrup AS,. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril[J]. Diabet Med, 2010, 27(10): 1144?1150.
[10] Nickolas TL, Barasch J, Devarajan P. Biomarkers in acute and chronic kidney disease[J]. Curr Opin Nephrol Hypertens, 2008, 17(2): 127?132.
[11] Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy[J]. Nat Clin Pract Endocrinol Metab, 2008, 4(8): 444?452.
[12] de Zeeuw D, Ramjit D, Zhang Z,. Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAL[J]. Kidney Int, 2006, 69(9): 1675?1682.
[13] Ruggenenti P, Remuzzi G.. Time to abandon microalbuminuria[J]? Kidney Int, 2006, 70(7): 1214?1222.
[14] Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin- dependent diabetes mellitus. A systematic overview of the literature[J]. Arch Intern Med, 1997, 157(13): 1413?1418.
[15] Ninomiya T, Perkovic V, de Galan BE,. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes[J]. J Am Soc Nephrol, 2009, 20(8): 1813?1821.
[16] Fioretto P, Steffes MW, Brown DM,. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics[J]. Am J Kidney Dis, 1992, 20(6): 549?558.
[17] Klausen K, Borch-Johnsen K, Feldt-Rasmussen B,. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes[J]. Circulation, 2004, 110(1): 32?35.
[18] Adler AI, Stevens RJ, Manley SE,. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study(UKPDS 64)[J]. Kidney Int, 2003, 63(1): 225?232.
[19] Yamazaki M, Tani N, Igarashi K,. Changes in the glomerular pore size selectivity in patients with typeⅡ diabetes mellitus[J]. J Diabet Complications, 1991, 5(2-3): 138?139.
[20] Mauer SM, Steffes MW, Ellis EN,. Structural-functional relationships in diabetic nephropathy[J]. J Clin Invest, 1984, 74(4): 1143?1155.
[21] Bohle A, Wehrmann M, Bogenschutz O,. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis[J]. Pathol Res Pract, 1991, 187(2?3): 251?259.
[22] Phillips AO, Steadman R. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury[J]. Histol Histopathol, 2002, 17(1): 247?252.
[23] Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy[J]. Contrib Nephrol, 2011, 170: 36?47.
[24] Bolignano D, Lacquaniti A, Coppolino G,. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients[J]. Kidney Blood Press Res, 2009, 32(2): 91?98.
[25] Nauta FL, Boertien WE, Bakker SJ,. Glomerular and tubular damage markers are elevated in patients with diabetes[J]. Diabetes Care, 2011, 34(4): 975?981.
[26] Araki S, Haneda M, Koya D,. Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy[J]. Diabetes Care, 2013, 36(5): 1248?1253.
[27] Kamijo A, Sugaya T, Hikawa A,. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease[J]. Mol Cell Biochem, 2006, 284(1?2): 175?182.
[28] Panduru NM, Forsblom C, Saraheimo M,. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes[J]. Diabetes Care, 2013, 36(7): 2077?2083.
[29] Chou KM, Lee CC, Chen CH,. Clinical value of NGAL, L-FABP and albuminuria in predicting GFR decline in type 2 diabetes mellitus patients[J]. PLoS One, 2013, 8(1): e54863.
(編輯: 劉子琪)
Longitudinal study on relationship of urinary L-FABP with renal function in type 2 diabetes mellitus patients
ZHU Zhen, ZHU Chao-Yu, GAO Qing-Ge, XU Li, YU Jing, JIANG Fu-Song, WEI Li*
(Department of Endocrinology, the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201306, China)
Urine liver-type fatty acid binding protein (L-FABP) is emerging as an excellent biomarker for the early prediction of acute and chronic kidney injury. The aim of this prospective study was to determine the value of urine L-FABP in predicting the progression of nephropathy and the decline of estimated glomerular filtration rate (eGFR) in type 2 diabetic patients.A longitudinal cohort study was conducted on 288 type 2 diabetic patients for 2 consecutive years, who were admitted to Department of Endocrinology of our hospital during January 2010 to June 2012. They were divided into normo-, micro- and macro-albuminuria groups according to their 24h-urinary albumin excreting rate (UAER). Urine levels of L-FABP, and UAER were determined.The follow-up levels of urinary L-FABP in both the micro- and macro-albuminuria groups were significantly higher than their baseline levels (<0.05), but only the macro-albuminuria group had the level of UAER higher than its baseline (<0.05). The results of Pearson correlations showed that urine L-FABP was correlated with UAER in the micro- and macro-albuminuria groups at both before and after follow-up (before:=0.573,=0.219,<0.05; after:=0.689,=0.203,<0.05). Multivariate stepwise regression analysis indicated that the urinary L-FABP levels before and after follow-up were significantly correlated with eGFR decline rate in both the macro- and micro-albuminuria groups (macro-albuminuria group:=-0.397,=-4.376,=-0.455,=-4.854,<0.05; micro-albuminuria group:=-0.327,=-2.987,=-0.378,=-4.298,<0.05).Urine L-FABP is correlated with renal function in the patients with type 2 diabetes mellitus, and its dynamic monitoring may predict the progression of diabetic nephropathy. Urine L-FABP may independently predict the early decline of eGFR in type 2 diabetic nephropathy patients.
diabetic nephropathy; liver-type fatty acid binding protein; albuminuria; glomerular filtration rate
(PWZxq2014-07).
R587.1
A
10.11915/j.issn.1671-5403.2015.05.077
2014?12?26;
2015?04?02
上海市浦東新區(qū)衛(wèi)生系統(tǒng)重點學(xué)科群建設(shè)基金(PWZxq2014-07)
魏 麗, E-mail: 18930173636@189.com