?
專家論壇
運(yùn)動(dòng)神經(jīng)元損傷致肌萎縮的相關(guān)機(jī)制研究進(jìn)展
楊勝波
(遵義醫(yī)學(xué)院 解剖學(xué)教研室,貴州 遵義563099)
[摘要]神經(jīng)系統(tǒng)控制骨骼肌依賴于運(yùn)動(dòng)神經(jīng)元的電活動(dòng)和神經(jīng)末梢釋放可溶性因子。一旦神經(jīng)元受損,則發(fā)生快速肌萎縮。近年來(lái)研究發(fā)現(xiàn),失神經(jīng)支配的肌纖維萎縮前,肌細(xì)胞膜通透性增加、電活動(dòng)減少,與連接蛋白形成的半通道重新表達(dá)有關(guān);一些抑制連接蛋白表達(dá)的細(xì)胞外信號(hào)分子參與了抑制肌萎縮的信號(hào)通路;肌微循環(huán)和多種神經(jīng)營(yíng)養(yǎng)因子參與肌營(yíng)養(yǎng)作用。為此,本文圍繞近來(lái)相關(guān)文獻(xiàn)報(bào)道作一綜述,以期更好地理解神經(jīng)損傷致肌萎縮的機(jī)制,為防治運(yùn)動(dòng)神經(jīng)元損傷后肌萎縮設(shè)計(jì)合理方案提供資料。
[關(guān)鍵詞]運(yùn)動(dòng)神經(jīng)元損傷;肌萎縮;電活動(dòng);神經(jīng)營(yíng)養(yǎng)因子
100多年來(lái),人們從機(jī)械負(fù)荷到特定分子信號(hào)功能方面的研究發(fā)現(xiàn),神經(jīng)系統(tǒng)控制骨骼肌的機(jī)制有2種:①神經(jīng)肌肉活動(dòng)控制,大腦皮層、腦干和脊髓產(chǎn)生的神經(jīng)沖動(dòng)引發(fā)肌膜去極化和電機(jī)耦聯(lián),導(dǎo)致肌肉收縮;②神經(jīng)營(yíng)養(yǎng)因子控制,不依賴運(yùn)動(dòng)神經(jīng)元的電活動(dòng),而借助于運(yùn)動(dòng)神經(jīng)元在神經(jīng)肌接頭處神經(jīng)末梢釋放可溶性因子[1]。因此,神經(jīng)支配對(duì)維持骨骼肌正?;顒?dòng)和張力的重要性是可想而知的。每當(dāng)神經(jīng)元任何部位損傷時(shí),則發(fā)生快速和嚴(yán)重的肌肉萎縮,其萎縮速度比來(lái)自其他病因如惡病質(zhì)、固定、老齡化,以及重癥肌無(wú)力等的快得多[2-5]。肌肉萎縮中,很大程度上通過(guò)肌萎縮關(guān)鍵因子(肌環(huán)指蛋白1和肌萎縮F盒蛋白)的表達(dá)上調(diào),激活泛素蛋白酶體途徑,導(dǎo)致蛋白質(zhì)分解加速,往往伴隨蛋白質(zhì)合成率降低[2,6]。信號(hào)分子肌肉生長(zhǎng)抑制素、核因子κB、叉頭型轉(zhuǎn)錄因子1和3A起著關(guān)鍵作用[7]。
近年來(lái)研究發(fā)現(xiàn),失神經(jīng)支配的快肌纖維出現(xiàn)萎縮之前,肌細(xì)胞膜通透性增加,膜電位降低,細(xì)胞膜興奮性增加,與骨骼肌表達(dá)一價(jià)陽(yáng)離子和鈣離子的通道連接蛋白、嘌呤能親離子P2X7受體(P2X7receptors,P2X7Rs)、瞬時(shí)受體電位亞家族V成員2(transient receptor potential, sub-family V, member 2,TRPV2)并形成半通道有關(guān)。在缺乏連接蛋白43和45的失神經(jīng)支配肌肉中,失神經(jīng)誘導(dǎo)的肌萎縮急劇減少[8]。盡管如此,神經(jīng)支配抑制上述非選擇性通道表達(dá)的傳導(dǎo)機(jī)制仍然未知。抑制連接蛋白表達(dá)的細(xì)胞外信號(hào)分子,包括ATP、集聚蛋白、低密度脂蛋白受體相關(guān)蛋白4(Low-density lipoprotein receptor-related protein 4,LRP4)、肌肉特異性受體激酶(muscle-specific kinase,MuSK)和乙酰膽堿等的旁分泌作用可能參與抑制肌萎縮的信號(hào)之中[9]。除此之外,肌微循環(huán)和許多神經(jīng)營(yíng)養(yǎng)因子也參與肌營(yíng)養(yǎng)作用[5,10]。為此,本文圍繞近年來(lái)報(bào)道的關(guān)于神經(jīng)元損傷誘導(dǎo)的電活動(dòng)減少和肌營(yíng)養(yǎng)缺乏導(dǎo)致肌萎縮的相關(guān)研究作一綜述。
1神經(jīng)肌肉運(yùn)動(dòng)控制失調(diào)致肌萎縮
1.1神經(jīng)元損傷后肌膜通透性改變致肌萎縮連接蛋白是膜蛋白,在細(xì)胞膜上形成低選擇性通道,也被稱為半通道或連接子。通常,一個(gè)半通道與位于相鄰另一細(xì)胞膜上的半通道形成一個(gè)軸向排列的復(fù)合物,形成細(xì)胞間的孔隙,使相鄰細(xì)胞的細(xì)胞質(zhì)直接連接[11]。最近,已發(fā)現(xiàn)半通道連接細(xì)胞內(nèi)、外間隙,允許離子Na+、K+、Ca2+轉(zhuǎn)移[12],營(yíng)養(yǎng)物質(zhì)如葡萄糖進(jìn)入,代謝產(chǎn)物如谷胱甘肽釋放,以及自分泌和旁分泌信號(hào)如ATP、NAD+、環(huán)腺苷二磷酸核糖、磷脂酰肌醇3、谷氨酸和前列腺素E2[13-14]。成肌細(xì)胞表達(dá)連接蛋白和形成縫隙連接,在肌生成早期和晚期階段都是肌肉發(fā)育必不可少的,這些縫隙連接在成肌細(xì)胞分化中很可能協(xié)調(diào)基因表達(dá)和代謝反應(yīng),在分化末期存在連接蛋白表達(dá)下調(diào),肌纖維之間的電耦合逐步下降[15]。縫隙連接蛋白在正常骨骼肌纖維是缺乏的,但在損傷后再生的成人肌纖維和失神經(jīng)后7 d或脊髓損傷后56 d的肌膜中被發(fā)現(xiàn)[8,15]。在小鼠缺乏連接蛋白43和45失神經(jīng)萎縮的骨骼肌研究中也證實(shí)了這些半通道在萎縮信號(hào)途徑中的重要作用。這雙重基因敲除,失神經(jīng)7 d時(shí),快肌萎縮降低70%,與核因子κB的p65亞單位的活性完全抑制相關(guān),這證明p65亞單位是去神經(jīng)肌萎縮的關(guān)鍵調(diào)節(jié)基因[7]。總的來(lái)說(shuō),連接蛋白在肌生成期間,當(dāng)肌細(xì)胞無(wú)神經(jīng)支配時(shí)表達(dá),一旦肌細(xì)胞受神經(jīng)支配,生后幾天消失;當(dāng)失神經(jīng)支配或上運(yùn)動(dòng)神經(jīng)元損傷導(dǎo)致肌癱瘓后,迅速出現(xiàn),負(fù)責(zé)介導(dǎo)失神經(jīng)性肌萎縮的關(guān)鍵信號(hào)。當(dāng)連接蛋白表達(dá)上調(diào)時(shí),半通道開(kāi)放,Na+、Ca2+內(nèi)流,肌膜靜息膜電位減少,出現(xiàn)纖顫電位。
這些研究強(qiáng)烈地表明,神經(jīng)支配和/或神經(jīng)肌肉活動(dòng)抑制連接蛋白在成人肌膜的表達(dá)。然而,在骨骼肌中調(diào)控連接蛋白表達(dá)的機(jī)制是未知的,唯一存在的證據(jù)是肌生成過(guò)程中涉及miRNAs。有研究表明,出生后miRNA-206下調(diào)連接蛋白43,反過(guò)來(lái),該miRNA被肌生成轉(zhuǎn)錄因子肌細(xì)胞生成素(myogenin)和促進(jìn)肌分化的成肌分化抗原(MyoD)上調(diào)[16]。 在成年期,miRNA-206在側(cè)索硬化癥小鼠模型中被顯著地誘導(dǎo),延遲疾病進(jìn)展和促進(jìn)神經(jīng)肌肉突觸再生[17]。然而,失神經(jīng)和脊髓損傷后的第1周內(nèi),負(fù)責(zé)上調(diào)miRNA-206的轉(zhuǎn)錄因子Myogenin和MyoD表達(dá)增加是已知的[18]。又因上述提及的,在神經(jīng)連續(xù)性受損情況下,連接蛋白表達(dá)上調(diào),因而提出關(guān)于成年期miRNA重要性的科學(xué)問(wèn)題,把它作為連接蛋白表達(dá)的調(diào)節(jié)因子。這種情況表明,連接蛋白在成年骨骼肌的上調(diào)表達(dá)存在其它機(jī)制。上述結(jié)果發(fā)現(xiàn),神經(jīng)支配已久的生后的骨骼肌,當(dāng)神經(jīng)肌肉活動(dòng)需要顯著增加時(shí),連接蛋白表達(dá)被抑制,表明連接蛋白的表達(dá)水平很可能受到神經(jīng)肌肉活動(dòng)相關(guān)機(jī)制的影響。
1.2脊髓損傷后電機(jī)偶聯(lián)和肌膜通透性改變致肌萎縮運(yùn)動(dòng)神經(jīng)元水平以上的神經(jīng)系統(tǒng)連續(xù)性破壞,可發(fā)生在神經(jīng)系統(tǒng)疾病,如中風(fēng)、多發(fā)性硬化或脊髓損傷的情況下,導(dǎo)致急性肌肉癱瘓和萎縮。在脊髓損傷中,受累的肌是那些脊髓損傷平面節(jié)段以下的運(yùn)動(dòng)神經(jīng)元支配的肌[19]。這些疾病導(dǎo)致不同的異常,包括痙攣性麻痹,肌無(wú)力和足底伸肌反應(yīng)。即使在脊髓損傷中下運(yùn)動(dòng)神經(jīng)元保持完好,但運(yùn)動(dòng)神經(jīng)元樹(shù)突和運(yùn)動(dòng)終板發(fā)生退變[20]。隨著大量神經(jīng)末梢發(fā)芽,可見(jiàn)非常龐雜的神經(jīng)肌接頭亞群,聚集的乙酰膽堿受體簇離散,神經(jīng)肌肉傳遞受損[21]。然而,去神經(jīng)支配迅速導(dǎo)致弛緩性麻痹和后期的顫動(dòng),脊髓損傷最初表現(xiàn)為脊髓休克,弛緩性麻痹,隨后持續(xù)一段幾周甚至更長(zhǎng)時(shí)間的反射亢進(jìn)和痙攣[22]。隨脊髓損傷,小鼠、大鼠和人隨之發(fā)生快速和廣泛的肌萎縮。在嚙齒類動(dòng)物,脊髓橫斷后,解剖學(xué)水平以下運(yùn)動(dòng)神經(jīng)元意識(shí)性活動(dòng)完全喪失,后肢肌高達(dá)40%~60%的萎縮[23]。同樣,人肌的活檢研究表明,脊髓損傷后6~18個(gè)月內(nèi),肌萎縮達(dá)27%~56%。這些變化與肌收縮力和耐疲勞明顯下降、慢縮和快縮氧化纖維的損失以及氧化磷酸化的酶水平降低有關(guān)[19]。已有研究表明,脊髓損傷大鼠癱瘓發(fā)生后的56 d,肌膜上連接蛋白39、43、45和泛連接蛋白1(Panx1)的水平升高,可以刺激NF-κB的P65亞基激活,驅(qū)動(dòng)神經(jīng)切斷后癱瘓肌的萎縮[7]。這些結(jié)果表明,肌膜的半通道表達(dá)升高可能參與脊髓損傷后肌萎縮的啟動(dòng)。
1.3失神經(jīng)誘導(dǎo)的電機(jī)偶聯(lián)和肌膜通透性改變致肌萎縮當(dāng)肌肉由于下運(yùn)動(dòng)神經(jīng)元損傷失神經(jīng)支配時(shí),隨之發(fā)生弛緩性麻痹而迅速萎縮,肌肉質(zhì)量,力量和肌纖維直徑減少,發(fā)生肌細(xì)胞凋亡,肌纖維損耗[24]。失神經(jīng)7 d后,小鼠、大鼠和荷蘭豬的肌纖維直徑顯著下降[8]。神經(jīng)損傷后,剩下的軸突殘端發(fā)生退行性變的過(guò)程稱為Wallerian變性。然而,軸突殘端對(duì)肌肉保持一些生理活性長(zhǎng)達(dá)1 d。失神經(jīng)支配中,軸突殘端的長(zhǎng)度和殘端發(fā)送沖動(dòng)到肌肉失敗的時(shí)間過(guò)程之間有直接關(guān)系[25]。有研究表明,軸突殘端保留產(chǎn)生自發(fā)微終板電位(miniature end-plate potentials,MEPPs)和終板電位(end-plate potentials,EPPs)引起肌肉收縮的能力達(dá)8~10 h。軸突殘端產(chǎn)生微終板電位失敗是在它們的頻率逐漸減少之前,而終板電位卻是突然失敗[26]。此外,軸突殘端每增加1 cm,傳遞沖動(dòng)的能力延長(zhǎng)約45 min,提示軸突殘端的長(zhǎng)度和沖動(dòng)傳導(dǎo)到肌肉有直接關(guān)系[26]。同樣,軸突殘端的長(zhǎng)度也影響肌肉疾病,如肌纖顫和乙酰膽堿過(guò)敏。這一發(fā)現(xiàn)表明,軸突殘端運(yùn)輸和釋放的因子,最終由于肌纖維消耗而耗盡軸突儲(chǔ)備。這種想法隨著長(zhǎng)春新堿意外過(guò)量后阻礙軸突運(yùn)輸,臨床觀察到肌無(wú)力和肌萎縮而更加強(qiáng)烈[27]??傊?,這些觀察表明,負(fù)責(zé)微終板電位和終板電位的神經(jīng)末梢突觸裝置需要更新。
失神經(jīng)支配的肌纖顫電位,通常與靜息膜電位減少同時(shí)發(fā)生;肌纖顫被認(rèn)為是膜去極化的結(jié)果。然而,關(guān)于這些改變或其相互關(guān)系的起因,沒(méi)有確鑿的證據(jù)。失神經(jīng)后的膜去極化與離子電流、滲透性和濃度變化有關(guān)。失神經(jīng)后第1周,細(xì)胞內(nèi)鈉離子濃度增加,鉀離子濃度降低,鈣含量增加,以及Na+通透性和Na+電導(dǎo)增加,K+通透性降低,這可以部分地在下列離子通道大量表達(dá)中得到解釋,如心臟型電壓門控Na+通道[28],胎兒型乙酰膽堿受體亞單位[29],河豚毒素Na+抗通道[30],縫隙連接蛋白39、43和45形成的半通道,泛連接蛋白(Panx1)通道,P2X7Rs,TRPV2,所有這些通道,在失神經(jīng)支配后的第1周內(nèi),細(xì)胞膜內(nèi)呈現(xiàn)高水平[8]。失神經(jīng)后7 d,連接蛋白43和45的缺失顯著降低肌纖維大小的損失,阻斷核因子κB的p65亞單位激活和促炎性細(xì)胞因子(腫瘤壞死因子-α和白細(xì)胞介素-1β)上調(diào)[7]。這一發(fā)現(xiàn)提出了如下問(wèn)題,連接蛋白的重新表達(dá),是否為一種對(duì)失神經(jīng)支配后肌纖維中諸多變化的上游反應(yīng)?如果是這樣,它們的表達(dá)和活化是怎樣被神經(jīng)支配狀態(tài)或肌纖維活動(dòng)調(diào)節(jié)的呢?
另外,失神經(jīng)后集聚蛋白功能受損。集聚蛋白是由運(yùn)動(dòng)神經(jīng)元胞體合成后經(jīng)運(yùn)動(dòng)神經(jīng)末梢釋放的一種蛋白多糖。這種蛋白質(zhì)結(jié)合MuSK及其關(guān)鍵共受體LRP4和淀粉樣前體蛋白(amyloid precursor protein,APP),通過(guò)誘導(dǎo)和維持乙酰膽堿受體聚集,在離體和在體的突觸后分化中起著積極的作用[9]。失神經(jīng)后,軸突運(yùn)輸障礙,神經(jīng)肌接頭處集聚蛋白表達(dá)下調(diào),MuSK/ LRP4/ APP/船塢蛋白-7綁定結(jié)合障礙,成熟型AChR聚集障礙而離散,胚胎型AChR重新出現(xiàn)表達(dá),神經(jīng)肌肉傳遞障礙,電機(jī)偶聯(lián)失??;同時(shí),連接蛋白43和45表達(dá)上調(diào),肌膜半通道通透性升高,胞內(nèi)鈣含量增加,Na+通透性和Na+電導(dǎo)增加,游離的胞漿Ca2+活化細(xì)胞內(nèi)代謝反應(yīng),包括蛋白質(zhì)的降解增加,合成減少,導(dǎo)致肌萎縮[31]。
1.4乙酰膽堿可作為負(fù)性信號(hào)導(dǎo)致肌萎縮關(guān)于乙酰膽堿的功能研究最多的是它在神經(jīng)肌接頭處將神經(jīng)元電信號(hào)轉(zhuǎn)化為化學(xué)信號(hào),產(chǎn)生肌肉機(jī)械反應(yīng)的作用。然而,它還有另一個(gè)功能即神經(jīng)肌肉接頭的發(fā)育和維持,人們對(duì)此了解不多,但同樣重要。在突觸后分化期間,乙酰膽堿受體(acetylcholine receptors,AChR)聚集由一個(gè)不依賴于神經(jīng)的機(jī)制啟動(dòng)[32]。肌肉特異性受體酪氨酸激酶(MuSK)與Wnt配體一起參與乙酰膽堿受體前模式,組織他們進(jìn)入到集中的簇[33]。運(yùn)動(dòng)神經(jīng)元支配肌纖維的時(shí)期,乙酰膽堿通過(guò)細(xì)胞周期蛋白依賴性激酶5(Cdk5)通路離散乙酰膽堿受體簇,致使乙酰膽堿受體簇不能與神經(jīng)末梢定位,并且在成年后仍然是乙酰膽堿受體簇形成的負(fù)性信號(hào)[34]。Cdk5介導(dǎo)的乙酰膽堿受體定位的調(diào)控知之甚少;然而我們知道,中間絲神經(jīng)巢蛋白與Cdk5相互作用,對(duì)乙酰膽堿誘導(dǎo)的p35(Cdk5的共激活劑)與肌膜結(jié)合是關(guān)鍵[35]。
在突觸水平,肉毒桿菌神經(jīng)毒素阻斷突觸囊泡的釋放[36],或α-銀環(huán)蛇毒素阻斷乙酰膽堿受體[37],也會(huì)發(fā)生快速的肌萎縮。此外,重癥肌無(wú)力,以產(chǎn)生抗乙酰膽堿受體抗體為特征的病理狀態(tài),骨骼肌內(nèi)也顯示類似于失神經(jīng)引起的變化[38]。另一方面,制動(dòng)和失神經(jīng)誘導(dǎo)肌纖維上神經(jīng)元煙堿型α7AChRs重新表達(dá)(α7AChRs),Ca2+通透性增加[7]。因此,失神經(jīng)后α7AChRs連同前述的非選擇性通道可以增加細(xì)胞內(nèi)Ca2+,導(dǎo)致肌萎縮。
1.5ATP參與神經(jīng)元損傷的肌萎縮ATP是公認(rèn)的一個(gè)重要信號(hào)分子,介導(dǎo)不同的生物過(guò)程。在骨骼肌,ATP在神經(jīng)肌接頭處通過(guò)突觸囊泡和肌纖維釋放,在肌細(xì)胞增殖、分化和收縮等各種調(diào)控過(guò)程中有一定作用。從脊椎動(dòng)物分離的突觸小泡含有約10∶1的乙酰膽堿和ATP[39]。ADP/ATP轉(zhuǎn)移酶能使突觸小泡積累ATP,然而,囊泡內(nèi)的ATP是不與乙酰膽堿絡(luò)合的[40]。ATP與乙酰膽堿在神經(jīng)肌接頭隨神經(jīng)沖動(dòng)以脈沖的方式釋放。這種脈沖方式釋放的意義是不明確的。在發(fā)育中,結(jié)合到嘌呤受體P2X的ATP與在鈣動(dòng)員中通過(guò)煙堿受體起作用的Ach有同等效力[41]。在成人,ATP的共同遞質(zhì)作用不如在發(fā)育過(guò)程中突出。ATP水解生成的腺苷作為突觸前神經(jīng)肌肉抑制的生理介質(zhì),在突觸后位點(diǎn),通過(guò)激活P2Y1受體,細(xì)胞外ATP促進(jìn)乙酰膽堿的作用,增加乙酰膽堿受體的活性,K+通道激活,并抑制氯離子通道??偟膩?lái)說(shuō),在成人骨骼肌,ATP增強(qiáng)神經(jīng)肌肉信號(hào),肌收縮時(shí),ATP從肌纖維釋放。ATP可通過(guò)ATP通透性通道釋放(包括連接蛋白通道和Panx通道)[42]。連接蛋白在成人骨骼肌中不表達(dá),然而,Panx1是表達(dá)的,在T管中形成Panx1 半通道。因此,成人骨骼肌中Panx1通道可能是負(fù)責(zé)釋放ATP。病理?xiàng)l件下,ATP在肌細(xì)胞膜外的積累,增加細(xì)胞膜對(duì)離子和小分子通透性是必要的,它激活連接蛋白半通道和Panx1通道以及P2X7Rs,導(dǎo)致膜通透性增加[43];骨骼肌失神經(jīng)支配或脊髓損傷后,P2X7Rs和連接蛋白39、43和45重新表達(dá),Panx1上調(diào),可能促進(jìn)這種細(xì)胞外ATP的積累。如前所述,一旦細(xì)胞膜這些通透性增加,Ca2+、Na+內(nèi)流,膜去極化失調(diào),蛋白分解增加與合成下降途徑啟動(dòng),肌萎縮。
2神經(jīng)損傷后骨骼肌失營(yíng)養(yǎng)致肌萎縮
2.1肌纖維血供障礙正常骨骼肌每根纖維受3~5條毛細(xì)血管供應(yīng)。坐骨神經(jīng)切斷和注射性坐骨神經(jīng)損傷后,肌纖維毛細(xì)血管逐漸減少至1條,膠原纖維增生,煙酰胺腺嘌呤二核苷酸四唑氧化還原酶(nicotinamide adenine dinucleotide four tetrazolium oxidoreductase,NADH-TR)活性增強(qiáng),毛細(xì)血管密度與NADH-TR陽(yáng)性纖維成反比關(guān)系,肌纖維型發(fā)生轉(zhuǎn)變。密集的膠原纖維阻隔肌纖維,血管床重塑導(dǎo)致骨骼肌微循環(huán)減退和相對(duì)缺氧的代謝環(huán)境,造成肌纖維血供不足。微血管形成不足和大量膠原纖維聚集也可阻礙失神經(jīng)肌肉的神經(jīng)再支配[5,44]。
2.2神經(jīng)營(yíng)養(yǎng)因子神經(jīng)營(yíng)養(yǎng)因子是神經(jīng)系統(tǒng)發(fā)育的關(guān)鍵因素,成年后,神經(jīng)膠質(zhì)細(xì)胞和運(yùn)動(dòng)神經(jīng)元之間有良好的相互依存關(guān)系[45]。然而,關(guān)于神經(jīng)元和神經(jīng)營(yíng)養(yǎng)因子與肌纖維營(yíng)養(yǎng)作用之間的關(guān)系知道很少。在培養(yǎng)的肌細(xì)胞中,神經(jīng)調(diào)節(jié)蛋白1(Neuregulin 1,NRG1)可誘導(dǎo)乙酰膽堿受體轉(zhuǎn)錄,因此認(rèn)為,NRG1作為一種細(xì)胞外信號(hào)誘導(dǎo)突觸特異性轉(zhuǎn)錄[46]。NRG1/ErbB(epidermal growth factor receptor,EGFR; ErbB)通過(guò)α-肌營(yíng)養(yǎng)蛋白磷酸化穩(wěn)定NMJs,維持突觸傳遞效率[47]。然而,在運(yùn)動(dòng)神經(jīng)元和骨骼肌缺乏NRG1,或骨骼肌內(nèi)缺乏NRG1受體ErbB2和ErbB4的小鼠,盡管突觸形態(tài)正常,但突觸處AChRs數(shù)量和mRNA略有減少[48]。睫狀神經(jīng)營(yíng)養(yǎng)因子(Ciliary neurotrophic factor,CNTF),是一個(gè)白細(xì)胞介素-6超家族成員,誘導(dǎo)神經(jīng)支配骨骼肌的萎縮效應(yīng)和一些炎性反應(yīng),包括誘導(dǎo)發(fā)熱、肝急性期蛋白反應(yīng)[49]。在失神經(jīng)的成年大鼠和雞骨骼肌,睫狀神經(jīng)營(yíng)養(yǎng)因子作為一種神經(jīng)營(yíng)養(yǎng)因子,調(diào)節(jié)它的受體α(CNTFR-α)和乙酰膽堿受體α亞單位的表達(dá)[50]。腦源性神經(jīng)營(yíng)養(yǎng)因子(Brain-derived neurotrophic factor,BDNF)在肌發(fā)育期間以相對(duì)較高的水平表達(dá),出生后下調(diào),當(dāng)新生兒神經(jīng)損傷后,BDNF可使肌球蛋白重鏈IIB型纖維免遭損失[51]。成年大鼠肌中BDNF的組成型表達(dá)局限于肌纖維、衛(wèi)星細(xì)胞、雪旺氏細(xì)胞和內(nèi)皮細(xì)胞,當(dāng)急性或反復(fù)運(yùn)動(dòng)時(shí),肌肉中表達(dá)上調(diào),但它對(duì)肌纖維可能造成的影響是未知的[52]。在經(jīng)皮損傷脊髓的大鼠,損傷部位移植人臍血間充質(zhì)干細(xì)胞或注射三七總皂苷后,BDNF、神經(jīng)生長(zhǎng)因子和神經(jīng)營(yíng)養(yǎng)因子-3表達(dá)增加,運(yùn)動(dòng)功能改善[10,53]。層粘連蛋白結(jié)合BDNF通過(guò)miR-222激活mTOR信號(hào)通路可誘導(dǎo)大鼠喉返神經(jīng)再生[54]。盡管一個(gè)因子不能評(píng)估它怎樣改變神經(jīng)肌肉功能,但是,把分離的背根節(jié)神經(jīng)元與神經(jīng)生長(zhǎng)因子和神經(jīng)營(yíng)養(yǎng)因子-3共培養(yǎng),發(fā)現(xiàn)前速激肽原、降鈣素基因相關(guān)肽、神經(jīng)絲蛋白-200和微管相關(guān)蛋白2的mRNA水平增加[55],這提示了它們的營(yíng)養(yǎng)效果。
3展望
連接蛋白為基礎(chǔ)的間隙連接介導(dǎo)電化學(xué)偶聯(lián)是平滑肌和心肌的特征,必須實(shí)現(xiàn)大群肌細(xì)胞的協(xié)調(diào)收縮。骨骼肌是以共同的神經(jīng)纖維支配的單根或多根肌纖維(運(yùn)動(dòng)單位)的精確和快速的收縮反應(yīng)為特征,其他運(yùn)動(dòng)單位的肌纖維必須獨(dú)立地被激活。此功能是通過(guò)神經(jīng)系統(tǒng)的直接命令實(shí)現(xiàn)的,神經(jīng)系統(tǒng)通過(guò)有相似傳導(dǎo)速度的神經(jīng)纖維支配有相似電閾值的單個(gè)運(yùn)動(dòng)單位。因此,骨骼肌纖維快速和協(xié)調(diào)的收縮,間隙連接介導(dǎo)的肌纖維電耦聯(lián)似乎是不必要的。值得注意的是,在發(fā)育期,神經(jīng)肌肉激活抑制骨骼肌纖維中一些非選擇性離子通道包括連接蛋白39、43、45,以及P2X7R、TRPV2通道和α-7煙堿受體形成的半通道表達(dá)或翻譯。然而,這些蛋白質(zhì)亞基的細(xì)胞膜結(jié)合導(dǎo)致細(xì)胞表面非選擇性離子通道的表達(dá),它們對(duì)一價(jià)陽(yáng)離子和Ca2+都可通透,它們都可以在不同程度上降低失神經(jīng)支配的肌纖維的靜息膜電位以及通過(guò)游離的胞漿Ca2+活化細(xì)胞內(nèi)代謝反應(yīng),包括蛋白質(zhì)的降解。因此,未來(lái)需要闡明的關(guān)鍵問(wèn)題是,如何識(shí)別NMJs處激活的抑制所有這些非選擇性離子通道表達(dá)的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制。神經(jīng)末梢和運(yùn)動(dòng)終板之間取得聯(lián)系,允許神經(jīng)末梢、神經(jīng)膠質(zhì)細(xì)胞及其在肌纖維上的受體釋放一系列分子相互作用,主要的分子及其作用有:乙酰膽堿負(fù)責(zé)終板電位和乙酰膽堿受體簇的彌散,ATP參與增強(qiáng)肌肉運(yùn)動(dòng),集聚蛋白誘導(dǎo)AChRs簇聚集,神經(jīng)營(yíng)養(yǎng)因子對(duì)成人肌纖維的影響卻知之甚少,需要更多的研究來(lái)闡明神經(jīng)營(yíng)養(yǎng)因子在維持肌肉特性、抑制非選擇性通道與肌膜結(jié)合中的作用。在失神經(jīng)肌肉,如果發(fā)現(xiàn)一種能阻止形成非選擇性離子通道的蛋白亞基表達(dá)的體液因子,作為一個(gè)有價(jià)值的分子靶點(diǎn),以此設(shè)計(jì)一個(gè)合理的治療方案,防止失神經(jīng)支配肌纖維變性,對(duì)治療因NMJs受損的各種肌病極為重要。
[參考文獻(xiàn)]
[1] Baldwin K M, Haddad F, Pandorf C E, et al. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms[J]. Front Physiol, 2013, 4: 284.
[2] Yang S B, Yue N, Tang Q, et al. Expression and Regulation of MuRF-1 and Atrogin-1 are Required for Skeletal Muscle Atrophy[J]. Austin J Anat, 2015, 2(1): id1028.
[3] Zeman R J, Zhao J, Zhang Y, et al. Differential skeletal muscle gene expression after upper or lower motor neuron transection[J]. Pflugers Arch, 2009, 458(3): 525-535.
[4] Yang S, Yue N, Zeng X. Expression of MuRF1 and MAFbx in donor and recipient muscles after musculocutaneous nerve transection and partial pectoralis major muscle transfer for reconstruction of elbow flexion in rats[J]. Int J Morphol, 2015, 33(3): 975-982.
[5] 楊勝波,龍勝,易曉東,等. 注射性坐骨神經(jīng)損傷后針刺對(duì)家兔腓腸肌內(nèi)NADH-TR和膠原纖維的影響[J]. 遵義醫(yī)學(xué)院學(xué)報(bào), 2014, 37(1): 62-66.
[6] Wang Y, Pessin J E. Mechanisms for fiber-type specificity of skeletal muscle atrophy[J]. Curr Opin Clin Nutr Metab Care, 2013, 16(3): 243-250.
[7] Jackman R W, Cornwell E W, Wu C L, et al. Nuclear factor-kappaB signalling and transcriptional regulation in skeletal muscle atrophy[J]. Exp Physiol, 2013, 98(1): 19-24.
[8] Cea L A, Cisterna B A, Puebla C, et al. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy[J]. Proc Natl Acad Sci USA, 2013, 110(40): 16229-16234.
[9] 于建奇,楊勝波. Agrin-LRP4-MuSK和Wnt 信號(hào)對(duì)肌肉型AChR發(fā)育、聚集及穩(wěn)定的調(diào)控[J].解剖學(xué)雜志, 2015, 38(4): 229-231.
[10] Chung H J, Chung W H, Lee J H, et al. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats[J]. J Vet Sci, 2015, PMID: 26435538.
[11] Sáez J C, Retamal M A, Basilio D, et al. Connexin-based gap junction hemichannels: gating mechanisms[J]. Biochim Biophys Acta, 2005, 1711(2): 215-224.
[12] Fiori M C, Figueroa V, Zoghbi M E, et al. Permeation of calcium through purified connexin 26 hemichannels[J]. J Biol Chem, 2012, 287(48): 40826-40834.
[13] Song E K, Rah S Y, Lee Y R, et al. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclicADP-ribose transport[J]. J Biol Chem, 2011, 286(52): 44480-44490.
[14] Gossman D G, Zhao H B. Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling[J]. Cell Commun Adhes, 2008, 15(4): 305-315.
[15] Belluardo N, Trovato-Salinaro A, Mudò G, et al. Expression of the rat connexin 39 (rCx39) gene in myoblasts and myotubes in developing and regenerating skeletal muscles: an in situ hybridization study[J]. Cell Tissue Res, 2005, 320(2): 299-310.
[16] Rao P K, Kumar R M, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRNAs[J]. Proc Natl Acad Sci USA, 2006, 103(23): 8721-8726.
[17] Williams A H, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice[J]. Science, 2009, 326(5959): 1549-1554.
[18] Nikolic M, Bajek S, Bobinac D, et al. Expression of myogenic regulatory factors in rat skeletal muscles after denervation[J]. Periodicum Biologorum, 2010, 112(1): 83-88.
[19] Qin W, Bauman W A, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions[J]. Ann N Y Acad Sci, 1211(1): 66-84.
[20] Bjugn R, Nyengaard J R, Rosland J H. Spinal Cord Transection-No Loss of Distal Ventral Horn Neurons[J]. Exp Neurol, 1997, 148(1): 179-186.
[21] Ollivier-Lanvin K, Lemay M A, Tessler A, et al. Neuromuscular transmission failure and muscle fatigue in ankle muscles of the adult rat after spinal cord injury[J]. J Appl Physiol, 2009, 107(4): 1190-1194.
[22] Harris R L, Bobet J, Sanelli L, et al. Tail muscles become slow but fatigable in chronic sacral spinal rats with spasticity[J]. J Neurophysiol, 2006, 95(2): 1124-1133.
[23] Wu Y, Zhao J, Zhao W, et al. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury[J]. J Neurotrauma, 2012, 29(8): 1663-1675.
[24] Tews D S. Apoptosis and muscle fibre loss in neuromuscular disorders[J]. Neuromuscul Disord, 2002, 12(7-8): 613-622.
[25] Birks R, Katz B, Miledi R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration[J]. J Physiol, 1960, 150(1): 145-168.
[26] Miledi R, Slater C R. On the degeneration of rat neuromuscular junctions after nerve section[J]. J Physiol, 1970, 207(2): 507-528.
[27] Maeda K, Ueda M, Ohtaka H, et al. A massive dose of vincristine[J]. Jpn J Clin Oncol, 1987, 17(3): 247-253.
[28] Sekiguchi K, Kanda F, Mitsui S, et al. Fibrillation potentials of denervated rat skeletal muscle are associated with expression of cardiac-type voltage-gated sodium channel isoform Nav1.5[J]. Clin Neurophysiol, 2012, 123(8): 1650-1655.
[29] Emmanouilidou E, Melachroinou K, Roumeliotis T, et al.Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival[J]. J Neurosci, 2010, 30(20): 6838-6851.
[30] Harris J B, Thesleff S. Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle[J]. Acta Physiol Scand, 1971, 83(3): 382-388.
[31] Cisterna B A, Cardozo C, Sáez J C. Neuronal involvement in muscular atrophy[J]. Front Cell Neurosci, 2014, 8: 405.
[32] Lin W, Burgess R W, Dominguez B, et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse[J]. Nature, 2001, 410(6832): 1057-1064.
[33] Jing L, Lefebvre J L, Gordon L R, et al. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor[J]. Neuron, 2009, 61(5):721-733.
[34] Lin W, Dominguez B, Yang J, et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism[J]. Neuron, 2005, 46(4): 569-579.
[35] Yang J, Dominguez B, De Winter F, et al. Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse[J]. Nat Neurosci, 2011, 14(3): 324-330.
[36] Uchiyama A, Yamada K, Perera B, et al. Protective effect of botulinum toxin A after cutaneous ischemia-reperfusion injury[J]. Sci Rep, 2015, 5: 9072.
[37] Da Costa C J, Free C R, Sine S M. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors[J]. Nat Commun, 2015, 6: 8057.
[38] Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms[J]. J Autoimmun, 2014, 52: 90-100.
[39] Lee S, Yang H S, Sasakawa T, et al. Immobilization with atrophy induces de novo expression of neuronal nicotinic alpha7 acetylcholine receptors in muscle contributing to neurotransmission[J]. Anesthesiology, 2014, 20(1): 76-85.
[40] Volknandt W, Zimmermann H. Acetylcholine, ATP and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm[J]. J Neurochem, 1986, 47(5): 1449-1462.
[41] Stadler H, Fenwick E M. Cholinergic synaptic vesicles from Torpedo marmorata contain an atractyloside-binding protein related to the mitochondrial ADP/ATP carrier[J]. Eur J Biochem, 1983,136(2): 377-382.
[42] H?ggblad J, Heilbronn E. P2-purinoceptor-stimulated phosphoinositide turnover in chick myotubes. Calcium mobilization and the role of guanyl nucleotide-binding proteins[J]. FEBS Lett, 1988, 235(1-2): 133-136.
[43] Riquelme M A, Cea L A, Vega J L, et al. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels[J]. Neuropharmacology, 2013,75: 594-603.
[44] Cebasek V, Kubínová L, Janácek J, et al. Adaptation of muscle fibre types and capillary network to acute denervation and shortlasting reinnervation[J]. Cell Tissue Res, 2007, 330(2): 279-289.
[45] Schulz A, Kyselyova A, Baader S L, et al. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling[J]. Brain, 2014, 137(1): 420-432.
[46] Falls D L. Neuregulins and the neuromuscular system: 10 years of answers and questions[J]. J Neurocytol, 2003, 32(5-8): 619-647.
[47] Schmidt N, Akaaboune M, Gajendran N, et al. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin[J]. J Cell Biol, 2011, 195(7): 1171-1184.
[48] Jaworski A, Burden S J. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1[J]. J Neurosci, 2006, 26(2): 655-661.
[49] Martin D, Merkel E, Tucker K K, et al. Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle[J]. Am J Physiol, 1996, 271(5Pt2): R1422-1428.
[50] Ip F C, Fu A K, Tsim K W, et al. Differential expression of ciliary neurotrophic factor receptor in skeletal muscle of chick and rat after nerve injury[J]. 1996, 67(4): 1607-1612.
[51] Mousavi K, Parry D J, Jasmin B J. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury[J]. Am J Physiol Cell Physiol, 2004, 287(1):22-29.
[52] Matthews V B, ?str?m M B, Chan M H, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells inresponse to contraction and enhances at oxidation via activation of AMP-activated protein kinase[J]. Diabetologia, 2015, 58(4): 854-855.
[53] Wang B, Li Y, Li X P, et al. Panax notoginseng saponins improve recovery after spinal cord transection by upregulating neurotrophic factors[J]. Neural Regen Res, 2015, 10(8): 1317-1320.
[54] Xie J, Jin B, Li D W, et al. Effect of laminin-binding BDNF on induction of recurrent laryngeal nerve regeneration by miR-222 activation of mTOR signal pathway[J]. Am J Transl Res, 2015, 7(6): 1071-1080.
[55] Zhang W, Li H, Xing Z, et al. Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3[J]. Folia Histochem Cytobiol, 2012, 50(2): 312-318.
[收稿015-10-12;修回2015-11-08]
(編輯:譚秀榮)
Progress on the mechanism of muscle atrophy induced by motor neuron injury
YangShengbo
(Department of Human Anatomy,Zunyi Medical University,Zunyi Guizhou 563099)
[Abstract]The control skeletal muscle by the neural system depends on the electrical activity of motor neurons and the release of soluble factors from nerve terminals. Once the neurons are damaged, the rapid muscle atrophy occurs. Recently, it was found that the increased sarcolemmal permeability and the decreased electrical activity of the neurons were related to the de novo expression of connexin hemichannels, all of which happen before the denervated skeletal muscle fibers appear atrophy; some of the extracellular signal molecules that inhibit the expression of the connexin proteins were involved in the inhibition of the signal transduction pathway of muscle atrophy; the muscle microcirculation and many neurotrophic factors were also involved in the muscular atrophy. To this end, this article reviews the current status of these studies in order to better understand the mechanism of muscle atrophy caused by nerve injury and to provide information on the design of a reasonable treatment plan for the prevention and treatment of muscle atrophy after motor neuron injury.
[Key words]motor neuron injury; skeletal muscle atrophy; electrical activity; neurotrophic factors
[中圖法分類號(hào)]R322
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]1000-2715(2015)06-0560-07
[通信作者]楊勝波,男,教授,碩士生導(dǎo)師,中國(guó)解剖學(xué)會(huì)會(huì)員,貴州省解剖學(xué)會(huì)理事,遵義醫(yī)學(xué)院人體解剖學(xué)學(xué)術(shù)帶頭人。主要研究方向?yàn)楣趋兰∨c周圍神經(jīng)損傷的應(yīng)用解剖學(xué)。曾主持和參與多項(xiàng)國(guó)家及省部級(jí)課題,獲得過(guò)貴州省政府科技進(jìn)步二等獎(jiǎng)、指導(dǎo)大學(xué)生實(shí)驗(yàn)設(shè)計(jì)創(chuàng)新大賽三等獎(jiǎng)、遵義醫(yī)學(xué)院科技進(jìn)步三等獎(jiǎng)等。發(fā)表論文50余篇,其中SCI收錄5篇。E-mail:yangshengbo8205486@163.com。
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(NO:31540031);貴州省聯(lián)合基金資助項(xiàng)目(NO:黔科合LH字【2015】7528)。