綜 述
微小核糖核酸調(diào)控脂質(zhì)代謝的相關(guān)研究進展
微小核糖核酸(microRNA)作為一類內(nèi)源性、進化上高保守、由20~22個核苷酸構(gòu)成的單鏈非編碼RNA[1],廣泛分布于真核生物中,人類身體上已有超過2500個microRNA被確認[2]。人類基因組中有20%~30%的基因受microRNA調(diào)控,一個microRNA可調(diào)控多個靶標,一個基因可被多個microRNA共同調(diào)控[3,4]。
MicroRNA來源于細胞核,首先經(jīng)RNA聚合酶Ⅱ(polⅡ)轉(zhuǎn)錄生成較長的 pri-microRNA,再經(jīng)Drosha(RNaseⅢ酶家族)/DGCR8復(fù)合體加工成pre-microRNA[5,6]。Pre-microRNA通過轉(zhuǎn)運蛋白exportin 5從核內(nèi)轉(zhuǎn)移到胞漿,再由Dicer(RNaseⅢ酶家族)或Ago2(Ago蛋白家族)加工為microRNA雙鏈[7]。雙鏈microRNA解鏈后,其中一條成為成熟的microRNA,并整合形成RNA誘導(dǎo)的沉默復(fù)合體(RNA-induced silencing complex,RISC),再通過與靶mRNA的3′末端非編碼區(qū)(3′UTR)特異性結(jié)合,破壞靶mRNA穩(wěn)定性甚至使其降解,抑制靶mRNA翻譯蛋白質(zhì),對基因進行轉(zhuǎn)錄后水平調(diào)控[1,8]。
MicroRNA已被證實在疾病的生理病理過程中具有多種功能,而某些microRNA在脂肪代謝過程中發(fā)揮重要的調(diào)控作用[9,10],特別是具有肝臟特異性的microRNA-122和microRNA-33,后者定位在固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)的編碼基因SREBF上,更是受到了廣泛的關(guān)注和研究。本文針對相關(guān)microRNA對體內(nèi)脂質(zhì)平衡的影響,特別是對相關(guān)脂蛋白代謝的調(diào)節(jié)展開討論。
MicroRNA-122是肝臟中表達最多的microRNA(在每個肝細胞中有大于50 000個拷貝量,占肝臟microRNA表達總量的70%),其源于hcr基因轉(zhuǎn)錄本,也是第一個被發(fā)現(xiàn)影響脂質(zhì)代謝的microRNA[11]。非酒精脂肪肝患者,無論血清或肝臟的microRNA-122水平都出現(xiàn)了上調(diào)[12]。
小鼠體內(nèi)的microRNA-122被反義寡核苷酸(ASO)或 microRNA 拮抗劑(antagoMicroRNA)阻斷后,血漿膽固醇水平明顯下降[13,14]。Krützfeldt等[13]的研究發(fā)現(xiàn),小鼠血漿膽固醇水平下降40%,而非酯化的游離脂肪酸、甘油三酯、膽汁酸、葡萄糖水平卻未見顯著變化。Esau等[14]的研究發(fā)現(xiàn),被反義抑制microRNA-122的小鼠膽固醇下降了30%,LDL-C及HDL-C也有所下降,甘油三酯水平更是下降了40%。小鼠肝臟脂肪酸氧化增加,同時肝臟脂肪酸、膽固醇合成減少,高脂飲食引起的肝脂肪變性也受到阻礙。MicroRNA-122對脂質(zhì)代謝的調(diào)控,可能通過內(nèi)源性膽固醇限速酶3-羥基-3-甲基戊二?;?CoA還原酶(HMGCR)表達減少來減少胞內(nèi)膽固醇的合成。Norman等[15]研究也證實,抑制microRNA-122能減少HMGCR的表達,提示microRNA-122與HMGCR可能存在結(jié)合位點。被反義抑制microRNA-122的小鼠,包括催化脂肪酸合成代謝第一步反應(yīng)的限速酶——乙酰輔酶A羧化酶(ACC)在內(nèi)的脂肪酸氧化基因表達下調(diào)[14]。被反義抑制microRNA-122的小鼠,腺苷酸活化蛋白激酶(AMPK)的活躍性增加,而AMPK是細胞內(nèi)主要的能量調(diào)節(jié)因子,通過磷酸化激活下游靶標,減少ATP利用(包括抑制脂肪和膽固醇的合成),增加ATP生成(包括促進脂肪酸氧化)。事實上,HMGCR和ACC均為AMPK的靶分子[14,16]。但是,antago MicroRNA對microRNA-122在膽固醇生物合成上的影響并不是直接的,而且microRNA-122的表達受其他 microRNA如 mi-370水平的調(diào)控[17],microRNA-122影響血漿膽固醇水平的直接靶標尚未完全明確。
研究指出,用鎖核酸酸改性寡核苷酸(LNA-antiMicroRNA)抑制非洲綠猴microRNA-122后,其血漿膽固醇水平亦下降了30%,LDL下降顯著,且不伴隨明顯肝毒性[18]。最近研究發(fā)現(xiàn),肝臟特異性剔除和種系基因剔除microRNA-122的小鼠總的血脂水平均下降了 30%,包括 TC、TG、HDL-C和LDL-C[19,20],且膽固醇生物合成的相關(guān)基因也受到了明顯抑制,其中包括HMGCR。不僅如此,小鼠的微粒體甘油三酯轉(zhuǎn)移蛋白(MTTP)的表達下調(diào)。MTTP存在于細胞微粒體和內(nèi)質(zhì)網(wǎng)內(nèi),是肝臟極低密度脂蛋白(VLDL)合成和分泌所必需的脂質(zhì)轉(zhuǎn)移蛋白,其下調(diào)不僅對肝臟聚集VLDL十分必要,也可使血漿TG明顯下降[18,21]。事實上,目前microRNA-122導(dǎo)致的MTTP被抑制的機制也不明確。
近期研究提示,補充更具抗氧化和自由基清除能力的原花青素(GSPE),可通過抑制microRNA-122和microRNA-33來降低小鼠餐后血脂水平[22]。在有望成為治療脂代謝相關(guān)疾病新靶點的同時,另外的兩個不同分組中,被microRNA-122 ASO處理后的小鼠的肝脂肪變性受到了抑制,而缺乏microRNA-122的小鼠肝脂肪變性卻增加了[19]。在缺乏microRNA-122的小鼠中觀察到了大量的脂質(zhì)積聚[20]。也就是說,缺乏microRNA-122小鼠的脂肪生產(chǎn)相關(guān)的基因表達與microRNA-122 ASO處理的小鼠不同,不同程度的microRNA-122被抑制會導(dǎo)致肝臟不同側(cè)面的基因表達。因此,利用microRNA-122治療血脂異常需要進一步更詳細的研究來評估。
定位于固醇結(jié)合原件調(diào)節(jié)蛋白(SREBP)內(nèi)含子的microRNA-33能夠調(diào)控膽固醇穩(wěn)態(tài)[23-27]。MicroRNA-33家族中有兩種microRNA,分別是microRNA-33a和microRNA-33b,他們高度同源,有相同的種子序列,僅有兩個核苷酸的區(qū)別。在人類身體內(nèi),microRNA-33a和microRNA-33b分別被編碼在SREBF2和SREBF1上[24]。只有在大型哺乳動物中才發(fā)現(xiàn)有microRNA-33b表達,而對于嚙齒動物并不存在,只有microRNA-33a定位在SREBP2內(nèi)含子上。
SREBF1編碼SREBP1a和SREBP1c主要調(diào)節(jié)脂肪生成的靶基因,如ACC1、脂肪酸合酶(FASN)和硬脂酰輔酶 A去飽和酶 1(SCD)[27,28]。SREBP1受肝臟X核受體(LXR)調(diào)控。LXR是一種氧化型固醇激活的核受體,是膽固醇代謝的感受器,能刺激SREBF1表達,從而上調(diào) ACC和 FASN[29,30]。SREBF2編碼SREBP2主要調(diào)控膽固醇調(diào)節(jié)相關(guān)的靶基因,如HMGCR和低密度脂蛋白受體[27,28]。MicroRNA-33與其宿主基因共同轉(zhuǎn)錄并調(diào)控脂質(zhì)代謝,兩者的表達呈正相關(guān)[24,25]。
幾組獨立的實驗通過反義核苷酸技術(shù)或培育剔除microRNA-33的小鼠發(fā)現(xiàn),microRNA-33在ATP結(jié)合盒轉(zhuǎn)運體(ABC)A1上存在高保守的結(jié)合位點[23-26]。ABCA1是一種整合膜蛋白,轉(zhuǎn)運細胞內(nèi)游離膽固醇外流到細胞膜表面的載脂蛋白A-Ⅰ(apoA-Ⅰ)并且形成前HDL,從而清除組織內(nèi)過量的膽固醇[31]。因此,ABCA1是一個HDL生物合成和膽固醇逆向轉(zhuǎn)運(RCT)的關(guān)鍵微粒。在膽固醇水平升高時,ABCA1、ABCG1也能受LXR誘導(dǎo)而表達增加[28,32]。LNA-antiMicroRNA或抗microRNA-33慢病毒處理后的小鼠,ABCA1在肝臟上表達增加,ABCA1和 ABCG1在巨噬細胞上表達增加[23-25]。ABCG1也是microRNA-33在嚙齒動物上的一個靶標,它是一種二聚體蛋白質(zhì),主要表達于巨噬細胞上,促進胞內(nèi)膽固醇外流至HDL或其他脂蛋白,但不外流至apoaA-Ⅰ,在介導(dǎo)膽固醇外流和HDL生成中與ABCA1具有協(xié)同作用[33]。更重要的是,拮抗microRNA-33的小鼠的血漿HDL水平上升了35%~50%,而其他脂蛋白水平卻無明顯變化[23-25]。MicroRNA-33剔除的小鼠血漿HDL水平上升了25%,肝臟ABCA1的表達也有顯著的提高[26]。拮抗microRNA-33不僅通過上調(diào)ABCA1來提高HDL水平,同時還通過上調(diào)ABCB11和ATB8B1刺激膽汁分泌[33,34]。
MicroRNA-33也調(diào)控脂肪酸氧化代謝,可靶向結(jié)合并抑制脂肪酸氧化相關(guān)基因,例如肉堿O辛基轉(zhuǎn)移酶(CROT)、肉毒堿棕櫚酰轉(zhuǎn)移酶1A(CPT1A)和羥烷基輔酶A脫氫酶B(HADHB)[27,35]。在microRNA-33過量表達的肝臟細胞上,CPT1A和HADHB的表達水平均出現(xiàn)了下調(diào)[27]。
有報道提示,反義抑制microRNA-33通過提升RCT,甚至使缺乏LDLR的老鼠AS斑塊發(fā)生逆轉(zhuǎn)[36];而拮抗microRNA-33能減緩缺乏apoE的小鼠AS的進程[37]。Rotllan等[38]報道,沉默microRNA-33能抑制LDLR剔除的小鼠AS的進程。但Marquart等[39]報道,拮抗microRNA-33的治療并不改變LDLR剔除小鼠AS的進程。兩個研究的差異有可能是反義技術(shù)的不同和小鼠喂養(yǎng)不同造成(食物膽固醇含量分別為0.15%和1.25%),因此,拮抗microRNA-33能減緩甚至逆轉(zhuǎn)動脈粥樣硬化進程尚未能完全證實。
在非洲綠猴實驗上,抗microRNA-33治療(同時抑制microRNA-33a和microRNA-33b)提高了血漿HDL水平同時降低了VLDL水平,并且不伴有明顯肝毒性損害,更長遠的影響尚未在人類身上觀察到[40]。但Goedeke等[41]通過長期抑制microRNA-33發(fā)現(xiàn),高脂飲食喂養(yǎng)小鼠可能會出現(xiàn)中度肝脂肪變性和高甘油三酯血癥等不良影響。因此需要更深入的研究,包括對microRNA-33的功能研究來證實拮抗microRNA-33治療是否可成為對人類有效的治療。
MicroRNA-370能直接靶向沉默CPT1A從而下調(diào)脂肪酸氧化,而且microRNA-370能上調(diào)microRNA-122的表達和它的靶基因,對脂質(zhì)代謝產(chǎn)生間接影響[17]。事實上,抑制microRNA-122的表達可解除microRNA-370對脂肪生成基因的影響。HepG2細胞體外實驗同樣發(fā)現(xiàn),轉(zhuǎn)染microRNA-370能上調(diào) SREBP1c、ACC1、FASN 和 DGAT2的表達,甘油三酯和膽固醇水平也隨之上升。
兩組獨立的研究報道提示,microRNA-144也作用ABCA1的3′UTR,從而減少ABCA1的表達和膽固醇流出[42,43]。小鼠實驗中,microRNA-144的過表達降低了ABCA1的表達及血漿HDL水平。另一方面,沉默小鼠的microRNA-44能提高ABCA1和血漿 HDL的表達。不僅如此,microRNA-33和microRNA-144對ABCA1蛋白表達具有累加效應(yīng)[42]。MicroRNA-144可被LXR刺激上調(diào),LXR能通過調(diào)控其靶基因ApoE、ABCA1、ABCG1等,從而促進RCT[32,43]。因此,上調(diào)microRNA-33和microRNA-144或許是提高HDL水平的一種潛在的方法。另外 ,microRNA-33b、microRNA-758、microRNA-26和 microRNA-106b等能作用于 ABCA1的 3′UTR來調(diào)節(jié)膽固醇的流出[44-47]。MicroRNA-27可能通過沉默過氧化物酶體增殖物活化受體(PPAR)抑制脂肪細胞分化,同時間接調(diào)控ABCA1[48,49]。MicroRNA-302a、microRNA199a-5p近來被發(fā)現(xiàn)似乎也能通過沉默PPAR來調(diào)控脂質(zhì)代謝[50,51]。
最近有報道指出,microRNA-30c作用于MTTP的3′UTR,可降低MTTP的活躍性和載脂蛋白B的分泌[52,53]。不僅如此,microRNA-30c不通過MTTP也能減少脂質(zhì)合成。MicroRNA-30c的過表達降低血漿TC和TG水平,并改善AS,相反,抑制apoE缺乏小鼠的microRNA-30c上調(diào)了血漿膽固醇和甘油三酯水平,惡化動脈粥樣硬化。
MicroRNA對脂質(zhì)代謝的調(diào)節(jié)是一個復(fù)雜的過程,部分microRNA在脂質(zhì)代謝過程的調(diào)控功能已經(jīng)得到證實。但是,目前對microRNA對脂質(zhì)調(diào)控功能的研究仍處于初步階段,仍有許多問題有待解決。更多與脂質(zhì)代謝相關(guān)的microRNA和更多microRNA對脂質(zhì)代謝的調(diào)控機制有待發(fā)現(xiàn),以及各個機制和靶點間的關(guān)系網(wǎng)絡(luò)仍未清晰。一個microRNA可有多個靶標,影響不同基因的表達,而不同microRNA的靶標也有重疊,因而需要更深入的研究來認識microRNA的調(diào)控網(wǎng)絡(luò)和復(fù)雜生物學(xué)過程。隨著研究的深入,我們將更全面地了解其對脂質(zhì)代謝的調(diào)控以及病理生理學(xué)機制。MicroRNA的治療或許可成為人類脂代謝疾病治療的一個切入點[54-56]。
[1]ShuklaGC, Singh J, Barik S.MicroRNAs: Processing,Maturation,Target Recognition and Regulatory Functions.Mol Cell Pharmacol,2011,3:83-92.
[2]Kozomara A, Griffiths-Jones S.MicroRNABase: integrating microRNA annotation and deep-sequencing data.Nucleic Acids Res,2011,39:152-157.
[3]Lewis BP,Burge CB,Bartel DP.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell,2005,120:15-20.
[4]Le Sage C,Agami R.Immense promises for tiny molecules:uncovering MicroRNA functions.Cell Cycle,2006,5:1415-1421.
[5]Lee Y,Ahn C,Han J,et al.The nuclear RNaseⅢ Drosha initiates microRNA processing.Nature,2003,425:415-419.
[6]Friedman RC,F(xiàn)arh KK,Burge CB,et al.Most mammalian mRNAs are conserved targets ofmicroRNAs.Genome Res,2009,19:92-105.
[7]Cifuentes D,Xue H,Taylor DW,et al.A novel MicroRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity.Science,2010,328:1694-1698.
[8]Liu J,Valencia-Sanchez MA,Hannon GJ,et al.MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.Nat Cell Biol,2005,7:719-723.
[9]Fernández-Hernando C,Moore KJ.MicroRNA modulation of cholesterol homeostasis.Arterioscler Thromb Vasc Biol,2011,31:2378-2382.
[10]Rottiers V,Naar AM.MicroRNAs in metabolism and metabolic disorders.Nat Rev Mol Cell Biol,2012,13:239-250.
[11]Jopling CL,Norman KL,Sarnow P.Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA MicroRNA-122.Cold Spring Harb Symp Quant Biol,2006,71:369-376.
[12]Miyaaki H,Ichikawa T,Kamo Y,et al.Significance of serum and hepatic microRNA-122 levels in patients with nonalcoholic fatty liver disease.Liver Int,2014,34:e302-307.
[13]Krützfeldt J,Rajewsky N, Braich R, et al.Silencing of microRNAs in vivo with antagoMicroRNAs.Nature,2005,438:685-689.
[14]Esau C,Davis S,Murray SF,et al.MicroRNA-122 regulation of lipid metabolism revealed by in vivo antisense targeting.Cell Metab,2006,3:87-98.
[15]Norman KL,Sarnow P.Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA MicroRNA-122involvesdistinctmechanisms.J Virol,2010,84:666-670.
[16]袁虎,吳國亭.AMP活化蛋白激酶研究進展.國際內(nèi)分泌代謝雜志,2010,30:25-28.
[17]Iliopoulos D,Drosatos K,Hiyama Y,et al.MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism.J Lipid Res,2010,51:1513-1523.
[18]Elmén J,Lindow M,Schütz S,et al.LNA-mediated microRNA silencing in non-human primates.Nature,2008,452:896-899.
[19]Wen J,F(xiàn)riedman JR.MicroRNA-122 regulates hepatic lipid metabolism and tumor suppression.J Clin Invest,2012,122:2773-2776.
[20]Hsu SH,Wang B,Kota J,et al.Essential metabolic,antiinflammatory,and anti-tumorigenic functions of MicroRNA-122 in liver.J Clin Invest,2012,122:2871-2883.
[21]Hussain MM,Rava P,Walsh M,et al.Multiple functions of microsomal triglyceride transfer protein.Nutr Metab(Lond),2012,9:14.
[22]Baselga-Escudero L,Blade C,Ribas-Latre A,et al.Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver MicroRNA-33a and MicroRNA-122 levels in a dose-dependent manner in healthy rats.J Nutr Biochem,2014,25:151-156.
[23]Rayner KJ, Suárez Y, Dávalos A,et al.MicroRNA-33 contributes to the regulation of cholesterol homeostasis.Science,2010,328:1570-1573.
[24]Najafi-Shoushtari SH,Kristo F,Li Y,et al.MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.Science,2010,328:1566-1569.
[25]Marquart TJ,Allen RM,Ory DS,et al.MicroRNA-33 links SREBP-2 induction to repression of sterol transporters.Proc Natl Acad Sci USA,2010,107:12228-12232.
[26]Horie T,Ono K,Horiguchi M,et al.MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2(Srebp2) regulates HDL in vivo.Proc Natl Acad Sci USA,2010,107:17321-17326.
[27]Gerin I, Clerbaux LA,Haumont O,et al.Expression of MicroRNA-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation.J Biol Chem,2010,285:33652-33661.
[28]Horton JD,Goldstein JL,Brown MS.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver.J Clin Invest,2002,109:1125-1131.
[29]Repa JJ,Liang G,Ou J,et al.Regulation of mouse sterol regulatory element-binding protein-1c gene(SREBP-1c) by oxysterol receptors,LXRalpha and LXRbeta.Genes Dev,2000,14:2819-2830.
[30]Millatt LJ,Bocher V,F(xiàn)ruchart JC,et al.Liver X receptors and the control of cholesterol homeostasis:potential therapeutic targets for the treatment of atherosclerosis.Biochim Biophys Acta,2003,1631:107-118.
[31]Li G,Gu HM,Zhang DW.ATP-binding cassette transporters and cholesterol translocation.IUBMB Life,2013,65:505-512.
[32]Zelcer N,Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling.J Clin Invest,2006,116:607-614.
[33]Chen SG,Xiao J,Liu XH,et al.Ibrolipim increases ABCA1/G1 expression by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.Acta Pharmacol Sin,2010,31:1343-1349.
[34]Allen RM,Marquart TJ,Albert CJ,et al.MicroRNA-33 controls the expression of biliary transporters,and mediatesstatin-and diet-inducedhepatotoxicity.EMBO MolMed,2012,4:882-895.
[35]Dávalos A1,Goedeke L,Smibert P,et al.MicroRNA-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.Proc Natl Acad Sci USA,2011,108:9232-9237.
[36]Rayner KJ, Sheedy FJ, Esau CC, et al.Antagonism of MicroRNA-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.J Clin Invest,2011,121:2921-2931.
[37]Horie T,Baba O,Kuwabara Y,et al.MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/-mice.J Am Heart Assoc,2012,1:e003376.
[38]Rotllan N,Ramírez CM,Aryal B,et al.Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/-mice--brief report.Arterioscler Thromb Vasc Biol,2013,33:1973-1977.
[39]Marquart TJ,Wu J,Lusis AJ,et al.Anti-MicroRNA-33 therapy does not alter the progression of atherosclerosis in lowdensity lipoprotein receptor-deficient mice.Arterioscler Thromb Vasc Biol,2013,33:455-458.
[40]Rayner KJ, Esau CC, Hussain FN, et al.Inhibition of MicroRNA-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.Nature,2011,478:404-407.
[41]Goedeke L,Salerno A, Ramírez CM, et al.Long-term therapeutic silencing of MicroRNA-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice.EMBO Mol Med,2014,6:1133-1141.
[42]Ramírez CM,Rotllan N,Vlassov AV, et al.Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.Circ Res,2013,112:1592-1601.
[43]De Aguiar Vallim TQ,Tarling EJ,Kim T,et al.MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.Circ Res,2013,112:1602-1612.
[44]Ramirez CM,Dávalos A,Goedeke L,et al.MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.Arterioscler Thromb Vasc Biol,2011,31:2707-2714.
[45]Kim J,Yoon H,Ramírez CM,et al.MicroRNA-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression.Exp Neurol,2012,235:476-483.
[46]Sun D,Zhang J,Xie J,et al.MicroRNA-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7.FEBS Lett,2012,586:1472-1479.
[47]Mandolini C,Santovito D,Marcantonio P,et al.Identification of microRNAs 758 and 33b as potential modulators of ABCA1 expression in human atherosclerotic plaques.Nutr Metab Cardiovasc Dis,2014,Oct 5[Epub ahead of print].
[48]Kim SY,Kim AY,Lee HW,et al.MicroRNA-27a is a negative regulator of adipocyte differentiation via suppressing PPARgammaexpression. Biochem Biophys Res Commun,2010,392:323-328.
[49]KarbienerM, FischerC, NowitschS, etal.microRNA MicroRNA-27b impairs human adipocyte differentiation and targets PPARgamma.Biochem Biophys Res Commun,2009,390:247-251.
[50]JeongBC, KangIH, KohJT.MicroRNA-302ainhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression.FEBS Lett,2014,588:3427-3434.
[51]Li B,Zhang Z,Zhang H,et al.Aberrant MicroRNA199a-5p/caveolin1/PPARα axis in hepatic steatosis.J Mol Endocrinol,2014,53:393-403.
[52]Soh J,Iqbal J,Queiroz J,et al.MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion.Nat Med,2013,19:892-900.
[53]Soh J,Hussain MM.Supplementary site interactions are critical for the regulation of microsomal triglyceride transfer protein by microRNA-30c.Nutr Metab(Lond),2013,10:56.
[54]楊水祥,胡大一.基因組學(xué)研究的革命性工具——小分子RNA 研究進展(一).中國心血管病研究,2004,2:923-925.
[55]楊水祥,胡大一.基因組學(xué)研究的革命性工具——小分子RNA 研究進展(二).中國心血管病研究,2005,3:14-15.
[56]潘淑娟,葛郁芝,張淑華.RNA干擾及其在遺傳性高脂血癥治療中的應(yīng)用.中國心血管病研究,2008,6:138-140.
MicroRNA regulatory and lipid metabolism
林義軒 徐新
微小核糖核酸; 脂質(zhì)代謝; 動脈粥樣硬化
MicroRNA; Lipid metabolism; Atherosclerosis
512026 廣東省韶關(guān)市,韶關(guān)市粵北人民醫(yī)院心內(nèi)科
徐新,E-mail:yeexuan@163.com
10.3969/j.issn.1672-5301.2015.02.002
R541.4
A
1672-5301(2015)02-0101-05
2014-11-19)