于德剛 湯亭亭 朱振安
骨關(guān)節(jié)炎(OA)是一種最常見的骨關(guān)節(jié)疾病,其病理特征主要表現(xiàn)為進(jìn)展性關(guān)節(jié)軟骨丟失、軟骨下骨異常改變、輕度滑膜反應(yīng)及周圍軟組織異常。OA主要臨床癥狀為關(guān)節(jié)慢性疼痛,尤其是負(fù)重性疼痛。近年來大量研究顯示,OA軟骨下骨異常改變與關(guān)節(jié)疼痛及關(guān)節(jié)軟骨退變密切相關(guān)。
軟骨下骨一般指關(guān)節(jié)軟骨沉積線以下的軟骨下骨板和骨小梁結(jié)構(gòu),軟骨下骨板界于鈣化軟骨層與骨小梁之間,為皮質(zhì)化板層骨結(jié)構(gòu),類似于皮質(zhì)骨[1-3]。也有學(xué)者[1,4-6]將軟骨下骨定義為關(guān)節(jié)軟骨潮線以下的鈣化組織,將鈣化軟骨層歸于軟骨下骨板。鈣化軟骨、軟骨下骨板和骨小梁等結(jié)構(gòu)對OA發(fā)病的影響可能并不一致,但目前的影像學(xué)技術(shù)難以將它們在解剖學(xué)上區(qū)分,因此許多基于臨床影像學(xué)的研究實際上是對軟骨下鈣化組織的觀察。
生理狀態(tài)下,軟骨下骨可為關(guān)節(jié)軟骨提供力學(xué)支撐,并協(xié)同關(guān)節(jié)軟骨傳遞關(guān)節(jié)內(nèi)負(fù)荷,緩沖約30%的關(guān)節(jié)內(nèi)下傳應(yīng)力,維持關(guān)節(jié)匹配,防止關(guān)節(jié)內(nèi)應(yīng)力集中。此外,通過軟骨下骨板和鈣化軟骨層的終末血管可為關(guān)節(jié)軟骨提供營養(yǎng)支持[2,4,7]。
影像學(xué)檢查中出現(xiàn)軟骨下骨硬化是OA主要特征表現(xiàn)之一。然而,目前研究表明軟骨下骨的表現(xiàn)隨著OA病情的進(jìn)展而呈動態(tài)改變,在病程早期主要表現(xiàn)為骨吸收,在晚期主要表現(xiàn)為骨形成。
OA早期或進(jìn)展階段,軟骨下骨骨改建活躍,軟骨下骨礦沉積率增加3~5倍[8-9],且骨改建位點也有增加,活躍的骨改建降低了軟骨下骨板厚度[10]。研究[11]顯示,犬前交叉韌帶切斷(ACLT)模型中OA早期軟骨下骨板厚度明顯變薄且孔隙增加。對小鼠膠原酶誘導(dǎo)模型[12-13]、大鼠 ACLT 模 型[14]或大鼠ACLT伴有內(nèi)側(cè)半月板切除模型[15]等觀察發(fā)現(xiàn),OA早期軟骨下骨板和(或)骨小梁明顯丟失。在 OA 早期患者中也觀察到類似現(xiàn)象[16-17]。研究[18]顯示,OA進(jìn)展階段患者骨吸收標(biāo)志物顯著升高,而OA非進(jìn)展階段患者骨吸收標(biāo)志物并不升高。在無臨床癥狀的早期OA中青年男性患者中骨吸收標(biāo)志物也升高[19]。
OA早期軟骨下骨骨改建增加的原因目前尚未明確,可能機制包括顯微損傷修復(fù)、促血管生成因子誘導(dǎo)的血管侵入及經(jīng)軟骨下微孔的骨與軟骨相互作用。關(guān)節(jié)內(nèi)持續(xù)負(fù)荷可導(dǎo)致軟骨下骨板產(chǎn)生顯微裂痕,從而啟動骨改建[20-21]。OA 骨軟骨中促血管生成因子如血管內(nèi)皮細(xì)胞生長因子(VEGF)等增加,軟骨下骨中血管生成增多,并侵入關(guān)節(jié)軟骨深層[22](骨改建增加與血管侵入相關(guān))。退變軟骨和軟骨下骨中轉(zhuǎn)化生長因子(TGF)-β、胰島素樣生長因子(IGF)-Ⅰ、白 細(xì)胞 介 素 (IL)-1、IL-6 和 前 列 腺 素(PG)E2蛋白水平升高,Wnt信號上調(diào),核因子-κB受體活化因子配體(RANKL)上調(diào)而骨保護(hù)素(OPG)下調(diào)等,可刺激骨改建[23-25]。正常關(guān)節(jié)軟骨下骨板中存在微孔隙,可提供軟骨與軟骨下骨相互作用[7];OA 發(fā)生時,軟骨下骨板孔隙增加[13]。研究[26]報道,應(yīng)用示蹤技術(shù)發(fā)現(xiàn)大鼠軟骨下骨與關(guān)節(jié)軟骨相互作用。研究[27-28]證實,在小鼠模型中軟骨損傷和血管侵入可增加孔隙大小和數(shù)量,允許骨與軟骨之間通過小分子彌散相互作用。
OA晚期骨轉(zhuǎn)換減少,骨吸收減弱,而骨形成相對增加,影像學(xué)上表現(xiàn)為軟骨下骨板骨質(zhì)硬化[29]。正常骨吸收與骨形成之間的偶聯(lián)機制在OA晚期失去平衡,傾向骨形成[30]。研究[31-34]顯示,與正?;颊呦啾?,OA晚期患者軟骨下骨密度增加、骨體積增加、膠原含量增加,但鈣與膠原比例降低、骨礦化度降低、力學(xué)強度降低。這是由于骨表觀密度與材料密度的差異所致,如果骨體積分?jǐn)?shù)增加,則表觀密度增加;如果骨礦化不足,則表觀密度降低,同時力學(xué)剛度下降。有研究[35]報道,OA晚期軟骨下骨體積分?jǐn)?shù)與骨礦化度相關(guān)為共適應(yīng)過程,即骨量增加以應(yīng)對骨礦化不足。
OA晚期軟骨下骨礦化度降低的機制目前尚不清楚,可能與成骨細(xì)胞分化調(diào)節(jié)因子有關(guān)[36]。研究表明,骨礦化度降低與軟骨下成骨細(xì)胞產(chǎn)生的TGF-β和 Dickkopf 家 族 蛋 白 (Dkk)-2 增 加 有關(guān)[37-38];Dkk-2是 Wnt信號的抑制劑,可抑制成骨細(xì)胞礦化[39]。另有研究[40]顯示,生理狀況下成骨細(xì)胞生成的Ⅰ型膠原為2個α1鏈和1個α2鏈構(gòu)成的異三聚體,而OA晚期成骨細(xì)胞生成的Ⅰ型膠原為α1鏈同源三聚體,其可阻礙膠原正常礦化。
此外,隨著醫(yī)療技術(shù)的發(fā)展,MRI檢查用于診斷OA越來越廣泛。軟骨下骨骨髓損傷是OA在MRI圖像上的特征表現(xiàn)之一,在T2加權(quán)抑脂序列或短時間反轉(zhuǎn)恢復(fù)序列上表現(xiàn)為軟骨下邊界模糊的高信號區(qū)。在組織病理學(xué)上,軟骨下骨骨髓損傷的表現(xiàn)包括水腫、纖維化、骨壞死、骨小梁損傷和骨改建[41]。隨著OA的進(jìn)展,軟骨下骨骨髓損傷可表現(xiàn)為無明顯改變、繼續(xù)擴展、消退或新發(fā)[42-43]。經(jīng)MRI檢查結(jié)合顯微CT、定量CT檢查及雙能X線吸收法(DXA)分析發(fā)現(xiàn),OA晚期軟骨下骨骨髓損傷區(qū)域呈現(xiàn)骨質(zhì)硬化、骨體積分?jǐn)?shù)增加、骨密度降低[44-46]。
關(guān)節(jié)慢性疼痛是OA的突出癥狀,疼痛產(chǎn)生原因及其治療方案一直是研究的難點。目前的研究提示軟骨下骨異常改變在OA關(guān)節(jié)疼痛產(chǎn)生及治療中起重要作用。
眾多基于臨床影像學(xué)檢查的研究提示,OA軟骨下骨異常改變與關(guān)節(jié)疼痛呈正相關(guān)。膝關(guān)節(jié)OA患者X線片上表現(xiàn)的結(jié)構(gòu)性改變(Kellgren-Lawrence分級)與關(guān)節(jié)疼痛顯著相關(guān)[47]。膝關(guān)節(jié)軟骨下骨磨損指受累平臺骨質(zhì)垂直丟失或壓縮,是軟骨下骨骨改建的表現(xiàn)[17],為膝關(guān)節(jié)OA患者常見的影像學(xué)表現(xiàn)。研究發(fā)現(xiàn),膝關(guān)節(jié)X線和MRI影像上表現(xiàn)出的軟骨下骨磨損與關(guān)節(jié)疼痛強烈相關(guān)[48-49];軟骨下骨裸露程度與關(guān)節(jié)疼痛程度呈正相關(guān)[50]。研究報道,在 MRI影像上可觀察到軟骨下骨骨髓損傷與膝關(guān)節(jié)疼痛相關(guān),甚至較滑膜炎更能預(yù)測關(guān)節(jié)疼痛[51-52],軟骨下骨骨髓損傷發(fā)生發(fā)展與疼痛加重相關(guān)[43]。
組織病理學(xué)研究發(fā)現(xiàn),正常關(guān)節(jié)軟骨下骨中分布著痛覺神經(jīng)纖維[53],在OA軟骨下骨板中血管神經(jīng)束增加,并侵入骨軟骨交界處直至關(guān)節(jié)軟骨深層[54-56]。有研究[57]發(fā)現(xiàn),OA 軟骨下骨中多種 炎癥介質(zhì)和痛覺遞質(zhì)增加。
針對軟骨下骨異常改變進(jìn)行治療的研究結(jié)果也支持軟骨下骨異常改變在關(guān)節(jié)疼痛產(chǎn)生中起重要作用。研究發(fā)現(xiàn),具有抑制骨吸收或促進(jìn)骨形成作用的骨保護(hù)類藥物如雙膦酸鹽類[58-59]、雷尼酸鍶[60-61]等,可通過改善或抑制軟骨下骨異常改變緩解OA患者關(guān)節(jié) 疼痛。小 鼠[62]、大鼠[63-65]和 犬[66]實 驗也發(fā)現(xiàn),骨保護(hù)類藥物可改善軟骨下骨結(jié)構(gòu),減輕關(guān)節(jié)疼痛,降低痛覺標(biāo)志物表達(dá)。
改善軟骨下骨而緩解關(guān)節(jié)疼痛的機制可能為:關(guān)節(jié)軟骨為無血管神經(jīng)組織[67],而軟骨下骨有豐富的血管神經(jīng)支配[68-69],OA 時軟骨下骨板血管神經(jīng)束增加并侵入骨軟骨界面[54-56];OA時軟骨下骨結(jié)構(gòu)與力學(xué)性能改變[6,34]及炎性致痛介質(zhì)增加,致使軟骨下骨中的痛覺感受器極易受到化學(xué)及力學(xué)刺激或損傷[70],進(jìn)而表現(xiàn)出OA疼痛癥狀,尤其是負(fù)重性疼痛[68]。因此,改善軟骨下骨結(jié)構(gòu)和力學(xué)性能有助于防止軟骨下痛覺感受器受到刺激或損傷,進(jìn)而緩解關(guān)節(jié)疼痛。此外,有研究[71]表明破骨細(xì)胞活性增強而引發(fā)的酸性環(huán)境也可導(dǎo)致痛覺產(chǎn)生。在OA發(fā)病過程中軟骨下骨骨轉(zhuǎn)換活躍、破骨細(xì)胞活性增強,因此抑制破骨細(xì)胞活性有助于減緩關(guān)節(jié)疼痛。
臨床上膝關(guān)節(jié)內(nèi)側(cè)或外側(cè)單間室OA疼痛癥狀常在施行脛骨高位截骨術(shù)后得到有效緩解,其原理在于通過調(diào)整膝關(guān)節(jié)力線平衡關(guān)節(jié)內(nèi)負(fù)荷,減少過高應(yīng)力對患側(cè)軟骨與軟骨下骨的過度刺激[72]。目前膝關(guān)節(jié)單髁或全髁置換術(shù)是治療OA關(guān)節(jié)疼痛的成熟術(shù)式,其機制在于切除病變軟骨與軟骨下骨,更換關(guān)節(jié)摩擦副[73],這進(jìn)一步表明OA軟骨下骨是關(guān)節(jié)疼痛產(chǎn)生的主要源點之一。
對于OA軟骨下骨異常改變是關(guān)節(jié)軟骨退變的始動因素還是繼發(fā)性改變,目前尚存在異議。長期以來OA軟骨下骨異常改變被認(rèn)為是繼發(fā)于關(guān)節(jié)軟骨退變,許多實驗研究也支持這種觀點[74-75],但另一些實驗研究發(fā)現(xiàn)軟骨下骨異常改變可發(fā)生在軟骨退變前或與之同時發(fā)生[76-78]。但可以肯定的是,關(guān)節(jié)軟骨退變與軟骨下骨異常改變相關(guān),軟骨下骨出現(xiàn)異常可加速軟骨退變,而改善骨異常則可減緩軟骨退變。
研究[16]報道,采用骨閃爍成像法觀察到膝關(guān)節(jié)OA患者軟骨下骨骨轉(zhuǎn)換增強與病情快速進(jìn)展相關(guān)。多個基于MRI的影像學(xué)研究發(fā)現(xiàn),OA關(guān)節(jié)軟骨丟失與軟骨下骨骨髓損傷、磨損顯著相關(guān)[48,50,79-85];關(guān)節(jié)軟骨丟失與軟骨下骨吸收相關(guān)[35],軟骨下骨磨損區(qū)域關(guān)節(jié)軟骨丟失的風(fēng)險較正常區(qū)域增加7倍[86]。有研究報道,犬 ACLT 模型[11]、兔骨質(zhì)疏松關(guān)節(jié)失穩(wěn)模型中關(guān)節(jié)軟骨損傷與軟骨下骨板厚度降低相關(guān)。小鼠和兔實驗研究[8,87]顯示,軟骨退變可發(fā)生于骨板增厚區(qū)域。小鼠Ⅰ型膠原突變模型[88]、小鼠過表達(dá) RUNX2模型[89]、大鼠骨質(zhì)疏松模型[90]和兔模型[91-92]等研究證實,軟骨下骨骨轉(zhuǎn)換增加可促進(jìn)關(guān)節(jié)軟骨細(xì)胞與軟骨基質(zhì)丟失,增加關(guān)節(jié)軟骨損傷。
在小鼠ACLT模型中,抑制軟骨下骨中過高的TGF-β1可改善骨結(jié)構(gòu),減緩軟骨退變[93]。研究[94]報道,在基因修飾小鼠模型中骨特異性過表達(dá)成骨刺激因子EphB4可保護(hù)OA軟骨下骨,減輕關(guān)節(jié)軟骨損傷。多個動物實驗研究[14,22,62,90-91,95-96]發(fā)現(xiàn),骨保護(hù)類藥物如抗骨吸收藥物(雌激素類、降鈣素、雙膦酸鹽類和OPG等)、促骨形成藥物(特立帕肽等)、雙向調(diào)控藥物(雷尼酸鍶等)可通過抑制或改善軟骨下骨損傷減緩關(guān)節(jié)軟骨退變。此外,多個臨床實驗研究[61,97-100]結(jié)果也支持骨保護(hù)類藥物具有抑制軟骨Ⅱ型膠原降解、延緩軟骨退變的積極作用。
軟骨下骨異常改變影響關(guān)節(jié)軟骨退變的機制目前尚未明確,可能主要有以下兩個方面:在生物力學(xué)方面,關(guān)節(jié)軟骨含有大量水分,承受壓縮應(yīng)力性能強,但承受張應(yīng)力和剪切應(yīng)力性能弱,OA軟骨下骨密度和硬度的不均質(zhì)性及其彈性模量下降,致使關(guān)節(jié)軟骨承受到異常的張應(yīng)力和剪切應(yīng)力,易出現(xiàn)軟骨退變[101];在分子生物學(xué)方面,OA軟骨下骨板微孔隙增加,骨與軟骨之間作用加強[13,28],OA 軟骨下成骨細(xì)胞、破骨細(xì)胞、骨細(xì)胞可釋放多種蛋白酶、炎性介質(zhì)與生長因子,以促進(jìn)其上層軟骨細(xì)胞死亡和基質(zhì)降解[102-103]。
雖然越來越多的動物與臨床實驗證實通過骨保護(hù)類藥物可減輕關(guān)節(jié)疼痛、延緩關(guān)節(jié)軟骨退變,但也有臨床研究顯示其療效并不確切[58]。產(chǎn)生差異的主要原因可能在于軟骨下骨在OA病程中呈動態(tài)轉(zhuǎn)變,軟骨下骨異常改變并非總能被抑制或改善,干預(yù)效果依賴于治療始期[64]。
總之,OA軟骨下骨在病程中呈動態(tài)轉(zhuǎn)變,病程早期主要表現(xiàn)為骨吸收,晚期主要表現(xiàn)為骨形成。越來越多的研究證實,OA軟骨下骨異常改變促進(jìn)了關(guān)節(jié)疼痛和關(guān)節(jié)軟骨退變發(fā)生。相信隨著研究的深入,軟骨下骨靶向治療有希望成為新的治療手段。
[1] Madry H,van Dijk CN,Mueller-Gerbl M.The basic science of the subchondral bone[J].Knee Surg Sports Traumatol Arthrosc,2010,18(4):419-433.
[2] Imhof H,Sulzbacher I,Grampp S,et al.Subchondral bone and cartilage disease:a rediscovered functional unit[J].Invest Radiol,2000,35(10):581-588.
[3] Burr DB,Gallant MA.Bone remodelling in osteoarthritis[J].Nat Rev Rheumatol,2012,8(11):665-673.
[4] Duncan H,Jundt J,Riddle JM,et al.The tibial subchondral plate.A scanning electron microscopic study[J].J Bone Joint Surg Am,1987,69(8):1212-1220.
[5] Castaneda S,Roman-Blas JA,Largo R,et al.Subchondral bone as a key target for osteoarthritis treatment[J].Biochem Pharmacol,2012,83(3):315-323.
[6] Burr DB.Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis[J].Osteoarthritis Cartilage,2004,12(Suppl A):S20-S30.
[7] Lyons TJ,McClure SF,Stoddart RW,et al.The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces[J].BMC Musculoskelet Disord,2006,7:52.
[8] Benske J,Schunke M,Tillmann B.Subchondral bone formation in arthrosis.Polychrome labeling studies in mice[J].Acta Orthop Scand,1988,59(5):536-541.
[9] Amir G,Pirie CJ,Rashad S,et al. Remodelling of subchondral bone in osteoarthritis:a histomorphometric study[J].J Clin Pathol,1992,45(11):990-992.
[10] Intema F,Sniekers YH,Weinans H,et al.Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis[J].J Bone Miner Res,2010,25(7):1650-1657.
[11] Sniekers YH,Intema F,Lafeber FP,et al.A role for subchondral bone changes in the process of osteoarthritis:a micro-CT study of two canine models [J]. BMC Musculoskelet Disord,2008,9:20.
[12] Botter SM,van Osch GJ,Waarsing JH,et al.Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis[J].Osteoarthritis Cartilage,2008,16(4):506-514.
[13] Botter SM,van Osch GJ,Clockaerts S,et al.Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice:an in vivo microfocal computed tomography study[J].Arthritis Rheum,2011,63(9):2690-2699.
[14] Hayami T,Pickarski M,Wesolowski GA,et al.The role of subchondral bone remodeling in osteoarthritis:reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model[J].Arthritis Rheum,2004,50(4):1193-1206.
[15] Hayami T,Pickarski M,Zhuo Y,et al.Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J].Bone,2006,38(2):234-243.
[16] Dieppe P,Cushnaghan J,Young P,et al.Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy[J].Ann Rheum Dis,1993,52(8):557-563.
[17] Reichenbach S,Guermazi A,Niu J,et al.Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort[J].Osteoarthritis Cartilage,2008,16(9):1005-1010.
[18] Bettica P,Cline G,Hart DJ,et al.Evidence for increased bone resorption in patients with progressive knee osteoarthritis:longitudinal results from the Chingford study[J].Arthritis Rheum,2002,46(12):3178-3184.
[19] Bolbos RI,Zuo J,Banerjee S,et al.Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T[J].Osteoarthritis Cartilage,2008,16(10):1150-1159.
[20] Bentolila V,Boyce TM,F(xiàn)yhrie DP,et al.Intracortical remodeling in adult rat long bones after fatigue loading[J].Bone,1998,23(3):275-281.
[21] Verborgt O,Gibson GJ,Schaffler MB.Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo[J].J Bone Miner Res,2000,15(1):60-67.
[22] Pesesse L,Sanchez C,Henrotin Y.Osteochondral plate angiogenesis:a new treatment target in osteoarthritis[J].Joint Bone Spine,2011,78(2):144-149.
[23] Tat SK,Pelletier JP,Lajeunesse D,et al.Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts:influence of osteotropic factors[J].Bone,2008,43(2):284-291.
[24] Massicotte F,Lajeunesse D,Benderdour M,et al.Can altered production of interleukin-1beta, interleukin-6,transforming growth factor-beta and prostaglandin E(2)by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients [J]. Osteoarthritis Cartilage,2002,10(6):491-500.
[25] Mansell JP,Collins C,Bailey AJ.Bone,not cartilage,should be the major focus in osteoarthritis[J].Nat Clin Pract Rheumatol,2007,3(6):306-307.
[26] Pan J,Zhou X,Li W,et al.In situ measurement of transport between subchondral bone and articular cartilage[J].J Orthop Res,2009,27(10):1347-1352.
[27] Hwang J,Bae WC,Shieu W,et al.Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis[J].Arthritis Rheum,2008,58(12):3831-3842.
[28] Pan J,Wang B,Li W,et al.Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints[J].Bone,2012,51(2):212-217.
[29] Karsdal MA, Leeming DJ, Dam EB,et al.Should subchondral bone turnover be targeted when treating osteoarthritis?[J].Osteoarthritis Cartilage,2008,16(6):638-646.
[30] Kumarasinghe DD,Perilli E,Tsangari H,et al.Critical molecular regulators,histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis[J].Osteoarthritis Cartilage,2010,18(10):1337-1344.
[31] Fazzalari NL, Parkinson IH. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip[J].J Bone Miner Res,1997,12(4):632-640.
[32] Li B,Aspden RM.Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis[J].J Bone Miner Res,1997,12(4):641-651.
[33] Coats AM,Zioupos P,Aspden RM.Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis[J].Calcif Tissue Int,2003,73(1):66-71.
[34] Bailey AJ,Mansell JP,Sims TJ,et al.Biochemical and mechanical properties of subchondral bone in osteoarthritis[J].Biorheology,2004,41(3-4):349-358.
[35] Cox LG,van Donkelaar CC,van Rietbergen B,et al.Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis[J].Bone,2012,50(5):1152-1161.
[36] Hopwood B,Tsykin A,F(xiàn)indlay DM,et al.Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling[J].Arthritis Res Ther,2007,9(5):R100.
[37] Chan TF,Couchourel D,Abed E,et al.Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts[J].J Bone Miner Res,2011,26(7):1399-1410.
[38] Zhen G, Cao X. Targeting TGF-beta signaling in subchondral bone and articular cartilage homeostasis[J].Trends Pharmacol Sci,2014,35(5):227-236.
[39] Li X,Liu P,Liu W,et al.Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation[J].Nat Genet,2005,37(9):945-952.
[40] Couchourel D,Aubry I,Delalandre A,et al.Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type Ⅰ collagen production[J].Arthritis Rheum,2009,60(5):1438-1450.
[41] Zanetti M,Bruder E,Romero J,et al.Bone marrow edema pattern in osteoarthritic knees:correlation between MR imaging and histologic findings[J].Radiology,2000,215(3):835-840.
[42] Kornaat PR,Kloppenburg M,Sharma R,et al.Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features.Eur Radiol,2007,17(12):3073-3078.
[43] Foong YC,Khan HI,Blizzard L,et al.The clinical significance,natural history and predictors of bone marrow lesion change over eight years[J].Arthritis Res Ther,2014,16(4):R149.
[44] Hunter DJ,Gerstenfeld L,Bishop G,et al.Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized[J].Arthritis Res Ther,2009,11(1):R11.
[45] Lo GH,Hunter DJ,Zhang Y,et al.Bone marrow lesions in the knee are associated with increased local bone density[J].Arthritis Rheum,2005,52(9):2814-2821.
[46] Lowitz T,Museyko O,Bousson V,et al.Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT[J].Osteoarthritis Cartilage,2013,21(7):957-964.
[47] Neogi T,F(xiàn)elson D,Niu J,et al.Association between radiographic features of knee osteoarthritis and pain:results from two cohort studies[J].BMJ,2009,339:b2844.
[48] Reichenbach S,Dieppe PA,Nüesch E,et al.Association of bone attrition with knee pain,stiffness and disability:a cross-sectional study[J].Ann Rheum Dis,2011,70(2):293-298.
[49] Hernandez-Molina G,Neogi T,Hunter DJ,et al.The association of bone attrition with knee pain and other MRI features of osteoarthritis[J].Ann Rheum Dis,2008,67(1):43-47.
[50] Moisio K, Eckstein F, Chmiel JS, et al. Denuded subchondral bone and knee pain in persons with knee osteoarthritis[J].Arthritis Rheum,2009,60(12):3703-3710.
[51] Yusuf E, Kortekaas MC, Watt I,et al. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis?A systematic review[J].Ann Rheum Dis,2011,70(1):60-67.
[52] Zhang Y,Nevitt M,Niu J,et al.Fluctuation of knee pain and changes in bone marrow lesions,effusions,and synovitis on magnetic resonance imaging[J].Arthritis Rheum,2011,63(3):691-699.
[53] Aso K,Ikeuchi M,Izumi M,et al.Nociceptive phenotype of dorsal root ganglia neurons innervating the subchondral bone in rat knee joints[J].Eur J Pain,2014,18(2):174-181.
[54] Walsh D,Bonnet C,Turner E,et al.Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis[J].Osteoarthritis Cartilage,2007,15(7):743-751.
[55] Walsh DA,McWilliams DF,Turley MJ,et al.Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis[J].Rheumatology(Oxford),2010,49(10):1852-1861.
[56] Suri S,Gill SE,de Camin SM,et al.Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis[J].Ann Rheum Dis,2007,66(11):1423-1428.
[57] Ogino S,Sasho T,Nakagawa K,et al.Detection of pain-related molecules in the subchondral bone of osteoarthritic knees[J].Clin Rheumatol,2009,28(12):1395-1402.
[58] Saag KG.Bisphosphonates for osteoarthritis prevention:“Holy Grail”or not?[J].Ann Rheum Dis,2008,67(10):1358-1359.
[59] Carbone LD,Nevitt MC,Wildy K,et al.The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis[J].Arthritis Rheum,2004,50(11):3516-3525.
[60] Reginster JY.Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis:results of a double-blind randomised,placebo-controlled trial[J].Ann Rheum Dis,2014,73(2):e8.
[61] Pelletier JP,Roubille C,Raynauld JP,et al.Disease-modifying effect of strontium ranelate in a subset of patients from the Phase Ⅲ knee osteoarthritis study SEKOIA using quantitative MRI:reduction in bone marrow lesions protects against cartilage loss[J].Ann Rheum Dis,2015,74(2):422-429.
[62] Sagar DR,Ashraf S,Xu L,et al.Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis[J].Ann Rheum Dis,2014,73(8):1558-1565.
[63] Strassle BW,Mark L,Leventhal L,et al.Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease[J].Osteoarthritis Cartilage,2010,18(10):1319-1328.
[64] Yu DG,Yu B,Mao YQ,et al.Efficacy of zoledronic acid in treatment of teoarthritis is dependent on the disease progression stage in rat medial meniscal tear model[J].Acta Pharmacol Sin,2012,33(7):924-934.
[65] Yu D,Liu F,Liu M,et al.The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons,GFAP and Iba-1in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain[J].PLoS One,2013,8(10):e77824.
[66] Moreau M,Rialland P,Pelletier JP,et al.Tiludronate treatment improves structural changes and symptoms of osteoarthritis in the canine anterior cruciate ligament model[J].Arthritis Res Ther,2011,13(3):R98.
[67] Hunter DJ,McDougall JJ,Keefe FJ.The symptoms of osteoarthritis and the genesis of pain[J].Med Clin North Am,2009,93(1):83-100.
[68] Hunter DJ,McDougall JJ,Keefe FJ.The symptoms of osteoarthritis and the genesis of pain[J].Rheum Dis Clin North Am,2008,34(3):623-643.
[69] Mach D,Rogers S,Sabino M,et al.Origins of skeletal pain:sensory and sympathetic innervation of the mouse femur[J].Neuroscience,2002,113(1):155-166.
[70] Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis[J].Nat Rev Rheumatol,2012,8(7):390-398.
[71] Yoneda T,Hata K,Nakanishi M,et al.Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain[J].Bone,2011,48(1):100-105.
[72] Hui C,Salmon LJ,Kok A,et al.Long-term survival of high tibial osteotomy for medial compartment osteoarthritis of the knee[J].Am J Sports Med,2011,39(1):64-70.
[73] Ethgen O,Bruyere O,Richy F,et al.Health-related quality of life in total hip and total knee arthroplasty.A qualitative and systematic review of the literature[J].J Bone Joint Surg Am,2004,86(5):963-974.
[74] Calvo E,Palacios I,Delgado E,et al.High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis[J].Osteoarthritis Cartilage,2001,9(5):463-472.
[75] Song Y,Greve JM,Carter DR,et al.Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads[J].Osteoarthritis Cartilage,2008,16(12):1545-1554.
[76] Carlson CS,Loeser RF,Jayo MJ,et al.Osteoarthritis in cynomolgus macaques:aprimate model of naturally occurring disease[J].J Orthop Res,1994,12(3):331-339.
[77] Carlson CS,Loeser RF,Purser CB,et al.Osteoarthritis in cynomolgus macaques.Ⅲ:Effects of age,gender,and subchondral bone thickness on the severity of disease[J].J Bone Miner Res,1996,11(9):1209-1217.
[78] Huebner JL,Hanes MA,Beekman B,et al.A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis[J].Osteoarthritis Cartilage,2002,10(10):758-767.
[79] Raynauld J,Martel-Pelletier J,Berthiaume M,et al.Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients:correlation with clinical symptoms and radiographic changes[J].Arthritis Res Ther,2006,8(1):R21.
[80] Roemer FW,Guermazi A,Javaid MK,et al.Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss:the MOST Study. A longitudinal multicentre study of knee osteoarthritis[J].Ann Rheum Dis,2009,68(9):1461-1465.
[81] Wluka A,Wang Y,Davies-Tuck M,et al.Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs[J].Rheumatology(Oxford),2008,47(9):1392-1396.
[82] Wildi LM, Raynauld JP, Martel-Pelletier J, et al.Relationship between bone marrow lesions,cartilage loss and pain in knee osteoarthritis:results from a randomised controlled clinical trial using MRI[J].Ann Rheum Dis,2010,69(12):2118-2124.
[83] Raynauld J, Martel-Pelletier J,Berthiaume M,et al.Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period[J].Ann Rheum Dis,2008,67(5):683-688.
[84] Davies-Tuck ML,Wluka AE,F(xiàn)orbes A,et al.Development of bone mar row lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement-apotential target for prevention of knee osteoarthritis:a longitudinal study[J].Arthritis Res Ther,2010,12(1):R10.
[85] Neogi T,F(xiàn)elson D,Niu J,et al.Cartilage loss occurs in the same subregions as subchondral bone attrition:a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study[J].Arthritis Rheum,2009,61(11):1539-1544.
[86] Bellido M,Lugo L,Roman-Blas JA,et al.Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arthritis Res Ther,2010,12(4):R152.
[87] Wu DD,Burr DB,Boyd RD,et al.Bone and cartilage changes following experimental varus or valgus tibial angulation[J].J Orthop Res,1990,8(4):572-585.
[88] Blair-Levy JM,Watts CE,F(xiàn)iorentino NM,et al.A typeⅠcollagen defect leads to rapidly progressive osteoarthritis in a mouse model[J].Arthritis Rheum,2008,58(4):1096-1106.
[89] Kadri A,F(xiàn)unck-Brentano T,Lin H,et al.Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling[J].Ann Rheum Dis,2010,69(8):1533-1538.
[90] Nielsen RH,Bay-Jensen AC,Byrjalsen I,et al.Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover[J].Osteoarthritis Cartilage,2011,19(4):466-473.
[91] Bellido M,Lugo L,Roman-Blas JA,et al.Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis[J].Osteoarthritis Cartilage,2011,19(10):1228-1236.
[92] Calvo E,Castaneda S,Largo R,et al.Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits[J].Osteoarthritis Cartilage,2007,15(1):69-77.
[93] Zhen G, Wen C,Jia X,et al.Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J].Nat Med,2013,19(6):704-712.
[94] Valverde-Franco G,Pelletier JP,F(xiàn)ahmi H,et al.In vivo bone-specific EphB4 overexpression in mice protects both subchondral bone and cartilage during osteoarthritis[J].Arthritis Rheum,2012,64(11):3614-3625.
[95] Yu DG,Ding HF,Mao YQ,et al.Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model[J].Acta Pharmacol Sin,2013,34(3):393-402.
[96] Karsdal MA,Tanko LB,Riis BJ,et al.Calcitonin is involved in cartilage homeostasis:is calcitonin a treatment for OA?[J].Osteoarthritis Cartilage,2006,14(7):617-624.
[97] Bingham CO,Buckland-Wright JC,Garnero P,et al.Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study[J].Arthritis Rheum,2006,54(11):3494-3507.
[98] Karsdal MA,Byrjalsen I,Henriksen K,et al.The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients:a14-day randomized study[J].Osteoarthritis Cartilage,2010,18(2):150-159.
[99] Reginster JY,Badurski J,Bellamy N,et al.Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis:results of a double-blind,randomised placebo-controlled trial[J].Ann Rheum Dis,2013,72(2):179-186.
[100]Bagger YZ,Tanko LB,Alexandersen P,et al.Oral salmon calcitonin induced suppression of urinary collagen type Ⅱdegradation in postmenopausal women:a new potential treatment of osteoarthritis[J].Bone,2005,37(3):425-430.
[101]Radin EL,Rose RM.Role of subchondral bone in the initiation and progression of cartilage damage[J].Clin Orthop Relat Res,1986,213:34-40.
[102]Lajeunesse D,Reboul P.Subchondral bone in osteoarthritis:a biologic link with articular cartilage leading to abnormal remodeling[J].Curr Opin Rheumatol,2003,15(5):628-633.
[103]Prasadam I,van Gennip S,F(xiàn)riis T,et al.ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts[J].Arthritis Rheum,2010,62(5):1349-1360.