高 倩, 陳佳杰,徐兆禮,*,朱德弟
1 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所 農(nóng)業(yè)部海洋與河口漁業(yè)重點(diǎn)開放實(shí)驗(yàn)室, 上海 200090 2 國(guó)家海洋局第二海洋研究所, 杭州 310012
長(zhǎng)江口及鄰近海域浮游水螅水母、管水母和櫛水母的豐度分布與季節(jié)變化
高 倩1, 陳佳杰1,徐兆禮1,*,朱德弟2
1 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所 農(nóng)業(yè)部海洋與河口漁業(yè)重點(diǎn)開放實(shí)驗(yàn)室, 上海 200090 2 國(guó)家海洋局第二海洋研究所, 杭州 310012
依據(jù)2002—2003年長(zhǎng)江口及鄰近海域(29°00′—32° 00′ N、122° 00 —123° 30′ E)4個(gè)季節(jié)的海洋調(diào)查資料,探討了該水域小型水母(含水螅水母、管水母和櫛水母)總豐度的空間分布特征及季節(jié)差異。結(jié)果顯示,該海域共出現(xiàn)小型水母41種,其中水螅水母28種,管水螅11種,櫛水母2種。主要優(yōu)勢(shì)種包括管水母大西洋五角水母(Muggiaeaatlantica)、雙生水母(Diphyeschamissonis)和氣囊水母(Physophorahydrostatica)以及水螅水母四葉小舌水母(Liriopetetraphylla)、兩手筐水母(Solmundellabitentaculata)和短柄和平水母(Eirenebrevistylus),其中大西洋五角水母為冬、春季第一優(yōu)勢(shì)種,雙生水母則為夏、秋季第一優(yōu)勢(shì)種。該水域小型水母總豐度呈明顯季節(jié)差異,夏季豐度最高((337.33±55.68) 個(gè)/m2),春、秋季次之(分別為(142.09±67.71) 個(gè)/m2和(132.84±35.17) 個(gè)/m2),冬季最低((113.69±32.72)個(gè)/m2)。水溫是影響調(diào)查區(qū)小型水母總豐度季節(jié)變化的主要環(huán)境因子,小型水母豐度與表層溫度顯著正相關(guān)(P< 0.01)。鹽度是影響小型水母平面分布格局的主要環(huán)境因子,春季小型水母豐度與底層鹽度正相關(guān)(P< 0.05),夏季與10 m層鹽度正相關(guān)(P< 0.01),全年則是與10 m層鹽度正相關(guān)(P< 0.01)。此外,調(diào)查水域小型水母豐度與其餌料——小型橈足類亦存在顯著正相關(guān)關(guān)系(P< 0.01)。
水螅水母;管水母;櫛水母;季節(jié)分布;長(zhǎng)江口
刺胞動(dòng)物門的水螅水母和管水母以及櫛水母動(dòng)物門的櫛水母,統(tǒng)稱為小型水母,是海洋浮游動(dòng)物的重要類群[1- 2]。小型水母作為海洋浮游動(dòng)物最重要的肉食性類群,具有種類多、分布廣、數(shù)量大的特點(diǎn),是海洋生態(tài)系統(tǒng)物質(zhì)循環(huán)和能量流動(dòng)過程中一個(gè)重要環(huán)節(jié)[2- 4]。小型水母能大量攝食魚卵、仔稚魚,可對(duì)漁業(yè)資源早期補(bǔ)充過程產(chǎn)生負(fù)面影響[5- 6]。近年來(lái),隨著人們對(duì)其生態(tài)功能認(rèn)識(shí)的逐漸加深[5- 8],小型水母時(shí)空格局及其驅(qū)動(dòng)機(jī)制的研究逐步成為海洋生態(tài)學(xué)中的熱點(diǎn)[9- 11]。
長(zhǎng)江口及鄰近水域作為我國(guó)重要的高生產(chǎn)力海區(qū)之一,是眾多經(jīng)濟(jì)魚類的產(chǎn)卵場(chǎng)、索餌場(chǎng)和育幼場(chǎng)。長(zhǎng)江口及鄰近水域受到長(zhǎng)江沖淡水和臺(tái)灣暖流的直接影響,并受到蘇北沿岸水、閩浙沿岸水、黃海冷水團(tuán)和黑潮水的間接影響,水動(dòng)力環(huán)境復(fù)雜[12],從而形成了多樣化生境,長(zhǎng)期以來(lái)一直是我國(guó)海洋生態(tài)學(xué)研究的熱點(diǎn)水域。迄今為止,該海區(qū)小型水母研究有限,多為物種組成和數(shù)量分布規(guī)律的研究[13- 16],缺乏對(duì)其時(shí)空分布規(guī)律及其與環(huán)境因子關(guān)系的定量分析。鑒于此,本研究利用2002—2003年4個(gè)航次的海洋大面調(diào)查資料,在描述長(zhǎng)江口及鄰近水域的小型水母空間分布特點(diǎn)和季節(jié)演替規(guī)律的基礎(chǔ)上,利用多元回歸分析,探討環(huán)境因子對(duì)小型水母時(shí)空變動(dòng)的影響機(jī)制。研究結(jié)果不僅對(duì)長(zhǎng)江口及鄰近水域小型水母生態(tài)學(xué)研究提供基礎(chǔ)資料,亦將豐富人們對(duì)河口區(qū)小型水母時(shí)空變動(dòng)規(guī)律的理論認(rèn)知。
圖1 長(zhǎng)江口及鄰近水域調(diào)查站位(2002-04—2003-03)[17] Fig.1 Sampling stations in the Changjiang Estuary and the adjacent East China Sea during April 2002—March 2003[17]
1.1 調(diào)查區(qū)域、采樣時(shí)間和方法
分別于2002年4—5月、8—9月、11月和2003年2—3月在長(zhǎng)江口及鄰近水域(29°00′— 32°00′N、122°00′—123°30′E)進(jìn)行了4個(gè)航次的水文和生物綜合調(diào)查,涉及浮游動(dòng)物的站位布設(shè)如圖1所示[17]。
浮游動(dòng)物樣品采集和室內(nèi)處理均按照《海洋調(diào)查規(guī)范》進(jìn)行,小型水母用大型浮游生物網(wǎng)(口徑80 cm、網(wǎng)目孔徑0.505 mm)由底至表層垂直拖曳采集獲得;小型橈足類作為小型水母的重要餌料,使用中型浮游生物網(wǎng)(口徑50 cm、網(wǎng)目孔徑0.160 mm)采集。所獲樣品經(jīng)5%福爾馬林溶液固定后,在體視顯微鏡下,按個(gè)體計(jì)數(shù)法對(duì)浮游動(dòng)物樣品中的水母鑒定到種[1,18- 21],豐度以個(gè)/m2表示;小型橈足類鑒定到大類,豐度以個(gè)/m3表示?,F(xiàn)場(chǎng)溫度、鹽度、水深等數(shù)據(jù)采用SBE37-CTD儀測(cè)得。
1.2 數(shù)據(jù)處理
1.2.1 優(yōu)勢(shì)種
本文中小型水母優(yōu)勢(shì)種通過以下公式
確定:
(1)
式中,ni為第i種的豐度;fi是該種的出現(xiàn)頻率;N為水母類的總豐度。取優(yōu)勢(shì)度Y≥0.02的物種為優(yōu)勢(shì)種[22]。
1.2.2 逐步回歸分析
以水溫(℃), 表層(t0) 、10m層(t10m) 、底層(tb) 和鹽度, 表層(S0) 、10m層(S10m) 、底層(Sb) 6個(gè)因子作自變量,以二次方根轉(zhuǎn)化后的小型水母豐度(A)為因變量,采用逐步回歸分析方法,探究環(huán)境因子對(duì)小型水母豐度變化的影響[23]。
2.1 種類組成
調(diào)查水域共出現(xiàn)小型水母41種,隸屬于2門4(亞)綱7目,其中水螅水母最多,達(dá)28種;管水母次之(11種);櫛水母最少,僅2種。5月,共出現(xiàn)小型水母15種,其中管水母7種,水螅水母6種;其他月份均以水螅水母物種數(shù)最多,均占小型水母總物種數(shù)的50%以上。
2.2 小型水母總豐度的空間分布及季節(jié)變化
尹愛群手忙腳亂地刪掉妻子手機(jī)上的圖片,又刪除了Q Q的聊天記錄,拿起提包匆匆下樓,把車在街區(qū)里轉(zhuǎn)了幾個(gè)彎后,確定沒有尾巴,才把款存到一家銀行里。之后,他把銀行卡放到一個(gè)小手包里,鬼鬼祟祟地到了揚(yáng)揚(yáng)那里,揚(yáng)揚(yáng)溫柔地叫著老公,剛要撒嬌,見其面色難看,怯怯地張了張嘴。
如表1所示,調(diào)查水域小型水母總豐度夏季最高((337.33 ±55.68)個(gè)/m2),春、秋季次之(分別是(142.09±67.71)個(gè)/m2和(132.84±35.17)個(gè)/m2),冬季最低((113.69±32.72)個(gè)/m2)。管水母構(gòu)成其數(shù)量主體,以春季為例,管水母豐度為(129.37±66.64) 個(gè)/m2,占小型水母總豐度的90%以上(圖2a和圖2i)。
春季,小型水母豐度 > 500 個(gè)/m2區(qū)域主要位于該水域東南部,其高豐度中心達(dá)1379 個(gè)/m2,主要由管水母大西洋五角水母(Muggiaeaatlantica)構(gòu)成(圖2a和圖2i)。夏季,調(diào)查水域有兩個(gè)高豐度區(qū)域(最大豐度 > 750 個(gè)/m2), 其一位于中部海域 (127.75—123.5°E, 30.1—30.75°N),管水母大西洋五角水母和雙生水母(Diphyeschamissonis)構(gòu)成其主體; 另一高豐度區(qū)東南海域(123.0—123.5°E, 28.8—29.2°N), 最高值為1032.8 個(gè)/m2, 主要由雙生水母構(gòu)成(圖2b和圖2j)。秋季,小型水母出現(xiàn)率為100%,為四季最高。高豐度區(qū),主要由雙生水母構(gòu)成(圖2c和圖2k)。冬季,小型水母平均豐度和出現(xiàn)率(71.43%)均為全年最低。高豐度區(qū)(> 500 個(gè)/m2)位于123.5°E斷面的29.5—31.0°N海域,主要由大西洋五角水母、水螅水母兩手筐水母(Solmundellabitentaculata)和四葉小舌水母(Liriopetetraphylla)等構(gòu)成(圖2d)。
表1 長(zhǎng)江口及鄰近水域海水溫度 和小型水母豐度的季節(jié)變化Table 1 Seasonal variation in sea water temperature and abundance of small jellyfish in the Changjiang Estuary and adjacent East China Sea
2.3 小型水母優(yōu)勢(shì)種及其季節(jié)變化特征
如表2所示,調(diào)查水域共出現(xiàn)6種優(yōu)勢(shì)種。大西洋五角水母為冬、春季的第一優(yōu)勢(shì)種,其豐度分別為44.47 個(gè)/m2和81.74 個(gè)/m2;雙生水母則為夏、秋季第一優(yōu)勢(shì)種,平均豐度分別為249.03 個(gè)/m2和98.04 個(gè)/m2。
表2 長(zhǎng)江口及鄰近水域小型水母優(yōu)勢(shì)種Table 2 Dominant species of small jellyfish in the Changjiang Estuary and the adjacent East China Sea
圖2 長(zhǎng)江口及鄰近水域小型水母各類群豐度空間分布Fig.2 Spatial distribution of different groups of small jellyfish in the Changjiang Estuary and adjacent East China Sea 小型水母(a. 春、b. 夏、c. 秋、d. 冬),水螅水母(e. 春、f. 夏、g. 秋、h. 冬)、管水母(i. 春、j. 夏、k. 秋、l. 冬)和櫛水母(m. 春、n. 夏、o. 秋)
2.4 小型水母主要優(yōu)勢(shì)種的溫、鹽適應(yīng)特征
小型水母主要分布在表、中層水體[24],因此,本研究選擇10 m層溫度和鹽度研究?jī)?yōu)勢(shì)種的環(huán)境適應(yīng)特征。大西洋五角水母和雙生水母是調(diào)查水域最重要優(yōu)勢(shì)種,其溫、鹽度適應(yīng)特征如圖3所示。雙生水母為亞熱帶廣鹽種,當(dāng)溫度大于18 ℃,其豐度和出現(xiàn)頻率明顯增加;當(dāng)溫度為25—27 ℃時(shí),該種廣泛分布于各水域,且豐度較高。與雙生水母相比,大西洋五角水母則適鹽較高,其高豐度主要分布于鹽度>30的水域,出現(xiàn)率為70%;而當(dāng)鹽度 < 30時(shí),其豐度較低,出現(xiàn)率降至45.24%。
圖3 大西洋五角水母和雙生水母的溫度、鹽度適應(yīng)特征Fig.3 Temperature and salinity adaption of Muggiaea altantia, and Diphyes chamissonis
2.5 溫、鹽度和小型橈足類對(duì)小型水母豐度變動(dòng)的影響
表3 小型水母總豐度與溫、鹽度的回歸分析Table 3 Linear regression between sea water temperature, sea water salinity and abundance of small jellyfish
3.1 環(huán)境因子對(duì)小型水母分布的影響
小型水母營(yíng)浮游生活,對(duì)環(huán)境較為敏感,其生長(zhǎng)、繁殖和分布與其所處水團(tuán)的性質(zhì)(例如溫、鹽度)密切相關(guān)[25]。研究表明,長(zhǎng)江口及鄰近海域小型水母豐度呈現(xiàn)明顯季節(jié)性差異,具體表現(xiàn)為夏高冬低。該分布特點(diǎn)與其他中高緯度海區(qū)小型水母季節(jié)分布特點(diǎn)相吻合[26- 28]。逐步分析結(jié)果表明,該分布特點(diǎn)與該水域季節(jié)性溫度差異密切相關(guān)(表3)。夏季水溫達(dá)全年最高值(10 m層平均水溫為26.1 ℃),小型水母豐度亦達(dá)全年最高337.33 個(gè)/m2(表1和表2)。夏季為高溫適應(yīng)的小型水母提供了適宜的生長(zhǎng)和繁殖條件。以雙生水母為例,該種廣泛分布于東海、南海和泰國(guó)灣等水域,是南海北部、東海外海和閩江口等亞熱帶水域的優(yōu)勢(shì)種[29]。當(dāng)水溫 > 18 ℃時(shí),暖水種雙生水母豐度和出現(xiàn)頻率則大幅增加(圖3)。夏季高溫適應(yīng)性的雙生水母豐度急劇增加,平均豐度高達(dá)249.03 個(gè)/m2(占小型水母總豐度70%)(圖3)。秋季,調(diào)查海域浮游動(dòng)物群落雖仍呈現(xiàn)亞熱帶特征,然而伴隨著水溫的降低((18.86±0.06)℃),暖水種雙生水母的數(shù)量大幅降低(表2,圖3)。冬、春季,適溫較低的暖溫種大西洋五角水母為最主要的優(yōu)勢(shì)種。春季(溫度為17.5 ℃),大西洋五角水母豐度達(dá)全年最大(81.74 個(gè)/m2)。冬季水溫較低(表溫:(10.36±0.08)℃),不利于大西洋五角水母的生長(zhǎng)和繁殖(圖3)。大西洋五角水母豐度為44.47 個(gè)/m2,僅大約為春季數(shù)量的1/2。
食物也是夏季小型水母豐度較高的重要原因。在挪威的Korsfjorden灣,適宜溫度以及食物導(dǎo)致錐體淺室水母(Lensiaconoidea)和北極單板水母(Dimophyesarctica)豐度在5—6月(春、夏季)達(dá)全年最高[30]。本研究中,夏季調(diào)查海域葉綠素a和小型橈足類均達(dá)到全年最大值(表1)。小型橈足類如小擬哲水蚤等是小型水母的重要餌料[31-32]。小型橈足類旺發(fā),為小型水母提供了豐富的餌料。小型水母豐度與小型橈足類顯著正相關(guān),進(jìn)一步證實(shí)了餌料的重要性。小型水母,特別是營(yíng)無(wú)性生殖且終生浮游的管水母,對(duì)食物響應(yīng)較快,生長(zhǎng)和繁殖率變化快[33- 34]。夏季,雙生水母數(shù)量激增至249.03 個(gè)/m2, 成為夏季第一優(yōu)勢(shì)種(表2)。四葉小舌水母豐度增加至37.33 個(gè)/m2,約為春季的6倍(表2)。櫛水母如球型側(cè)腕水母也在夏季達(dá)到全年最大值??傊?,夏季大量餌料進(jìn)一步促進(jìn)了小型水母數(shù)量的豐富。
除了食物和溫度,鹽度也是調(diào)查海域小型水母豐度水平分布的主要因子。鹽度變化可影響小型水母的浮力、繁殖和攝食率[35-36]。小型水母種群對(duì)鹽度變化較為敏感,高豐度值一般是在其最適鹽度附近[37-39]。本研究中長(zhǎng)江口及鄰近水域小型水母全年分布與10 m層鹽度顯著正相關(guān) (P=0.003),小型水母高豐度區(qū)主要位于高鹽水域(表3)。調(diào)查海域小型水母組成以適鹽較高的外海種為主,僅廣鹽種雙生水母為近海種。以春季為例,優(yōu)勢(shì)種管水母大西洋五角水母和水螅水母四葉小舌水母均適鹽較高 (圖2a,表2),為外海種[39]。它們主要分布在鹽度大于30的水域,當(dāng)鹽度低于30時(shí)候,出現(xiàn)頻率和豐度均顯著降低(圖3)。因此,春季小型水母豐度與底層鹽度顯著正相關(guān),其豐度在東南部水域達(dá)到極大值,西北方向上呈現(xiàn)舌狀分布(表3,圖2a)??傊?,鹽度是決定小型水母優(yōu)勢(shì)種分布及其豐度的重要因素。
3.2 小型水母空間分布與水團(tuán)的關(guān)系
在大中尺度研究中,小型水母分布與物理海洋過程例如洋流、鋒面、水團(tuán)混合、上升流等密切相關(guān)[28, 40- 41]。長(zhǎng)江口及鄰近水域受長(zhǎng)江沖淡水、臺(tái)灣暖流和沿岸流等影響,水文動(dòng)力環(huán)境復(fù)雜多變[42- 43],對(duì)小型水母空間分布可產(chǎn)生重要影響。
冬季,受偏北風(fēng)影響,長(zhǎng)江沖淡水沿岸南下,其范圍僅限于貼岸的一狹帶內(nèi)[42]。長(zhǎng)江徑流南下向杭州灣口、舟山群島海域方向擴(kuò)展,該區(qū)域幾乎無(wú)小型水母?jìng)€(gè)體出現(xiàn)(圖2d)。此時(shí),長(zhǎng)江口外海存在一個(gè)總體上呈南北方向分布的溫度鋒和鹽度鋒,低溫、低鹽的長(zhǎng)江沖淡水和東海沿岸流沿著東海沿岸向南流,而高溫、高鹽臺(tái)灣暖流從底層向北入侵,垂直分布均勻[42]。此時(shí),小型水母主要分布在冷暖流交匯偏暖水側(cè)。冬季小型水母豐度與10 m層溫度顯著正相關(guān)(表3),進(jìn)一步證實(shí)了上述推測(cè)。
春季,小型水母主要分布在長(zhǎng)江口東南部水域—臺(tái)灣暖流與長(zhǎng)江沖淡水交匯偏暖流一側(cè)。臺(tái)灣暖流為靠近浙江、福建近海終年向北流動(dòng)的一支高溫、高鹽的海流, 其內(nèi)側(cè)分支在舟山群島以東、長(zhǎng)江口以南轉(zhuǎn)向東[12]。由于臺(tái)灣暖流從東南部接近長(zhǎng)江口水域,小型水母則隨著暖流進(jìn)展,遇到長(zhǎng)江口沖淡水后在長(zhǎng)江口南側(cè)30°00′N,123°30′E 處聚集(圖2a和圖2i)。
夏季,長(zhǎng)江口及鄰近水域夏季存在穩(wěn)定的浙江沿岸上升流和長(zhǎng)江口上升流[44]。研究表明,上升流與小型水母繁盛密切相關(guān)。例如,在太平洋東部熱帶水域的巴拿馬灣,上升流及其由此引發(fā)的生產(chǎn)力增加與水螅水母爆發(fā)密切相關(guān)[45]。南海北部海域上升流增強(qiáng)驅(qū)動(dòng)產(chǎn)生的豐富食物,是雙生水母等管水母夏季出現(xiàn)高峰的重要原因[46]。本研究中,上升流為真光層補(bǔ)充了大量無(wú)機(jī)磷,有利于浮游植物的生長(zhǎng)[47],并促進(jìn)了小型橈足類和小型水母的旺發(fā)。以往研究也證實(shí)了夏季沿岸上升流對(duì)長(zhǎng)江口及鄰近水域浮游植物繁盛的作用[48]。由此推測(cè),夏季,長(zhǎng)江口及鄰近海域小型水母分布廣泛且豐度最大,亦與上升流及其引發(fā)的高生產(chǎn)力密切相關(guān)。而秋季,水團(tuán)與小型水母豐度分布關(guān)系不甚緊密(圖3,表3)。
從以上分析來(lái)看,冬、春季小型水母高豐度主要分布于長(zhǎng)江沖淡水和臺(tái)灣暖流交匯偏暖水側(cè);夏季小型水母分布廣泛且豐度最高,與上升流及其引發(fā)的高生產(chǎn)力密切相關(guān)。
3.3 與外海小型水母的比較
縱觀整個(gè)東海小型水母分布,長(zhǎng)江口及鄰近水域位于豐度較高的水域,其小型水母豐度明顯高于東海北部近海和外海[49]。這是由于在長(zhǎng)江口及鄰近水域存在生物生產(chǎn)力鋒區(qū),隨著沖淡水向外海方向擴(kuò)散,水體層化,垂直穩(wěn)定度大,有利于懸浮泥沙迅速沉降,致使可利用率大大增加,在河口輸入的營(yíng)養(yǎng)鹽,可滿足浮游植物群落快速增長(zhǎng)[50]。而生物生產(chǎn)力鋒區(qū)浮游植物旺發(fā),促進(jìn)了小型浮游橈足類生長(zhǎng),最終為小型水母提供了豐富的餌料。此外,上升流亦與小型水母繁盛密切相關(guān)。無(wú)論東海外海[49],還是長(zhǎng)江口水域,最重要的優(yōu)勢(shì)種都是大西洋五角水母和雙生水母,顯示上述兩個(gè)物種在東海小型水母豐度變動(dòng)特征中重要性。
致謝:感謝林茂研究員對(duì)樣品鑒定的指導(dǎo),沈曉民老師對(duì)寫作的幫助。
[1] 高尚武, 洪惠馨, 張士美. 中國(guó)動(dòng)物志 無(wú)脊椎動(dòng)物 第二十七卷 刺胞動(dòng)物門 水螅蟲綱管水母亞綱 缽水母綱. 北京: 科學(xué)出版社, 2002.
[2] Richardson A J, Bakun A, Hays G C, Gibbons M J. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution, 2009, 24(6): 312- 322.
[3] Lynam C P, Hay S J, Brierley A S. Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. Journal of the Marine Biological Association of the United Kingdom, 2005, 85: 435- 450.
[4] Purcell J E, Uye S I, Lo W T. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series, 2005, 350: 153- 174.
[5] Purcell J E, Sturdevant M V. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series, 2001, 210: 67- 83.
[6] Purcell J E, Arai M N. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia, 2001, 451(1- 3): 27- 44.
[7] Kideys A E. Fall and rise of the Black Sea ecosystem. Science, 2002, 297(5586): 1482- 1484.
[8] Sullivan B K, Keuren D V, Clancy M. Timing and size of blooms of the ctenophoreMnemiopsisleidyiin relation to temperature in Narragansett Bay, RI. Hydrobiologia, 2001, 451(1- 3): 113- 120.
[9] Lynam C P, Heath M R, Hay S J, Brierley A S. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series, 2005, 298: 157- 167.
[10] Costello J H, Sullivan B K, Gifford D J. A physical-biological interaction underlying variable phenological responses to climate change by coastal zooplankton. Journal of Plankton Research, 2006, 28(11): 1099- 1105.
[11] Attrill M J, Wright J, Edwards M. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography, 2007, 52(1): 480- 485.
[12] Su J L. Circulation dynamics of the China Seas: north of 18°N // Robinson A R, Brink K. The Sea. Vol. 11. The Global Coastal Ocean: Regional Studies and Syntheses. New York: Wiley, 1998: 483- 506.
[13] 高哲生, 張志南. 舟山的水螅水母類. 山東海洋學(xué)院學(xué)報(bào), 1962, (1): 65- 91.
[14] 洪惠馨. 東海水母類的研究Ⅰ. 浙江沿海的管水母類 (Siphonophora). 上海水產(chǎn)學(xué)院論文集, 1964, (1): 111- 130.
[15] 許振祖, 黃加祺, 劉光興. 長(zhǎng)江口及其鄰近海域水螅水母綱新種和新記錄記述. 海洋學(xué)報(bào), 2006, 28(6): 112- 118.
[16] 陳洪舉, 劉光興. 夏季長(zhǎng)江口及鄰近海域水母類生態(tài)特征研究. 海洋科學(xué), 2010, 34(4): 17- 24.
[17] 周偉華, 袁翔城, 霍文毅, 殷克東. 長(zhǎng)江口鄰域葉綠素a和初級(jí)生產(chǎn)力的分布. 海洋學(xué)報(bào), 2004, 26(3): 143-150.
[18] 周太玄, 黃明顯. 煙臺(tái)水螅水母類的研究. 動(dòng)物學(xué)報(bào), 1958, 10(2): 173- 191, 圖版I-V.
[19] 許振祖, 金德祥. 福建沿海水母類的調(diào)查研究(一). 廈門大學(xué)學(xué)報(bào), 1962, 9(3): 206- 224.
[20] Kramp P L. The Hydromedusae of the Pacific and Indian Oceans. Sections II and III. Dana-Report, 1968, 72: 1- 200.
[21] 張金標(biāo). 中國(guó)海洋浮游管水母類. 北京: 海洋出版社, 2005.
[22] 徐兆禮, 陳亞瞿. 東黃海秋季浮游動(dòng)物優(yōu)勢(shì)種聚集強(qiáng)度與鮐鲹漁場(chǎng)的關(guān)系. 生態(tài)學(xué)雜志, 1989, 8(4): 13- 15.
[23] 李春喜, 姜麗娜, 邵云. 生物統(tǒng)計(jì)學(xué). 北京: 科學(xué)出版社, 2008.
[24] Gao S W. The vertical distribution of the Medusae, Pteropoda, Heteropoda and Thaliacea in the East China Sea. Studia Marina Sinica, 1990, 31: 83- 91.
[25] Molinero J C, Casini M, Buecher E. The influence of the Atlantic and regional climate variability on the long-term changes in gelatinous carnivore populations in the northwestern Mediterranean. Limnology and Oceanography, 2008, 53(4): 1456- 1467.
[26] Gibbons M J, Richardson A J. Patterns of jellyfish abundance in the North Atlantic. Hydrobiologia, 2009, 616: 51- 65.
[27] Fraser J H. The ecology of the ctenophorePleurobrachiapileusin Scottish waters. Journal du Conseil International pour l′Exploration de la Mer, 1970, 33(2): 149- 168.
[28] Brinckmann-Voss A. Seasonality of hydroids (Hydrozoa, Cnidaria) from an intertidal pool and adjacent subtidal habitats at Race Rocks, off Vancouver Island, Canada. Scientia Marina, 1996, 66: 89- 97.
[29] Alvarino A. Siphonophores of the Pacific with A Review of the World Distribution. Bulletin of the Scripps Institution of Oceanography, 1971, 16: 1- 432.
[30] Hosia A, B?mstedt U. Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. Journal of Plankton Research, 2008, 30(8): 951- 962.
[31] Purcell J E. Dietary composition and diel feeding patterns of epipelagic Siphonophores. Marine Biology, 1981, 65(1): 83- 90.
[32] Purcell J E. Feeding and growth of the siphonophoreMuggiaeaatlantica(Cunningham 1893). Journal of Experimental Marine Biology and Ecology, 1982, 62(1): 39- 54.
[33] Mackie G O, Pugh P R, Purcell J E. Siphonophore biology. Advances in Marine Biology, 1987, 24: 98- 262.
[34] Clarke A, Peck L S. The physiology of polar marine zooplankton. Polar Research, 1991, 10(2): 355- 369.
[35] Mills C E. Density is altered in hydromedusae and ctenophores in response to changes in salinity. Biological Bulletin, 1984, 166(1): 206- 215.
[36] Ma X P, Purcell J E. Temperature, salinity, and prey effects on polyp versus medusa bud production by the invasive hydrozoanMoerisialyonsi. Marine Biology, 2005, 147(1): 225- 234.
[37] Licandro P, Souissi S, Ibanez F, Carré C. Long-term variability and environmental preferences of calycophoran siphonophores in the Bay of Villefranche (north-western Mediterranean). Progress in Oceanography, 2012, 97- 100: 152- 163.
[38] Lo W T, Yu S F, Hsieh H Y. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. Journal of Oceanography, 2013, 69(5): 495- 509.
[39] 徐兆禮. 東海水螅水母環(huán)境適應(yīng)與生態(tài)類群. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(1): 177- 184.
[40] Thibault-Botha D, Lutjeharms J R E, Gibbons M. Siphonophore assemblages along the east coast of South Africa; mesoscale distribution and temporal variations. Journal of Plankton Research, 2004, 26(9): 1115- 1128.
[41] 林茂, 張金標(biāo). 東海中部管水母類和海樽類的密集及其對(duì)水團(tuán)邊界的指示作用. 國(guó)家海洋局科技司, 黑潮調(diào)查研究論文選(一). 北京: 海洋出版社, 1993, 5: 452- 459.
[42] 蘇育嵩. 黃、東海地理環(huán)境與環(huán)流系統(tǒng)分析—長(zhǎng)江口及濟(jì)州島鄰近海域綜合調(diào)查研究報(bào)告(第二章). 青島海洋大學(xué)學(xué)報(bào), 1989, 19(1): 145- 158.
[43] Li G X, Han X B, Yue S H, Wen G Y, Yang R M, Kusky T M. Monthly variations of water masses in the East China Seas. Continental Shelf Research, 2006, 26(16): 1954- 1970.
[44] 趙保仁, 任廣法, 曹德明, 楊玉玲. 長(zhǎng)江口上升流海區(qū)的生態(tài)環(huán)境特征. 海洋與湖沼, 2001, 32(3): 327- 333.
[45] Miglietta M P, Rossi M, Collin R. Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. Journal of Plankton Research, 2008, 30(7): 783- 793.
[46] Li K Z, Yin J Q, Huang L M, Song X Y. Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. Journal of Plankton Research, 2012, 34(7): 636- 641.
[47] 王保棟. 長(zhǎng)江口及鄰近海域富營(yíng)養(yǎng)化狀況及其生態(tài)效應(yīng) [D]. 青島: 中國(guó)海洋大學(xué), 2006.
[48] Chen Y L L, Chen H Y, Gong G C, Lin Y H, Jan S, Takahashi M. Phytoplankton production during a summer coastal upwelling in the East China Sea. Continental Shelf Research, 2004, 24(12): 1321- 1338.
[49] 徐兆禮. 東海水母類豐度的動(dòng)力學(xué)特征. 動(dòng)物學(xué)報(bào), 2006, 52(5): 854- 861.
[50] 寧修仁, 史君賢, 蔡昱明, 劉誠(chéng)剛. 長(zhǎng)江口和杭州灣海域生物生產(chǎn)力鋒面及其生態(tài)學(xué)效應(yīng). 海洋學(xué)報(bào), 2004, 26(6): 96- 106.
Abundance distribution and seasonal variation of medusae, siphonophores, and ctenophores in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea
GAO Qian1, CHEN Jiajie1, XU Zhaoli1,*, ZHU Dedi2
1KeyandOpenLaboratoryofMarineandEstuarineFisheries,MinistryofAgriculture,EastChinaSeaFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Shanghai200090,China2SecondInstituteofOceanography,SOA,Hangzhou310012,China
Small jellyfish (here including medusae, siphonophores, and ctenophores) are widespread in the marine pelagic realm. They usually constitute one of the most important assemblages of predators in pelagic food webs by serving as a direct link between zooplankton and higher trophic levels. They can at times be the most abundant non-crustacean invertebrate predators due to their great voracity and their rapid population growth, resulting in extensive seasonal blooms. Thus, studies on small jellyfish have become popular in marine ecology. Studies concerning zooplankton distribution at large spatial scales, particularly for weak swimmers like small jellyfish, emphasize the importance of the physical characteristics of water masses, including salinity and temperature. In our study, the seasonal abundance and horizontal distribution of small jellyfish were assessed in the Changjiang Estuary (Yangtze River) and the adjacent East China Sea (29°00′—32°00′N, 122°00′—123°30′E) in 2002—2003. The Changjiang Estuary and the adjacent East China Sea are one of the most productive aquatic ecosystems. High primary production supports high fishery production in adjacent coastal waters, including the Changjiang and Zhoushan fishery grounds. A total of 41 species of small jellyfish (11 siphonophores, 28 medusae, 2 ctenophores) were collected. Numerically, siphonophores were most abundant (58.56%—91.05% of the total collection by number). The dominant species were the siphonophoresDiphyeschamissonis,Muggiaeaatlantica, andPhysophorahydrostaticaand medusaeLiriopetetraphylla,Solmundellabitentaculata, andEirenebrevistylus.Muggiaeaatlanticawas dominant all year round, particularly in spring (76.19% of the total collection by number) and winter (39.12%).D.chamissoniswas dominant in summer and autumn, with abundances of 249.03 ind./m2(73.82% of the total collection by number), and 98.04 ind./m2(73.80%), respectively. The numerical abundance of small jellyfish was highest in summer ((337.33±55.68) ind./m2), lowest in winter ((113.69±32.72) ind./m2), and intermediate in spring and autumn ((142.09±67.71) ind./m2and (132.84±35.17) ind./m2). Seasonal variations in the abundance of small jellyfish were closely associated with the surface water temperature. The average surface water temperature peaked in summer ((27.26±0.02) ℃). Then, both the temperature and salinity in the studied area were suitable for the development and reproduction ofD.chamissonis. In addition, the summer upwelling and its associated high productivity might also benefit the jellyfish because large numbers of carnivores ultimately require an elevated level of primary production. There were strong correlations between temperature, 10-m water salinity, and small jellyfish abundances (P< 0.01), suggesting that they are important in determining the spatial distribution of small jellyfish. The bottom salinity in spring was positively related with the abundance (P< 0.05), and the 10-m water salinity in summer was also positively correlated with abundance (P< 0.01). In winter, the abundance was obviously increased from inshore to offshore. In addition, small jellyfish abundance was also strongly correlated with their food, small copepods (P< 0.01), which proved the importance of food availability for carnivores. This study provides basic knowledge on the distribution patterns of small jellyfish, which is essential to further understand the ecological roles played by small jellyfish and their responses to the hydrological conditions in the Changjiang Estuary and the adjacent East China Sea.
medusae; siphonophores; ctenophores; seasonal distribution; Changjiang Estuary
附錄Ⅰ 長(zhǎng)江口及鄰近水域水螅水母、管水母和櫛水母種名錄Appendix Ⅰ Species list of medusae, siphonophores and ctenophores in the Changjiang Estuary and the adjacent East China Sea
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2010CB428705);海洋公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201305027-8)
2014- 03- 21;
日期:2015- 04- 20
10.5846/stxb201403210505
*通訊作者Corresponding author.E-mail: xiaomin@sh163.com
高倩, 陳佳杰,徐兆禮,朱德弟.長(zhǎng)江口及鄰近海域浮游水螅水母、管水母和櫛水母的豐度分布與季節(jié)變化.生態(tài)學(xué)報(bào),2015,35(22):7328- 7337.
Gao Q, Chen J J, Xu Z L, Zhu D D.Abundance distribution and seasonal variation of medusae, siphonophores, and ctenophores in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea.Acta Ecologica Sinica,2015,35(22):7328- 7337.