国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

異綠原酸對(duì)煙曲霉生物被膜的體外作用

2014-12-15 03:26羅勁等

羅勁等

[摘要] 目的 探討金銀花活性成分異綠原酸對(duì)早期、成熟期煙曲霉生物被膜的體外作用。 方法 采用微量液基稀釋法測(cè)定異綠原酸對(duì)受試煙曲霉菌株最低抑菌濃度(MIC)和最低殺菌濃度(MFC);構(gòu)建體外早期、成熟期靜止生物被膜模型并用不同濃度(64、128、256、512、1024 μg/mL)的異綠原酸組分別作用48 h,激光共聚焦顯微鏡(CLSM)檢測(cè)生物被膜內(nèi)存活菌;掃描電鏡(SEM)觀察生物被膜形態(tài)學(xué)改變;結(jié)晶紫染色法定量生物被膜。比較各組MIC和MFC。 結(jié)果 異綠原酸對(duì)受試煙曲霉菌株的MIC和MFC均大于1024 μg/mL;不論早期或成熟期,空白對(duì)照組和異綠原酸各濃度組生物被膜內(nèi)菌體在CLSM下均以綠色的活菌為主;電鏡觀察證實(shí)異綠原酸可破壞早期、成熟期的生物被膜結(jié)構(gòu),使胞外基質(zhì)減少,菌體輪廓清晰;當(dāng)異綠原酸濃度達(dá)到256 μg/mL時(shí),可以使載體上不同時(shí)期生物被膜的量明顯降低,256、512、1024 μg/mL異綠原酸組生物被膜定量與空白對(duì)照組及組間兩兩比較,差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05)。 結(jié)論 異綠原酸在體外不能殺死煙曲霉生物被膜內(nèi)菌體,但可對(duì)煙曲霉早期和成熟期生物被膜產(chǎn)生破壞作用,其作用呈濃度依賴性。

[關(guān)鍵詞] 煙曲霉;生物被膜;異綠原酸

[中圖分類號(hào)] R282.71 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2014)11(b)-0004-04

[Abstract] Objective To investigate the effect of isochlorogenic acid on the biofilm of Aspergillus Fumigatus in early and mature stages in vitro. Methods The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) for isochlorogenic acid were measured by broth microdilution method according to CLSI M38-A2 guideline. The biofilm models in early and mature stages established under static condition were affected by different concentration gradients (64, 128, 256, 512, 1024 μg/mL) of isochlorogenic acid for 48 h in vitro, then biofilm quantitation was performed by crystal violet staining assay. Scanning electron microscope (SEM) was used to observe the morphological change of biofilm structure. The viability of Aspergillus Fumigatus hyphae in biofilm was detected by confocal laser scanning microscope (CLSM). The MIC and MFC of different groups were compared. Results Both the MIC and the MFC of isochlorogenic acid on Aspergillus Fumigatus isolate were above 1024 μg/mL. The results of CLSM demonstrated that isochlorogenic acid showed hardly any fungicidal effect to the mycelia in early or mature stage of biofilm. Under SEM, the structure of Aspergillus Famigatustus biofilm treated with isochlorogenic acid was destructed and the outline of mycelia appeared to be more clear than that without isochlorogenic acid due to the reduction of extracellular matrix. The in vitro action was performed while the concentration of isochlorogenic acid achieved the level of 256 μg/mL, within the concentrations of 256, 512, 1024 μg/mL, results of biofilm quantities indicated significant differences between serially increasing isochlorogenic acid concentration groups and untreated control group, with statistical significance (P < 0.05). Conclusion Isochlorogenic acid exhibits destructive effect on the early and mature stages of Aspergillus Famigatustus biofilm in vitro, which shows a concentration-dependent manner.endprint

[Key words] Aspergillus Fumigatus; Biofilm; Isochlorogenic acid

煙曲霉是導(dǎo)致臨床免疫力低下患者肺部真菌感染的常見(jiàn)病原體之一。近年來(lái)雖然新型抗曲霉菌藥物的研發(fā)取得了一定的進(jìn)展,但唑類耐藥和多重耐藥菌株的出現(xiàn),使煙曲霉感染的患者病死率依舊很高。體外研究發(fā)現(xiàn),生物被膜形成是煙曲霉產(chǎn)生耐藥的重要機(jī)制之一,且生物被膜一旦成熟,其耐藥性將提高幾十、幾百甚至上千倍[1],控制難治性煙曲霉感染成為當(dāng)前臨床治療上面臨的一大難題。因此若能夠?qū)で笠环N能夠有效破壞已經(jīng)形成的煙曲霉生物被膜的藥物或方法,或?qū)⒂兄诮鉀Q這一難題。金銀花主要抗真菌活性成分為綠原酸和異綠原酸[2-3],本課題組前期研究發(fā)現(xiàn),綠原酸能破壞銅綠假單胞菌及煙曲霉生物被膜[4-5],而目前異綠原酸對(duì)生物被膜相關(guān)生物學(xué)作用罕有報(bào)道,因此本實(shí)驗(yàn)旨在探究異綠原酸對(duì)不同時(shí)期煙曲霉生物被膜的體外作用,為控制生物被膜藥物的研發(fā)在原料選擇方面提供更多科學(xué)依據(jù)。

1 材料與方法

1.1 材料

收集廣西醫(yī)科大學(xué)第一附屬醫(yī)院(以下簡(jiǎn)稱“我院”)2012年5月~2013年9月臨床分離煙曲霉共31株,用結(jié)晶紫染色法測(cè)定成膜能力,選取成膜能力最強(qiáng)煙曲霉菌株(編號(hào)為A.f4)為實(shí)驗(yàn)菌株。質(zhì)控菌株為近平滑念珠菌ATCC22019由我院臨床微生物檢驗(yàn)鑒定中心提供。

1.2 主要試劑

異綠原酸(中國(guó)食品藥品檢定研究院,批號(hào)111782-201204)以最大溶解度溶解于二甲基椏楓(DMSO,Solarbio公司),0.22 μm濾器濾過(guò)后于-20℃保存;結(jié)晶紫粉末(天津紅巖試劑廠)溶解于滅菌去離子水配制成質(zhì)量分?jǐn)?shù)為1%的結(jié)晶紫染液;RMPI-1640粉(Gibico公司);3-(N-嗎啉基)丙磺酸-4-嗎啉丙磺酸(MOPS,美國(guó)Sigma公司);LIVE/DEAD BacLight Bacterial Viability死活菌染色試劑盒(Invitrogen公司);馬鈴薯葡萄糖瓊脂培養(yǎng)基(PDA,中國(guó)路橋技術(shù)責(zé)任有限公司);分析純無(wú)水乙醇(天津Kermel化學(xué)試劑有限公司);磷酸鹽緩沖液(PBS)粉(美國(guó)sigma公司)。

1.3 儀器

圓形玻璃細(xì)胞爬片(直徑13 mm,天津博泰克科技公司)作為構(gòu)建生物被膜的載體,高壓滅菌備用;生物安全柜(蘇州凈化設(shè)備有限公司BHC-1300IIA/B2);智能生化培養(yǎng)箱(常州市偉嘉儀器制造有限公司SPX250);酶標(biāo)儀(美國(guó)Thermo Multiskan MK3);掃描電鏡(日立SU8020);激光共聚焦顯微鏡(CLSM,Nikon A1)。

1.4 方法

1.4.1 孢子懸液的制備 將受試的煙曲霉菌株A.f4接種至PDA斜面,37℃恒溫復(fù)蘇3 d后,轉(zhuǎn)種于另一PDA培養(yǎng)基37℃活化3 d,用5 mL含0.025%Tween-20的PBS沖洗斜面收集孢子,20 mL MOPS緩沖后pH為7.0的RPMI-1640重懸孢子,血細(xì)胞計(jì)數(shù)板調(diào)整孢子濃度為1×105個(gè)/mL,作為建立煙曲霉體外靜止生物被膜模型的孢子懸液。

1.4.2 異綠原酸的最低抑菌濃度(MIC)和最低殺菌濃度(MFC)測(cè)定 參照美國(guó)臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)協(xié)會(huì)(clinical and laboratory standards institute,CLSI)M38-A2絲狀真菌藥敏指南[6]并做適當(dāng)調(diào)整,測(cè)定異綠原酸對(duì)受試菌株A.f4及質(zhì)控菌株的MIC和MFC。其中異綠原酸最終受試濃度為2~1024 μg/mL(1024 μg/mL為最大溶解度,且各濃度含DMSO終體積分?jǐn)?shù)≤1%)。

1.4.3 體外煙曲霉靜止生物被膜模型的建立 參考Mowat等[7]的方法,往無(wú)菌24孔板各孔加入1個(gè)滅菌生物被膜載體及1 mL制備好的孢子懸液,靜置于生化培養(yǎng)箱,分別于37℃恒溫孵育24 h和48 h,在載體上形成早期、成熟期煙曲霉生物被膜。培養(yǎng)期間每隔24小時(shí)更換1次RPMI-1640培養(yǎng)液。

1.4.4 CLSM檢測(cè)經(jīng)異綠原酸作用后不同時(shí)期生物被膜內(nèi)死活菌 建模后,異綠原酸組加入1024 μg/mL的異綠原酸,空白對(duì)照組則加入RPMI-1640培養(yǎng)液;加藥前各孔分別用滅菌PBS輕輕漂洗生物被膜表面3次除去未黏附菌。藥物作用48 h(期間每隔24小時(shí)用相同的液體換液1次)后將載體取出,以滅菌PBS輕輕漂洗生物被膜表面3次。按照LIVE/DEAD BacLight Bacterial Viability試劑盒的使用說(shuō)明,將碘化丙啶(PI)及Syto-9熒光染料按1∶1比例配制好后用滅菌去離子水稀釋500倍,取200 μL加入各孔沒(méi)過(guò)載體,室溫避光染色15 min,無(wú)菌PBS輕輕漂去未黏附染料,自然干燥后置于CLSM下放大200倍觀察。

1.4.5 SEM觀察異綠原酸對(duì)不同時(shí)期生物被膜的形態(tài)干預(yù) 建模、分組同CLSM。藥物作用48 h(期間每隔24小時(shí)分別用相同的液體換液)后將載體取出,滅菌PBS輕輕漂去載體表面的浮游菌,2.5%戊二醛固定24 h,依次用50%、70%、80%、90%乙醇梯度脫水并干燥后,真空噴鍍金粉,于20 kV電壓、放大2000倍條件下進(jìn)行掃描電鏡(SEM)形態(tài)學(xué)觀察。

1.4.6 結(jié)晶紫染色法對(duì)不同濃度異綠原酸作用于不同時(shí)期生物被膜后的定量分析 按照上述方法建模后,用滅菌PBS輕輕漂洗生物被膜表面3次以去除未黏附菌。根據(jù)藥敏試驗(yàn)結(jié)果將實(shí)驗(yàn)分為:空白對(duì)照組、不同濃度異綠原酸組(64、128、256、512、1024 μg/mL),異綠原酸組加入上述濃度的藥物,空白對(duì)照組加入新鮮RPMI-1640培養(yǎng)液。藥物作用48 h(期間每隔24 h各組分別用相同的液體換液),取出各組載體,參照Peeters等[8]及Shao等[9]的方法并做適當(dāng)改進(jìn):滅菌PBS緩沖液輕輕漂去生物被膜表面的浮游菌,室溫干燥后將載體置于新的24孔板中,加入1%結(jié)晶紫1 mL染色15 min。再次輕輕漂洗生物被膜表面未黏附的結(jié)晶紫,室溫干燥后加入1 mL無(wú)水乙醇脫色10 min。吸取100 μL洗脫液加入96孔板,酶標(biāo)儀570 nm波長(zhǎng)測(cè)定各孔吸光度值(A570),以無(wú)水乙醇作為空白對(duì)照。各組每次分別設(shè)置3個(gè)副孔取其平均值,實(shí)驗(yàn)獨(dú)立重復(fù)3次。endprint

1.5 統(tǒng)計(jì)學(xué)方法

使用SPSS 18.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析及SNK檢驗(yàn),以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果

2.1 異綠原酸的MIC和MFC測(cè)定結(jié)果

根據(jù)CLSI M38-A2絲狀真菌藥敏指南判讀標(biāo)準(zhǔn),異綠原酸對(duì)受試煙曲霉A.f4菌株及質(zhì)控菌株的MIC和MFC均大于1024 μg/mL。

2.2 各組CLSM檢測(cè)結(jié)果比較

成熟期煙曲霉生物被膜內(nèi)菌絲密度較早期更為密集。無(wú)論早期或成熟期,藥物作用48 h后,空白對(duì)照組和異綠原酸組生物被膜內(nèi)的菌絲均以具有活力的綠色為主,幾乎沒(méi)有出現(xiàn)紅色死亡狀態(tài)的菌絲。見(jiàn)圖1(封三)。

2.3 SEM觀察結(jié)果

2.3.1 對(duì)早期煙曲霉生物被膜破壞作用 空白對(duì)照組的菌絲大部分被黏稠的胞外基質(zhì)包裹使之相互黏附形成致密的三維網(wǎng)狀結(jié)構(gòu),僅能隱約看到部分菌絲輪廓,見(jiàn)圖2(A);經(jīng)異綠原酸作用后,胞外基質(zhì)明顯減少,菌絲輪廓飽滿,清晰可見(jiàn),見(jiàn)圖2(B)。

2.3.2 異綠原酸對(duì)成熟期煙曲霉生物被膜破壞作用 與早期相比,成熟期的生物被膜結(jié)構(gòu)更加致密。空白對(duì)照組煙曲霉菌絲表面完全被濃密厚實(shí)的胞外基質(zhì)包裹,幾乎看不到菌絲的輪廓,見(jiàn)圖2(C);異綠原酸組的菌絲表面雖然仍有殘留少量的胞外基質(zhì),但相對(duì)于同時(shí)期空白對(duì)照組而言,胞外基質(zhì)已經(jīng)明顯減少,菌絲輪廓更為清晰,見(jiàn)圖2(D)。

2.4 結(jié)晶紫染色法對(duì)異綠原酸作用于不同時(shí)期生物被膜后的定量結(jié)果

無(wú)論早期或成熟期的生物被膜,當(dāng)異綠原酸作用濃度達(dá)256 μg/mL及以上時(shí),即256、512、1024 μg/mL異綠原酸組的A570值與同期空白對(duì)照組比較,差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05);64、128 μg/mL異綠原酸組的A570值與同期空白對(duì)照組比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05);256、512、1024 μg/mL異綠原酸組A570值兩兩比較,差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05),即隨著異綠原酸濃度增加,生物被膜減少更明顯;濃度低于256 μg/mL異綠原酸組對(duì)載體上生物被膜量影響與空白對(duì)照組比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)表1。

3 討論

具有成膜能力的煙曲霉臨床分離菌株在體外培養(yǎng)24 h后,可獲得由多層菌絲有序排列形成具有復(fù)雜三維立體結(jié)構(gòu)特征的多細(xì)胞菌落,即早期生物被膜,48 h后生物被膜逐漸成熟即成熟期生物被膜[10-11]。生物被膜形成以后,煙曲霉對(duì)常用抗真菌藥物如兩性霉素B及其脂質(zhì)體、伏立康唑、伊曲康唑、卡泊芬凈、米卡芬凈等抗真菌藥的敏感性均下降[12],且生物被膜越成熟,包裹在生物被膜內(nèi)的菌體耐藥性越明顯。胞外基質(zhì)是構(gòu)成生物被膜的基礎(chǔ)物質(zhì),其主要成分為多糖(半乳糖甘露聚糖,α-1,3-葡聚糖)、單糖、多元醇、疏水蛋白及各種抗原等。胞外基質(zhì)帶負(fù)電荷,可以吸收多肽鏈中帶正電荷的氨基側(cè)鏈,從而形成一道疏水屏障,阻礙親水性抗真菌藥物滲入菌體發(fā)揮殺菌作用[13]。隨著煙曲霉生物被膜的成熟或在唑類藥物誘導(dǎo)條件下,多耐藥蛋白(MDR4)等多耐藥基因表達(dá)會(huì)明顯上調(diào),其轉(zhuǎn)錄翻譯出的MDR能介導(dǎo)菌體對(duì)藥物的外排作用,降低細(xì)胞膜通透性,從而減少抗真菌藥物在菌體內(nèi)的蓄積量[14]。煙曲霉次級(jí)代謝產(chǎn)物膠霉毒素隨著生物被膜的形成和成熟,產(chǎn)生量不斷增加,使煙曲霉菌體得以避開(kāi)宿主免疫系統(tǒng)的攻擊并長(zhǎng)期在宿主體內(nèi)生存[15],這可能也是其發(fā)生耐藥的機(jī)制之一。

金銀花是清熱解毒中藥,其活性成分綠原酸類主要包括綠原酸(單咖啡??鼘幩幔┖彤惥G原酸(二咖啡酰奎寧酸),具有體外抗炎、抗菌、抗病毒及免疫調(diào)節(jié)作用。綠原酸類物質(zhì)的抗真菌機(jī)制主要與其立體結(jié)構(gòu)和棘白菌素類抗真菌藥物結(jié)構(gòu)具有相似性有關(guān)[2,16-17]。異綠原酸在金銀花活性成分中的構(gòu)成比僅次于綠原酸,化學(xué)結(jié)構(gòu)比綠原酸多一個(gè)咖啡?;?,兩者同屬于苯丙素類化合物。本研究以最大溶解度的異綠原酸稀釋100倍(1024 μg/mL)后作用于煙曲霉早期及成熟期生物被膜,CLSM觀察到生物被膜內(nèi)的菌絲仍有活力,說(shuō)明亞抑菌濃度的異綠原酸對(duì)菌絲本身沒(méi)有直接殺菌作用。SEM及結(jié)晶紫染色法定量結(jié)果證實(shí)異綠原酸可以使包裹菌絲的胞外基質(zhì)明顯減少,且隨著其濃度增高(≥256 μg/mL),生物被膜減少愈顯著,即異綠原酸能夠抑制或降解胞外基質(zhì),破壞不同時(shí)期的煙曲霉生物被膜結(jié)構(gòu),其作用呈濃度依賴性。異綠原酸對(duì)成熟期生物被膜破壞作用不如早期生物被膜明顯,這可能與成熟期生物被膜培養(yǎng)周期更長(zhǎng),胞外基質(zhì)更濃厚,藥物作用時(shí)間不足或菌體對(duì)藥物外排作用隨生物被膜成熟而增強(qiáng)有關(guān),其具體機(jī)制有待進(jìn)一步研究;可以推測(cè),若能在生物被膜形成的早期階段,用異綠原酸干預(yù)胞外基質(zhì)形成或破壞其結(jié)構(gòu),減弱生物被膜屏障作用,并聯(lián)合使用抗真菌藥物,可增強(qiáng)藥物的滲透并在菌體內(nèi)達(dá)到有效蓄積量,從而發(fā)揮其殺菌活性,同時(shí)還能減輕大劑量應(yīng)用抗真菌藥物給機(jī)體帶來(lái)的毒副作用,解決當(dāng)前治療生物被膜相關(guān)感染在藥物選擇方面捉襟見(jiàn)肘的現(xiàn)狀。本課題組后期將通過(guò)進(jìn)一步聯(lián)合抗真菌藥物實(shí)驗(yàn)來(lái)證實(shí)這一猜想。異綠原酸主要來(lái)源于金銀花,其產(chǎn)地遍布全國(guó)各省,原材料豐富,取材便利,若能應(yīng)用于臨床治療煙曲霉生物被膜相關(guān)感染,將極大降低藥物成本,節(jié)約醫(yī)療費(fèi)用,增加經(jīng)濟(jì)效益。本實(shí)驗(yàn)結(jié)論進(jìn)一步拓展了中藥金銀花活性成分的功效范圍,使其臨床醫(yī)療應(yīng)用前景更加廣闊。

[參考文獻(xiàn)]

[1] Seidler MJ,Salvenmoser S,Muller FM,et al. Aspergillus Fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells [J]. Antimicrob Agents Chemother,2008,52(11):4130-4136.endprint

[2] Ma CM,Kully M,Khan JK,et al. Synthesis of chlorogenic acid derivatives with promising antifungal activity [J]. Bioorg Med Chem,2007,15(21):6830-6833.

[3] Ozcelik B,Kartal M,Orhan I,et al. Cytotoxicity,antiviral and antimicrobial activities of alkaloids,flavonoids,and phenolic acids [J]. Pharm Biol,2011,49(4):396-402.

[4] 溫紅俠,陳一強(qiáng),朱蓮娜,等.綠原酸對(duì)銅綠假單胞菌生物膜干預(yù)作用的體外研究[J].中華醫(yī)院感染學(xué)雜志,2009, 12(12):1478-1481.

[5] 鄔麗紅,陳一強(qiáng),孔晉亮,等.金銀花主要活性成分對(duì)煙曲霉生物膜的體外影響[J].中國(guó)現(xiàn)代醫(yī)藥雜志,2014,6(6):1-4.

[6] John HR,Barbara DA,Beth AS,et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi,approved standard-second edition M38-A2 [S]. Clinical Laboratory Standards Institute,2008:1-35.

[7] Mowat E,Butcher J,Lang S,et al. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus Fumigatus [J]. J Med Microbiol,2007,56(Pt9):1205-1212.

[8] Peeters E,Nelis HJ,Coenye T,et al. Comparison of multiple methods for quantification of microbia biofilms grown in microtiter plates [J]. J Microbiol Methods,2008,72(2):157-165.

[9] Shao J,Cheng H,Wu D,et al. Antimicrobial effect of sodium houttuyfonate on staphylococcus epidermidis and candida albicans biofilms [J]. J Tradit Chin Med,2013,33(6):798-803.

[10] 唐夢(mèng)丹,鄭建鋒,趙敬軍.曲霉生物膜研究進(jìn)展[A].2012全國(guó)中西醫(yī)結(jié)合皮膚性病學(xué)術(shù)會(huì)議論文匯編,2012:1.

[11] Kaur S,Singh S. Biofilm formation by Aspergillus Fumigatus [J]. MedMycol,2014,52(1):2-9.

[12] Arendrup MC. Update on antifungal resistance in Aspergillus and Candida [J]. Clin Microbiol Infect,2014,20(Suppl6):42-8.

[13] Mowat E,Lang S,Williams C,et al. Phase-dependent antifungal activity against Aspergillus Fumigatus developing multicellular filamentous biofilms [J]. J Antimicrob Chemother,2008,62(6):1281-1284.

[14] Rajendran R,Mowat E,Mcculloch E,et al. Azole resistance of Aspergillus Fumigatus biofilms is partly associated with efflux pump activity [J]. Antimicrob Agents Chemother,2011,55(5):2092-2097.

[15] Bruns S,Seidler M,Albrecht D,et al. Functional genomic profiling of Aspergillus Fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin [J]. Proteomics,2010, 10(17):3097-3107.

[16] Karunanidhi A,Thomas R,Van belkum A,et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole resistant strain [J]. Biomed Res Int,2013,2013(12):392-458.

[17] Sung WS,Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi,mediated by membrane disruption [J]. Pure and Applied Chemistry,2010,82(1):219-226.

(收稿日期:2014-08-15 本文編輯:任 念)endprint

[2] Ma CM,Kully M,Khan JK,et al. Synthesis of chlorogenic acid derivatives with promising antifungal activity [J]. Bioorg Med Chem,2007,15(21):6830-6833.

[3] Ozcelik B,Kartal M,Orhan I,et al. Cytotoxicity,antiviral and antimicrobial activities of alkaloids,flavonoids,and phenolic acids [J]. Pharm Biol,2011,49(4):396-402.

[4] 溫紅俠,陳一強(qiáng),朱蓮娜,等.綠原酸對(duì)銅綠假單胞菌生物膜干預(yù)作用的體外研究[J].中華醫(yī)院感染學(xué)雜志,2009, 12(12):1478-1481.

[5] 鄔麗紅,陳一強(qiáng),孔晉亮,等.金銀花主要活性成分對(duì)煙曲霉生物膜的體外影響[J].中國(guó)現(xiàn)代醫(yī)藥雜志,2014,6(6):1-4.

[6] John HR,Barbara DA,Beth AS,et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi,approved standard-second edition M38-A2 [S]. Clinical Laboratory Standards Institute,2008:1-35.

[7] Mowat E,Butcher J,Lang S,et al. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus Fumigatus [J]. J Med Microbiol,2007,56(Pt9):1205-1212.

[8] Peeters E,Nelis HJ,Coenye T,et al. Comparison of multiple methods for quantification of microbia biofilms grown in microtiter plates [J]. J Microbiol Methods,2008,72(2):157-165.

[9] Shao J,Cheng H,Wu D,et al. Antimicrobial effect of sodium houttuyfonate on staphylococcus epidermidis and candida albicans biofilms [J]. J Tradit Chin Med,2013,33(6):798-803.

[10] 唐夢(mèng)丹,鄭建鋒,趙敬軍.曲霉生物膜研究進(jìn)展[A].2012全國(guó)中西醫(yī)結(jié)合皮膚性病學(xué)術(shù)會(huì)議論文匯編,2012:1.

[11] Kaur S,Singh S. Biofilm formation by Aspergillus Fumigatus [J]. MedMycol,2014,52(1):2-9.

[12] Arendrup MC. Update on antifungal resistance in Aspergillus and Candida [J]. Clin Microbiol Infect,2014,20(Suppl6):42-8.

[13] Mowat E,Lang S,Williams C,et al. Phase-dependent antifungal activity against Aspergillus Fumigatus developing multicellular filamentous biofilms [J]. J Antimicrob Chemother,2008,62(6):1281-1284.

[14] Rajendran R,Mowat E,Mcculloch E,et al. Azole resistance of Aspergillus Fumigatus biofilms is partly associated with efflux pump activity [J]. Antimicrob Agents Chemother,2011,55(5):2092-2097.

[15] Bruns S,Seidler M,Albrecht D,et al. Functional genomic profiling of Aspergillus Fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin [J]. Proteomics,2010, 10(17):3097-3107.

[16] Karunanidhi A,Thomas R,Van belkum A,et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole resistant strain [J]. Biomed Res Int,2013,2013(12):392-458.

[17] Sung WS,Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi,mediated by membrane disruption [J]. Pure and Applied Chemistry,2010,82(1):219-226.

(收稿日期:2014-08-15 本文編輯:任 念)endprint

[2] Ma CM,Kully M,Khan JK,et al. Synthesis of chlorogenic acid derivatives with promising antifungal activity [J]. Bioorg Med Chem,2007,15(21):6830-6833.

[3] Ozcelik B,Kartal M,Orhan I,et al. Cytotoxicity,antiviral and antimicrobial activities of alkaloids,flavonoids,and phenolic acids [J]. Pharm Biol,2011,49(4):396-402.

[4] 溫紅俠,陳一強(qiáng),朱蓮娜,等.綠原酸對(duì)銅綠假單胞菌生物膜干預(yù)作用的體外研究[J].中華醫(yī)院感染學(xué)雜志,2009, 12(12):1478-1481.

[5] 鄔麗紅,陳一強(qiáng),孔晉亮,等.金銀花主要活性成分對(duì)煙曲霉生物膜的體外影響[J].中國(guó)現(xiàn)代醫(yī)藥雜志,2014,6(6):1-4.

[6] John HR,Barbara DA,Beth AS,et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi,approved standard-second edition M38-A2 [S]. Clinical Laboratory Standards Institute,2008:1-35.

[7] Mowat E,Butcher J,Lang S,et al. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus Fumigatus [J]. J Med Microbiol,2007,56(Pt9):1205-1212.

[8] Peeters E,Nelis HJ,Coenye T,et al. Comparison of multiple methods for quantification of microbia biofilms grown in microtiter plates [J]. J Microbiol Methods,2008,72(2):157-165.

[9] Shao J,Cheng H,Wu D,et al. Antimicrobial effect of sodium houttuyfonate on staphylococcus epidermidis and candida albicans biofilms [J]. J Tradit Chin Med,2013,33(6):798-803.

[10] 唐夢(mèng)丹,鄭建鋒,趙敬軍.曲霉生物膜研究進(jìn)展[A].2012全國(guó)中西醫(yī)結(jié)合皮膚性病學(xué)術(shù)會(huì)議論文匯編,2012:1.

[11] Kaur S,Singh S. Biofilm formation by Aspergillus Fumigatus [J]. MedMycol,2014,52(1):2-9.

[12] Arendrup MC. Update on antifungal resistance in Aspergillus and Candida [J]. Clin Microbiol Infect,2014,20(Suppl6):42-8.

[13] Mowat E,Lang S,Williams C,et al. Phase-dependent antifungal activity against Aspergillus Fumigatus developing multicellular filamentous biofilms [J]. J Antimicrob Chemother,2008,62(6):1281-1284.

[14] Rajendran R,Mowat E,Mcculloch E,et al. Azole resistance of Aspergillus Fumigatus biofilms is partly associated with efflux pump activity [J]. Antimicrob Agents Chemother,2011,55(5):2092-2097.

[15] Bruns S,Seidler M,Albrecht D,et al. Functional genomic profiling of Aspergillus Fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin [J]. Proteomics,2010, 10(17):3097-3107.

[16] Karunanidhi A,Thomas R,Van belkum A,et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole resistant strain [J]. Biomed Res Int,2013,2013(12):392-458.

[17] Sung WS,Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi,mediated by membrane disruption [J]. Pure and Applied Chemistry,2010,82(1):219-226.

(收稿日期:2014-08-15 本文編輯:任 念)endprint

白河县| 平度市| 凌源市| 抚顺县| 尼玛县| 建昌县| 南溪县| 神木县| 长治县| 芜湖县| 崇信县| 尚志市| 赣榆县| 霍林郭勒市| 柘荣县| 济宁市| 社旗县| 松溪县| 长海县| 镇坪县| 琼结县| 玉林市| 克山县| 奎屯市| 南川市| 清水河县| 剑川县| 灵石县| 中江县| 特克斯县| 高密市| 台湾省| 石城县| 承德市| 栖霞市| 汨罗市| 札达县| 石阡县| 漯河市| 遂昌县| 商河县|