郭愛,季萬勝,姜琪琪,李萌萌,楊炳乾,高志星
1.濰坊醫(yī)學(xué)院研究生部,山東 濰坊 261000;
2.濰坊醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科,山東 濰坊 261000
Δ133p53異構(gòu)體在5-FU抑制胃癌MKN45細(xì)胞系生長(zhǎng)實(shí)驗(yàn)中的作用
郭愛1,季萬勝2,姜琪琪1,李萌萌1,楊炳乾1,高志星2
1.濰坊醫(yī)學(xué)院研究生部,山東 濰坊 261000;
2.濰坊醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科,山東 濰坊 261000
背景與目的:Δ133p53具有促進(jìn)腫瘤細(xì)胞生長(zhǎng)的作用,但具體作用機(jī)制尚不明確,本實(shí)驗(yàn)是采用5-FU-MKN45胃癌細(xì)胞系模型,觀察p53異構(gòu)體Δ133p53表達(dá)與p53基因下游MDM2、cyclin G1基因表達(dá)的相關(guān)性。方法:使用不同濃度5-FU(50 μg/mL,100 μg/mL)作用于人胃癌MKN45細(xì)胞系后,MTT法檢測(cè)細(xì)胞抑制率,巢式逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(reverse transcription-polymerase chain reaction,RT-PCR法)檢測(cè)Δ133p53、MDM2及cyclin G1 mRNA的表達(dá)變化。組間差異用單因素方差分析,組內(nèi)比較用t檢驗(yàn),兩變量相關(guān)性用Pearson直線相關(guān)分析。結(jié)果:MTT結(jié)果顯示,隨著5-FU濃度增高以及作用時(shí)間的延長(zhǎng),細(xì)胞抑制率逐漸增加,4組實(shí)驗(yàn)中50 μg/mL 5-FU作用于MKN45細(xì)胞24、48和78 h后抑制率平均值分別為41.10%、54.79%和68.48%,差異有統(tǒng)計(jì)學(xué)意義(F=45.52,P=0.00)。100 μg/mL 5-FU作用于MKN45細(xì)胞24、48和78 h后抑制率平均值分別為69.53%、78.21%和86.92%,差異有統(tǒng)計(jì)學(xué)意義(F=85.58,P=0.00)。50和100 μg/mL 5-FU作用于MKN45細(xì)胞24 h后抑制率分別為41.10%和69.53%,差異有統(tǒng)計(jì)學(xué)意義(F=51.29,P=0.00)。50和100 μg/mL 5-FU作用于MKN45細(xì)胞48 h后抑制率分別為54.79%和78.21%,差異有統(tǒng)計(jì)學(xué)意義(F=51.29,P=0.00)。50和100 μg/mL 5-FU作用于MKN45細(xì)胞72 h后抑制率分別為68.48%和86.82%,差異有統(tǒng)計(jì)學(xué)意義(F=104.91,P=0.00)。RT-PCR結(jié)果顯示,隨著5-FU濃度的增加,胃癌細(xì)胞系MKN45細(xì)胞中Δ133p53 mRNA、MDM2 mRNA和cyclin G1 mRNA表達(dá)量逐漸下降,組間差異具有統(tǒng)計(jì)學(xué)意義(F值分別為738.532、1 396.607和2 785.560,P=0.00)。相關(guān)性分析顯示,Δ133p53 mRNA與MDM2 mRNA在胃癌中表達(dá)呈正相關(guān)(r=0.871,P=0.01),而cyclin G1 mRNA的表達(dá)與Δ133p53 mRNA沒有明顯的相關(guān)性(P=0.13)。結(jié)論:在5-FU-MKN45模型中,Δ133p53參與的5-FU的抗腫瘤途徑與MDM2有關(guān),與cyclin G1無關(guān)。
5-FU;胃癌;Δ133p53;MDM2;cyclin G1
胃癌是我國發(fā)病率和死亡率最高的惡性腫瘤之一。作為最早發(fā)現(xiàn)的抑癌基因,p53基因與胃癌的關(guān)系遠(yuǎn)未闡明。部分胃癌檢出該基因突變,但其生物學(xué)意義仍不清楚[1-2]。最近發(fā)現(xiàn)的p53蛋白異構(gòu)體為深入了解p53與胃癌之間的相互關(guān)系、胃癌分子診斷乃至生物學(xué)治療開啟了一扇新的窗口。本研究采用RT-PCR技術(shù),以5-FU干預(yù)表達(dá)野生型p53基因的胃癌MKN45細(xì)胞系為研究模型,分析Δ133p53及p53基因下游分子MDM2、cyclin G1在胃癌細(xì)胞生長(zhǎng)抑制過程中的表達(dá)變化,旨在探討Δ133p53的功能及其生物學(xué)意義。
1.1 主要材料及試劑
人胃癌MKN45細(xì)胞株,為第四軍醫(yī)大學(xué)饋贈(zèng),胎牛血清為杭州四季青生物工程材料公司產(chǎn)品,RPMI-1640培養(yǎng)基及胰蛋白酶為濟(jì)南凱晨生物科技有限公司產(chǎn)品。5-FU為上海旭東海普藥業(yè)有限公司產(chǎn)品(國藥準(zhǔn)字H31020593),TRIzol試劑為寶生物工程(大連)有限公司產(chǎn)品,M-MULV第一鏈cDNA合成試劑盒、PCR擴(kuò)增試劑盒、PCR引物為生工生物工程(上海)股份有限公司產(chǎn)品。
1.2 胃癌細(xì)胞培養(yǎng)
MNK45細(xì)胞培養(yǎng)于RPMI-1640培養(yǎng)基(內(nèi)含10%胎牛血清,100 U/mL青霉素及100 μg/mL鏈霉素)中,置于37 ℃、CO2體積分?jǐn)?shù)為5%的飽和濕度培養(yǎng)箱中,使用0.25%胰蛋白酶進(jìn)行消化傳代培養(yǎng),每2天更換培養(yǎng)液,在顯微鏡下觀察細(xì)胞的生長(zhǎng)狀況,待細(xì)胞貼壁生長(zhǎng)3 d后傳代,取對(duì)數(shù)生長(zhǎng)期細(xì)胞用于此次實(shí)驗(yàn)。
1.3 不同濃度5-FU對(duì)MKN45細(xì)胞增殖抑制率的MTT檢測(cè)
取對(duì)數(shù)生長(zhǎng)期細(xì)胞,按照每孔4×104~5×104/mL的密度接種于96孔板,體積為200 μL/孔。培養(yǎng)24 h,待細(xì)胞貼壁后加入5-FU,設(shè)置實(shí)驗(yàn)組及空白對(duì)照組,空白對(duì)照組不加細(xì)胞,實(shí)驗(yàn)組分別加濃度為0、50和100 μg/mL的5-FU。每組設(shè)5個(gè)復(fù)孔,邊緣孔中加入無菌PBS。在37 ℃、CO2體積分?jǐn)?shù)5%的培養(yǎng)箱中分別培養(yǎng)24、48和72 h后,將5 mg/mL的MTT溶液20 μL依次加入孔中,培養(yǎng)4 h后,將上清液棄掉,再每孔加入二甲基亞砜150 μL,振蕩10 min,充分溶解結(jié)晶,測(cè)定每吸孔光度(A)值,取5孔的平均值,計(jì)算細(xì)胞生長(zhǎng)抑制率。
1.4 不同濃度5-FU影響下△133p53 mRNA、MDM2 mRNA及cyclin G1 mRNA表達(dá)的PCR檢測(cè)
取對(duì)數(shù)生長(zhǎng)期的MKN45細(xì)胞,平均放置在3個(gè)培養(yǎng)瓶中,分別加入0、50和100 μg/mL濃度的5-FU并做好標(biāo)記,培養(yǎng)2 d后收集細(xì)胞,按TRIzol試劑盒說明書操作來提取細(xì)胞總RNA,使用紫外分光光度儀測(cè)純度和濃度。再按照逆轉(zhuǎn)錄試劑盒說明書操作,進(jìn)行逆轉(zhuǎn)錄合成cDNA,以β-肌動(dòng)蛋白(β-actin)作內(nèi)參照,進(jìn)行RT-PCR擴(kuò)增。PCR儀中反應(yīng)條件:94 ℃預(yù)變性5 min;94 ℃變性30 s;55~58 ℃退火30 s; 72 ℃延伸30 s;擴(kuò)增35個(gè)循環(huán),循環(huán)結(jié)束后72 ℃總延伸7 min,于4 ℃保存。PCR產(chǎn)物用2%瓊脂糖凝膠電泳,恒壓100 V電泳20 min,用凝膠成像分析系統(tǒng)觀察結(jié)果并拍照。引物序列見表1。
表1 引物序列表Tab. 1 Primer sequence table
1.5 統(tǒng)計(jì)學(xué)處理
采用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析,各組實(shí)驗(yàn)數(shù)據(jù)均用±s 表示,各組間差異采用單因素方差分析,進(jìn)一步組內(nèi)比較采用t檢驗(yàn),兩變量間采用Pearson直線相關(guān)分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 5-FU對(duì)人MKN45胃癌細(xì)胞系增殖的影響
由表2可見,將不同濃度5-FU作用于MKN45胃癌細(xì)胞系24、48、72 h后,可以看出胃癌細(xì)胞抑制率明顯高于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。且隨著藥物濃度的升高和作用時(shí)間的延長(zhǎng),細(xì)胞抑制率呈現(xiàn)明顯的上升趨勢(shì),差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2.2 不同濃度5-FU對(duì)Δ133p53 mRNA、MDM2 mRNA、cyclin G1 mRNA表達(dá)的影響
由表3、圖1可見,將不同濃度的5-FU作用于MKN45胃癌細(xì)胞系后,Δ133p53 mRNA、MDM2 mRNA和cyclin G1 mRNA的表達(dá)量均低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P均<0.05)。并且隨著藥物濃度的升高,Δ133p53 mRNA、MDM2 mRNA和cyclin G1 mRNA的表達(dá)量逐漸降低,差異均有統(tǒng)計(jì)學(xué)意義(P均<0.05)。
表2 不同濃度的5-FU在不同時(shí)間對(duì)MKN45胃癌細(xì)胞增殖的抑制情況Tab. 2 The inhibition of 5-FU with different concentrations and different time on MKN45 gastric cancer cell proliferation
表3 △133p53 mRNA、MDM2 mRNA、cyclin G1 mRNA的相對(duì)表達(dá)量Tab. 3 The relative expression of △133p53 mRNA, MDM2 mRNA and cyclin G1 mRNA
圖1 MKN45細(xì)胞經(jīng)不同5-FU濃度作用后Δ133p53 mRNA、MDM2 mRNA及cyclin G1 mRNA的表達(dá)情況Fig. 1 The expression of Δ133p53 mRNA, MDM2 mRNA and cyclin G1 mRNA under different concentrations of 5-FU and different time on MKN45 gastric cancer cell
2.3 Δ133p53 mRNA與MDM2 mRNA、cyclin G1 mRNA表達(dá)相關(guān)性分析
隨著5-FU濃度的增加,Δ133p53 mRNA、MDM2 mRNA和cyclin G1 mRNA的相對(duì)表達(dá)量均呈降低趨勢(shì),Pearson直線相關(guān)分析結(jié)果顯示 Δ133p53 mRNA表達(dá)與MDM2 mRNA表達(dá)呈正相關(guān)(r=0.98,P<0.05,圖2),而Δ133p53 mRNA的表達(dá)量與cyclin G1 mRNA無明顯相關(guān)性(P=0.13)。
圖2 Δ133p53 mRNA表達(dá)與MDM2 mRNA表達(dá)的相關(guān)性Fig. 2 The correlation between the expression of Δ133p53 mRNA and MDM2 mRNA
早前研究發(fā)現(xiàn)胃癌中存在p53基因突變,p53基因的失活,可能是因?yàn)閴A基缺失而發(fā)生突變,也可能是因?yàn)閜53蛋白的調(diào)節(jié)途徑被破壞導(dǎo)致。p53基因發(fā)揮其生物學(xué)功能的確切機(jī)制目前還不清楚,其腫瘤抑制功能可能是和特定基因以p53應(yīng)激元件的形式形成四聚體來調(diào)節(jié)基因的表達(dá)[3]。p53基因至少可以轉(zhuǎn)錄出9種異構(gòu)體,分別為Δ133p53γ、Δ40p53、Δ40p53γ、p53、p53γ、p53β、Δ133p53、Δ40p53β、Δ133p53β[4-5],在這幾種異構(gòu)體中,Δ133p53、Δ40p53異構(gòu)體具有促腫瘤生長(zhǎng)的作用[6-7],p53β、p53γ具有抑制腫瘤生長(zhǎng)的作用[8-9]。之前的研究已證明p53β異構(gòu)體參與p53的途徑是腫瘤生長(zhǎng)抑制的重要途徑之一[10]。而△133p53異構(gòu)體作用機(jī)制尚未完全闡明。
5-FU是傳統(tǒng)的化療藥之一,主要是通過使細(xì)胞增殖過程停滯在S期導(dǎo)致細(xì)胞死亡,對(duì)消化道腫瘤、乳腺癌及滋養(yǎng)細(xì)胞腫瘤等多種惡性腫瘤均有治療效果[11]。本研究結(jié)果顯示,隨著5-FU濃度增加,Δ133p53 mRNA的表達(dá)量逐漸減少,且Δ133p53 mRNA的表達(dá)量的減少與細(xì)胞抑制率一致,推測(cè)胃癌細(xì)胞經(jīng)過5-FU治療后,可使得胃癌細(xì)胞中Δ133p53表達(dá)量減少,其抗腫瘤作用可能是通過Δ133p53 mRNA的表達(dá)量的減少來實(shí)現(xiàn)的。MDM2基因是p53蛋白重要的1個(gè)靶基因,在腫瘤的治療及預(yù)后等方面發(fā)揮了重要作用。MDM2可以結(jié)合p53蛋白的氨基末端引起p53基因的失活、出核轉(zhuǎn)運(yùn)、降解[12],MDM2表達(dá)增多會(huì)使得p53途徑的腫瘤抑制功能減弱。Baccouche等[13]報(bào)道,在許多具有p53基因突變的腫瘤中MDM2呈過度表達(dá)。本研究結(jié)果顯示,在5-FU作用下,MDM2表達(dá)量漸減少,說明5-FU可以控制MDM2途徑來實(shí)現(xiàn)抗腫瘤作用,Δ133p53與MDM2表達(dá)呈正相關(guān),因此,Δ133p53可以影響5-FU作用下的MDM2的抗腫瘤途徑,但由于Δ133p53異構(gòu)體缺少氨基末端,缺少M(fèi)DM2結(jié)合位點(diǎn),所以并不能夠獨(dú)立對(duì)MDM2這一途徑進(jìn)行調(diào)節(jié)。Δ133p53可以通過調(diào)節(jié)p53基因的功能來誘導(dǎo)細(xì)胞凋亡和細(xì)胞周期停滯[2]。Marcel等[14]的研究表明Δ133p53是一種新型的p53基因靶,可能參與一個(gè)負(fù)反饋通路調(diào)節(jié)p53的抑癌作用。因此,推測(cè)Δ133p53參與的5-FU抑癌作用是通過與p53形成蛋白四聚體復(fù)合物作用于p53-MDM2途徑來調(diào)節(jié)胃癌細(xì)胞的增殖活性,引起細(xì)胞凋亡。cyclin G1是最近幾年新發(fā)現(xiàn)的一種細(xì)胞周期蛋白。Perez等[15]及Chen等[16]的研究發(fā)現(xiàn),cyclin G1在很多種腫瘤細(xì)胞中均高表達(dá),如成骨肉瘤細(xì)胞、結(jié)腸癌細(xì)胞、伯基特淋巴瘤細(xì)胞及人宮頸癌細(xì)胞等腫瘤細(xì)胞。本研究結(jié)果顯示,在5-FU作用下cyclin G1的表達(dá)量降低,表明5-FU同樣可以干擾cyclin G1途徑來抑制癌細(xì)胞生長(zhǎng),但cyclin G1 mRNA與Δ133p53 mRNA表達(dá)量無相關(guān)性,推測(cè)Δ133p53并不可以通過介導(dǎo)cyclin G1途徑來發(fā)揮抑制腫瘤生長(zhǎng)的作用。
本研究結(jié)果顯示,Δ133p53異構(gòu)體可以與p53協(xié)同作用于p53-MDM2途徑,來加強(qiáng)5-FU的抗腫瘤作用,說明Δ133p53異構(gòu)體可作為進(jìn)一步研究胃癌的重要突破口。而cyclin G1的作用方式還未研究清楚,Δ133p53與cyclin G1的關(guān)系還有待進(jìn)一步研究。
[1] 祝峙, 朱明華. p53基因網(wǎng)絡(luò)的研究進(jìn)展[J]. 癌癥, 2003, 22(5): 547-551.
[2] 張樂鳴, 陳少茂. p53蛋白表達(dá)與胃癌生物學(xué)行為的關(guān)系[J]. 中國癌癥雜志, 1997, 7(3): 208-210.
[3] KHOURY M P, BOURDON J C. The isoforms of the p53 protein[J]. Cold Spring Harb Perspect Biol, 2010, 2: a000927.
[4] BOURDON J C, FERNANDES K, MURRAY-ZMIJEWSKI F, et al. p53 isoforms can regulate p53 transeriptional aetivity[J]. Genes Dev, 2005, 19( 18): 2122-2137.
[5] MARCEL V. Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript[J]. FEBS Lett, 2010, 584(21): 4463-4468.
[6] HOFSTETTER G, BERGER A, SCHUSTER E, et al. Δ133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer[J]. Br J Cancer, 2011, 105(10): 1593-1599.
[7] HOFSTETTER G, BERGER A, SCHUSTER E, et al. The N-terminally truncated p53 isoform Δ40p53 influences prognosis in mucinous ovarian cancer[J]. Int J Gynecol Cancer, 2012, 22(3); 372-379.
[8] GOIDSCHNEIDER D, HORVILLEUR E, PLASSA L F, et al.Expression of C-terminal deleted p53 isoforms in neuroblastoma[J]. Nucleic Acids Res, 2006,34(19): 5603-5612.
[9] BOURDON J C, KHOURY M P, DIOT A, et al. p53 mutant breast cancer patients expressing p53γ have as good a prognosis as wild-type p53 breast cancer patients [J]. Breast Cancer Res, 2011, 13(1); R7.
[10] 曹玉, 季萬勝, 賈飛飛, 等. 5-FU對(duì)人胃癌細(xì)胞系p53β表達(dá)影響生物學(xué)意義探討[J]. 中華腫瘤防治雜志, 2014, 21(5): 352-355.
[11] LABIANCA R PESSIA, FACENDOLA G, et al. Modilated 5-flurouracil (5-FU) reginens in advanced colorectal cancer a critical review of comparative studies[J]. Eur J Cancer, 1996, 32(Suppl 5): S7-S12.
[12] WATANABE T, ICHIKAWA A, SAITO H, et al. Overexpression of the MDM2 oncogene in leukemia and lymphoma[J]. Leuk Lymphoma, 1996, 21(5-6): 391-397.
[13] BACCOUCHE S, DAOUD J, FRIKHA M, et al. Immunohistochemical status of p53, MDM2, Bcl-2, bax, and ER in invasive ductal breast carcinoma in Tunisian patients[J]. Ann N Y Acad Sci, 2003, 1010: 752-763.
[14] MARCEL V, VIJAYAKUMAR V, FERNáNDEZ-CUESTA L, et al. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the Tp53 P2 internal promoter[J]. Oncogene, 2010, 29(18): 2691-700.
[15] PEREZ R, WU N, KLIPFEL A A, et al. A better cell cycle target for gene therapy of colorectal cancer: cyclin G[J]. J Gastrointest Surg, 2003, 7(7): 884-889.
[16] CHEN D S, ZHU N L, HUNG G, et al. Retroviral vectormediated transfer of an antisense cyclin G1 construct inhibits osteosarcoma tumor growth in nude mice[J]. Hum Gene Ther, 1997, 8(14): 1667-1674.
The role of Δ133p53 during 5-FU inhibition experiments on the growth of gastric cancer cell line MKN45
GUO Ai1, JI Wansheng2, JIANG Qiqi1, LI Mengmeng1, YANG Bingqian1, GAO Zhixing2
(1.Department of Graduate, Weifang Medical University, Weifang Shandong 261000, China; 2. Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang Shandong 261000, China)
GAO Zhixing E-mail: gzx8229@sina.com
Background and purpose:Δ133p53 can promote tumor cell growth, but the exact mechanism is not clear. This study was aimed to observe the expression and significant of the p53 isoforms Δ133p53 and p53 gene downstream molecules MDM2 and cyclin G1 genes by 5-FU-MKN45 gastric cancer cell line model.Methods:After using different concentrations of 5-FU (50 μg/mL, 100 μg/mL) to human gastric cancer cell line MKN45, inhibition rate should be detected by MTT assay, the changes of Δ133p53 mRNA, MDM2 mRNA and cyclin G1 mRNA expressing were detected by reverse transcription-polymerase chain reaction (RT-PCR). Differences between these groups were analyzed by ANOVA, comparisons within groups were analyzed by t-test, bivariate correlation was analyzed by Pearson linear correlation.Results:MTT results showed that with the increased concentration of 5-FU and the extension of time, the cell inhibition rates increased gradually. The inhibition rates of 50 μg/mL 5-FU were 41.10%, 54.79% and68.48%, for culturing 24, 48 and 72 hours. There were statistically significant differences between the groups(F=45.52, P=0.00). The inhibition rates of 100 μg/mL 5-FU were 69.53%, 78.21% and 86.92%, for culturing 24, 48 and 72 hours. There were statistically significant differences between the groups(F=85.58,P=0.00). The inhibition rates of 50 and 100 μg/mL were 41.10% and 69.53%, for culturing 24 hours. There were statistically significant differences between the groups(F=51.29, P=0.00). The inhibition rates of 50 and 100 μg/mL were 54.79% and 78.21%, for culturing 48 hours. There were statistically significant differences between the groups(F=51.29, P=0.00). The inhibition rates of 50 and 100 μg/mL were 68.48% and 86.82%, for culturing 72 hours. There were statistically significant differences between the groups(104.91, P=0.00). RT-PCR results showed that with the increase of the concentration of 5-FU, the Δ133p53 mRNA, MDM2 mRNA and cyclin G1 mRNA expression gradually declined in gastric cancer cell line MKN45 cells, and there were statistically significant differences between the groups(F=738.532, 1 396.607, 2 785.56,P=0.00). Correlation analysis showed that the expressions of Δ133p53 mRNA and MDM2 mRNA in gastric cancer were positively correlated (r=0.871, P=0.01), while the expression of cyclin G1 mRNA and p53 mRNA had no obvious relevance (P=0.13).Conclusion:In the 5-FU-MKN45 gastric cancer cell line model, anti-tumor pathway of Δ133p53 isomers is related with MDM2 but was not related with cyclin G1.
5-FU; Gastric cancer; Δ133p53; MDM2; Cyclin G1
10.3969/j.issn.1007-3969.2015.01.005
R735.2
A
1007-3639(2015)01-0025-06
2014-07-08
2014-11-07)
山東省優(yōu)秀中青年科學(xué)家科研獎(jiǎng)勵(lì)基金(BS2010SW034)。
高志星 E-mail:gzx8229@sina.com