牛 衡,牛廣明
·綜 述·
定量動態(tài)增強(qiáng)MRI在脊柱腫瘤中的研究進(jìn)展
牛 衡,牛廣明
脊柱腫瘤是臨床上常見的較難確診的疾病,因?yàn)樵谟跋駥W(xué)上很難區(qū)別良、惡性,且兩者之間還會存在交錯重疊情況,在具體腫瘤類型上也很難鑒別。而近些年隨著影像學(xué)不斷發(fā)展,特別是MRI新技術(shù)在臨床上的應(yīng)用,使得脊柱腫瘤的臨床確診率越來越高。定量動態(tài)增強(qiáng)MRI的不同定量參數(shù)可對脊柱腫瘤性病變進(jìn)行診斷、鑒別診斷、腫瘤分級及療效評價。作者就定量動態(tài)增強(qiáng)MRI的基本原理及其在脊柱病變中的應(yīng)用進(jìn)展進(jìn)行綜述。
磁共振成像;動態(tài)增強(qiáng);定量;脊柱;腫瘤
動態(tài)增強(qiáng)MRI(dynamic contrast-enhanced MRI,DCE-MRI)即注射小分子釓類對比劑,引起不同組織的信號變化,然后在灌注程度和滲透性不同的組織中測量毛細(xì)血管通透性及灌注分布,從而進(jìn)行成像。后期經(jīng)過對原始圖像的處理,DCE-MRI可以進(jìn)行定性分析、半定量分析、定量分析。應(yīng)用定量分析的不同定量參數(shù)可對脊柱病變,如脊柱腫瘤性病變進(jìn)行診斷、鑒別診斷、腫瘤分級及療效評價。作者就定量DCE-MRI的基本原理及其在脊柱病變中的應(yīng)用進(jìn)展進(jìn)行綜述。
在早期的臨床腫瘤研究中,人們通過觀察病灶的形態(tài)學(xué)改變來評價腫瘤進(jìn)展程度與治療療效,但病灶形態(tài)學(xué)的改變遠(yuǎn)遲于生物學(xué)行為的改變,同血清腫瘤標(biāo)志物一樣,這2種方法缺乏足夠的敏感性及特異性,對于早期的診療及療效的檢測不利。腫瘤的血供及血管狀況是腫瘤發(fā)展的關(guān)鍵[1],它與腫瘤的發(fā)生、進(jìn)展和遠(yuǎn)處轉(zhuǎn)移密切相關(guān)。目前微血管密度(micro-vessel density,MVD)與血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)可以評價腫瘤新生血管水平[2]。但VEGF、MVD并不能直接反映血管的生物學(xué)功能。有研究認(rèn)為血管新生會對血管微環(huán)境產(chǎn)生非單一的影響,包括MVD、血管容積、血管通透性,而且新生血管的生長速度并不單純?nèi)Q于VEGF,而是由血管數(shù)量、VEGF水平、血管壁對VEGF的敏感程度3個因素共同決定[3]。由此可見,MVD或VEGF并不能全面反映腫瘤血管微環(huán)境,并且因其兩者有創(chuàng)的取材方式、對精準(zhǔn)取材的依賴性、隨訪的不可重復(fù)性,不利于臨床實(shí)際應(yīng)用。DCE-MRI因其無創(chuàng)性、可重復(fù)性的特點(diǎn),已被越來越多地應(yīng)用于臨床評估腫瘤微環(huán)境。
1.1 DCE-MRI的基本原理DCE-MRI通過注射小分子非特異性對比劑進(jìn)行成像,如二乙烯三胺乙酸釓等[4-6]。釓對比劑進(jìn)入人體并通過組織時可引起組織局部磁場不均勻,進(jìn)而引起T1信號的增高和T2信號的減低,這是由于釓類對比劑的多個不成對電子與質(zhì)子形成了偶極子,從而導(dǎo)致組織T1時間和T2時間縮短[4-5]。對比劑影響MRI信號的凈效應(yīng)程度取決于MRI的不同成像參數(shù)及成像序列[6]。目前,動態(tài)MRI根據(jù)對比劑凈效應(yīng)的不同分為:①利用T1縮短效應(yīng)的DCE-MRI;②利用T2縮短效應(yīng)的動態(tài)磁敏感對比MRI。DCE-MRI主要對血管外細(xì)胞外間隙(extravascular extracellular space,EES)內(nèi)的對比劑敏感,反映組織灌注、通透性及EES的大小,因此適合滲透性成像[7];DSC-MRI適合灌注成像,因其對血管內(nèi)對比劑敏感,可以反映組織的血流量和血管容量[8]。DCE-MRI進(jìn)行定性、半定量及定量分析是基于其各種藥物代謝動力學(xué)模型的建立,作者只就這一狹義DCE-MRI進(jìn)行討論。
1.2 DCE-MRI基本掃描技術(shù)DCE-MRI因注入對比劑后,使用不同的T1加權(quán)像掃描序列對病變區(qū)域進(jìn)行快速動態(tài)掃描,通常采用的T1加權(quán)像序列為快速3D梯度回波序列[9],然后測量注入對比劑前后T1信號強(qiáng)度隨時間的變化。并行采集技術(shù)及Z軸方向的填充技術(shù)也經(jīng)常用來縮短K空間填充時間,提高時間分辨力。上述序列均首先用于腹部的多期動態(tài)增強(qiáng)掃描中,現(xiàn)在已發(fā)展成熟。掃描參數(shù)的優(yōu)化雖然可以實(shí)現(xiàn)其他部位的動態(tài)增強(qiáng)掃描,但要得到血流動力學(xué)的量化參數(shù),則需要更苛刻的條件即更高的時間分辨力。另一種提高掃描速度的方式是應(yīng)用時間分辨隨機(jī)軌道成像技術(shù),該技術(shù)通過以螺旋軌道填充K空間提高掃描速度,每幀采集時間縮短到6.4 s。運(yùn)用該技術(shù)可連續(xù)采集50~60幀圖像,總采集時間約為6 min,明顯提高了動態(tài)增強(qiáng)掃描的時間分辨力[10]。
1.3 DCE-MRI的定性分析定性分析即通過動態(tài)增強(qiáng)掃描獲得組織時間-信號強(qiáng)度曲線(time-signal intensity curve,TIC),再通過評價曲線的形態(tài)來對病變進(jìn)行定性診斷和療效評價。TIC形態(tài)可分為Ⅰ型持續(xù)上升型、Ⅱ型平臺型、Ⅲ型速升速降型3種類型[11]。Ⅰ型曲線主要用于鑒別腫瘤的良、惡性,Ⅱ、Ⅲ型曲線在腫瘤良、惡性的鑒別中無特殊意義[12-13]。定性分析有諸多優(yōu)點(diǎn),如對于掃描序列及設(shè)備依賴性小、僅需要TIC曲線等。但其不能提供與潛在的生理組織特征直接相關(guān)的參數(shù)。由于信號強(qiáng)度不能量化且易受掃描參數(shù)影響,在對腫瘤化療療效的評價中甚至部分良、惡性病變的TIC重疊。在對腫瘤化療療效的評價中,Lavini等[14]認(rèn)為定性分析價值不大。
1.4 DCE-MRI的半定量分析量化分析TIC曲線后可以提供更客觀、更綜合的信息。不同研究需求的半定量參數(shù)不同,常用的半定量參數(shù)有曲線下面積、強(qiáng)化峰值、血流量、血容量、平均通過時間、達(dá)峰時間及上升或下降斜率[15-17]。半定量分析應(yīng)用簡便且量化指標(biāo)較為明確,對曲線形態(tài)的描述也較為客觀,但其缺點(diǎn)也較為明顯即組織中對比劑的濃度不能得到準(zhǔn)確反映,但有些研究[18]指出半定量分析可能與組織生理學(xué)潛在點(diǎn)存在廣泛的關(guān)聯(lián)。
1.5 DCE-MRI的定量分析與前兩者相比,定量分析可以量化組織內(nèi)亞結(jié)構(gòu)即通過藥物代謝動力學(xué)分析來評估組織微血管生成及其功能[19]。藥物代謝動力學(xué)模型分析可使DCE-MRI成像空間分辨率達(dá)到毫米級,從而使獲得組織內(nèi)亞結(jié)構(gòu)間對比劑濃度變化之間的相互聯(lián)系并生成參數(shù)成為可能[19-20]。目前,四參數(shù)模型中的Tofts兩室腔藥物代謝動力學(xué)模型最為應(yīng)用廣泛[7,21]。DCE-MRI的4個定量參數(shù)得到了標(biāo)準(zhǔn)化:對比劑從血漿滲透至EES的容量轉(zhuǎn)移常數(shù)Ktrans(/min);血管外細(xì)胞外容積分?jǐn)?shù)Ve,0<Ve<1;血漿容積分?jǐn)?shù)Vp以及對比劑從EES返回至血漿的速率常數(shù)Kep(Kep=Ktrans/Ve)。其中,Ktrans和Ve是與生理過程直接相關(guān)的參數(shù);組織中血管滲透性的高低由Ktrans表示,Ktrans值越大血管滲透性越高,內(nèi)皮細(xì)胞損傷越嚴(yán)重;組織壞死及組織細(xì)胞化程度由Ve表示,Ve值越大血管外細(xì)胞外間隙容積越大,壞死程度越高或細(xì)胞化程度越低[22];Vp代表單位體積組織內(nèi)血漿的體積,Vp和Ve的關(guān)系必須滿足Vp+Ve≤1[19]。因此,定量分析適合更深層次研究組織微結(jié)構(gòu)的改變及血流灌注情況。
2.1 定量DCE-MRI在脊柱病變中主要用于對脊柱腫瘤的診斷目前,脊柱腫瘤的診斷主要依靠常規(guī)影像學(xué)檢查,如X線、CT、MRI等,這些檢查對于病變及脊柱的形態(tài)學(xué)改變可以很好地提供醫(yī)學(xué)信息,但部分脊柱腫瘤形態(tài)學(xué)表現(xiàn)類似,因此不能提供更多準(zhǔn)確的信息。定量DCE-MRI因其與脊柱腫瘤的病理學(xué)檢查結(jié)果有良好相關(guān)性而被廣泛用于鑒別良、惡性腫瘤,評估骨腫瘤的侵襲性、臨床分期與治療效果以及監(jiān)測骨腫瘤復(fù)發(fā)與殘留等[23-25]。
2.1.1 鑒別良、惡性腫瘤與評估腫瘤侵襲性在部分病例中脊柱良性腫瘤和惡性腫瘤的形態(tài)學(xué)表現(xiàn)類似,但良、惡性腫瘤的病情進(jìn)展、治療方法及預(yù)后有很大不同。常規(guī)的影像學(xué)檢查如CT、MRI不能提供準(zhǔn)確的信息。Fayad等[24]對經(jīng)病理證實(shí)的良性腫瘤與惡性腫瘤進(jìn)行DCE-MRI定量分析,結(jié)果顯示惡性腫瘤組Ktrans值較高。Zha等[25]對經(jīng)病理證實(shí)脊柱腫瘤的患者行術(shù)前DCE-MRI檢查,得出侵襲性強(qiáng)的腫瘤組Ktrans值及Ve值均高于侵襲性低的腫瘤組結(jié)果。但研究者同時認(rèn)為,研究結(jié)果的準(zhǔn)確性可能受到影響,因?yàn)檠芯恐邪鞣N組織病理學(xué)類型不同的腫瘤。不典型的脊柱轉(zhuǎn)移瘤與脊柱骨髓瘤有時很難鑒別,而脊柱轉(zhuǎn)移瘤的Ktrans值及Ve值明顯高于脊椎骨髓瘤,可能的原因是脊柱轉(zhuǎn)移瘤較脊柱骨髓瘤血供豐富,血管內(nèi)皮細(xì)胞損傷嚴(yán)重而且細(xì)胞外間隙容積大,壞死程度越高。
2.1.2 療效評價對腫瘤性病變進(jìn)行放療和化療,其療效與癌變組織的放化療敏感性直接相關(guān)。故預(yù)測腫瘤對放化療的敏感性對于腫瘤患者治療方案的選擇有重要的意義。定量DCE-MRI可以客觀地提供病變組織血流灌注、血管滲透性的信息,因此可以作為預(yù)測腫瘤對放化療敏感性的指標(biāo)[26-27]。Chikui等[26]研究表明,腫瘤對放化療敏感性取決于Ktrans、Ve值的高低,通常呈正相關(guān)。另外一些學(xué)者[28-29]的相關(guān)研究也得出類似結(jié)果,有些腫瘤患者在接受放化療后,腫瘤的形態(tài)尚未明顯改變但其Ktrans、Ve值明顯減低,并且放化療后Ktrans、Ve值明顯減低的腫瘤患者預(yù)后較好。
2.2 定量DCE-MRI在其他脊柱病變中的應(yīng)用定量DCE-MRI可用于評價個體罹患骨質(zhì)疏松(osteoporosis,OP)的風(fēng)險以及監(jiān)測療效。Liu等[30]報道雌性O(shè)P大鼠(卵巢切除+飲食控制或糖皮質(zhì)激素)在造模12個月后,腰椎、骨盆以及股骨的Kep值顯著下降,病理及免疫組織化學(xué)檢查顯示OP大鼠骨髓血管稀疏,但血管成熟度增加,血管直徑未受影響。另外,一些臨床研究也發(fā)現(xiàn)類似結(jié)果。Biffar等[31]發(fā)現(xiàn)OP組患者椎體骨髓的血流量顯著低于正常組,其血容量與定量CT測得的骨礦物質(zhì)含量呈正相關(guān)。定量DCE-MRI可以很好地評價血管微環(huán)境及組織壞死及組織細(xì)胞化程度,因此也可用于對脊柱感染性病變?nèi)绮剪敆U菌脊柱炎、脊柱結(jié)核的評價。但國內(nèi)外有關(guān)DCE-MRI應(yīng)用于脊柱感染性病變的研究鮮見報道。
DCE-MRI能夠進(jìn)行定性、半定量、定量分析,提供較常規(guī)MRI更多的組織微觀信息,為脊柱病變的診斷、鑒別診斷、療效評價等提供更多幫助。但DCE-MRI也存在一些問題:①定量分析仍處于早期研究階段,在脊柱病變尤其是感染性病變中的相關(guān)研究較少;②掃描序列和技術(shù)不統(tǒng)一,沒有標(biāo)準(zhǔn)化的參數(shù);③選用的藥物代謝動力學(xué)模型及相應(yīng)軟件不同,導(dǎo)致測量數(shù)據(jù)存在差異,缺乏可比性[32-33]。
[1]Folkman J.Angiogenesis:an organizing principle for drug discovery?[J].Nat Rev Drug Discov,2007,6(4):273-286.
[2]Thielemann A,Kopczyński Z,F(xiàn)ilas V,et al.The determination of VEGF and MVD,among patients with primary breast cancer[J].Pathol Oncol Res,2008,14(2):137-144.
[3]Venkatasubramanian R,Arenas RB,Henson MA,et al. Mechanistic modelling of dynamic MRI data predicts that tumour heterogeneity decreases therapeutic response[J]. Br J Cancer,2010,103(4):486-497.
[4]Nazarpoor M,Poureisa M,Daghighi MH.Comparison of maximum signal intensity of contrast agent on T1-weighted images using spinecho,fast spin echo and inversion recovery sequences[J].Iran J Radiol,2012,10(1):27-32.
[5]Jansen JF,Carlson DL,Lu Y,et al.Correlation of a priori DCE-MRI and(1)H-MRS data with molecular markers in neck nodal metastases:initial analysis[J].Oral Oncol,2012,48(8):717-722.
[6]Jia Z,Geng D,Liu Y,et al.Low-grade and anaplastic oligodendrogliomas:differences in tumour microvascular permeability evaluated with dynamic contrast-enhanced magnetic resonance imaging[J].J Clin Neurosci,2013,20 (8):1110-1113.
[7]Ingrisch M,Sourbron S,Morhard D,et al.Quantification of perfusion and permeability in multiple sclerosis:dynamic contrast-enhanced MRI in 3D at 3T[J].Invest Radiol,2012,47(4):252-258.
[8]Enmi J,Kudomi N,Hayashi T,et al.Quantitative assessment of regional cerebral blood flow by dynamic susceptibility contrast-enhanced MRI,without the need for arterial blood signals[J].Phys Med Biol,2012,57(23):7873-7892.
[9]Hekimoɡ?lu K,Sancak T,Tor M,et al.Fast MRI evaluation of pulmonary progressive massive fibrosis with VIBE and HASTE sequences:comparison with CT[J].Diagn Interv Radiol,2010,16(1):30-37.
[10]Lim RP,Shapiro M,Wang EY,et al.3D time-resolved MR angiography(MRA)of the carotid arteries with time-resolved imaging with stochastic trajectories:comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-offlight MRA[J].AJNR Am J Neuroradiol,2008,29(10): 1847-1854.
[11]Renz DM,Diekmann F,Schmitzberger FF,et al.Pharmacokinetic approach for dynamic breast MRI to indicate signal intensity time curves of benign and malignant lesions by using the tumor flow residence time[J].Invest Radiol,2013,48(2):69-78.
[12]Yuan Y,Yue XH,Tao XF.The diagnostic value of dynamic contrast-enhanced MRI for thyroid tumors[J].Eur J Radiol,2012,81(11):3313-3318.
[13]Yuan Y,Kuai XP,Chen XS,et al.Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of malignant from benign orbital masses[J]. Eur J Radiol,2013,82(9):1506-1511.
[14]Lavini C,Verhoeff JJ,Majoie CB,et al.Model-based,semiquantitative and time intensity curve shape analysis of dynamic contrast-enhanced MRI:a comparison in patients undergoing antiangiogenic treatment for recurrent glioma [J].J Magn Reson Imaging,2011,34(6):1303-1312.
[15]Matsuzaki H,Yanagi Y,Hara M,et al.Diagnostic value of dynamic contrast-enhanced MRI for submucosal palatal tumors[J].Eur J Radiol,2012,81(11):3306-3312.
[16]Matsuzaki H,Yanagi Y,Hara M,et al.Minor salivary gland tumors in the oral cavity:diagnostic value of dynamic contrast-enhanced MRI[J].Eur J Radiol,2012,81(10):2684-2891.
[17]Matsuzaki H,Hara M,Yanagi Y,et al.Magnetic resonance imaging(MRI)and dynamic MRI evaluation of extranodal non-Hodgkin lymphoma in oral and maxill of acial regions[J].Oral Surg Oral Med Oral Pathol Oral Radiol,2012,113(1):126-133.
[18]Barnes SL,Whisenant JG,Loveless ME,et al.Practical dynamic contrast enhanced MRI in small animal models of cancer:data acquisition,data analysis,and interpretation [J].Pharmaceutics,2012,4(3):442-478.
[19]Sourbron SP,Buckley DL.Classic models for dynamic contrast-enhanced MRI[J].NMR Biomed,2013,26(8):1004-1027.
[20]Ingrisch M,Sourbron S.Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT:a primer[J].J Pharmacokinet Pharmacodyn,2013,40(3):281-300.
[21]Larsson HB,Courivaud F,Rostrup E,et al.Measurement of brain perfusion,blood volume,and blood-brain barrier permeability,using dynamic contrast-enhanced T1-weighted MRI at 3 tesla[J].Magn Reson Med,2009,62(5):1270-1281.
[22]Choi HS,Kim AH,Ahn SS,et al.Glioma grading capability:comparisons among parameters from dynamic contrastenhanced MRI and ADC value on DWI[J].Korean J Radiol,2013,14(3):487-492.
[23]Chu S,Karimi S,Peck KK,et al.Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging:evaluation of tumor response to radiation therapy[J].Spine(Phila Pa 1976),2013,38(22):E1418-E1424.
[24]Fayad LM,Mugera C,Soldatos T,et al.Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors:an MR angiographic sequence using a sparse k-space sampling strategy[J].Skeletal Radiol,2013,42(7):993-1000.
[25]Zha Y,Li M,Yang J.Dynamic contrast enhanced magnetic resonance imaging of diffuse spinal bone marrow infiltration in patients with hematological malignancies[J].Korean J Radiol,2010,11(2):187-194.
[26]Chikui T,Kitamoto E,Kawano S,et al.Pharmacokinetic analysis based on dynamic contrast-enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer[J].J Magn Reson Imaging,2012,36(3):589-597.
[27]Ishii A,Korogi Y,Hirai T,et al.Intraarterial infusion chemotherapy and conformal radiotherapy for cancer of the mouth:prediction of the histological response to therapy with magnetic resonance imaging[J].Acta Radiol,2007,48(8):900-906.
[28]?vreb? KM,Gulliksrud K,Mathiesen B,et al.Assessment of tumor radioresponsiveness and metastatic potential by dynamic contrast-enhanced magnetic resonance imaging [J].Int J Radiat Oncol Biol Phys,2011,81(1):255-261.
[29]Chawla S,Kim S,Dougherty L,et al.Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck[J].AJR Am J Roentgenol,2013,200(1):35-43.
[30]Liu Y,Cao L,Hillengass J,et al.Quantitative assessment of microcirculation and diffusion in the bone marrow of osteoporotic rats using VCT,DCE-MRI,DW-MRI,and histology[J].Acta Radiol,2013,54(2):205-213.
[31]Biffar A,Schmidt GP,Sourbron S,et al.Quantitative analysis of vertebral bone marrow perfusion using dynamic contrast-enhanced MRI:initial results in osteoporotic patients with acute vertebral fracture[J].J Magn Reson Imaging,2011,33(3):676-683.
[32]Song Y,Cho G,Suh JY,et al.Dynamic contrast-enhanced MRI for monitoring antiangiogenic treatment:determination of accurate and reliable perfusion parameters in a longitudinal study of a mouse xenograft model[J].Korean J Radiol,2013,14(4):589-596.
[33]Ma HT,Griffith JF,Zhao X,et al.Relationship between marrow perfusion and bone mineral density:a pharmacokinetic study of DCE-MRI[J].Conf Proc IEEE Eng Med Biol Soc,2012,2012:377-379.
Quantitative dynamic contrast-enhanced MRI in spinal tumor
NIU Heng,NIU Guangming
(Department of Imaging,Affiliated Hospital of Inner Mongolia Medical University,Hohhot Inner Mongolia 010050,China)
Spinal tumor used to be a kind of disease which was hard to diagnose by neuroimage.Because of some overlap of benign and malignant tumor,it was also difficult to tell the classification directly.In recent years,with the continuous development of new techniques of imaging,especially MRI in clinical application,the diagnostic accuracy of spinal tumor gradually improved. Quantitative dynamic contrast-enhanced MRI(DCE-MRI)was conducted by different parameters,and then applied in the diagnosis,differential diagnosis,and the classification of tumors and therapeutic evaluations.In this review we summarized the applications of the quantitative DCE-MRI in the spinal lesions.
Magnetic resonance imaging(MRI);Dynamic contrast-enhanced;Quantification;Spine;Neoplasm
R445.2;R738.2
A
2095-3097(2015)05-0302-04
10.3969/j.issn.2095-3097.2015.05.014
2015-07-21 本文編輯:張?jiān)谖?
國家自然科學(xué)基金(81460259)
010050內(nèi)蒙古呼和浩特,內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院影像科(牛 衡,牛廣明)
牛廣明,E-mail:cjr.niuguangming@vip.163.com