田 颯 彭學軍 何宇明 吳 蓉
中南大學鐵道學院職工醫(yī)院內(nèi)科,湖南長沙 410075
[摘要] 目的 觀察外源性硫化氫(H2S)對高糖誘導(dǎo)人臍靜脈內(nèi)皮細胞(HUVECs)氧化應(yīng)激損傷的保護作用及其可能機制。 方法 用25 mmol/L D-葡萄糖(高糖)、外源性H2S供體硫化氫鈉(NaHS)(5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L)及沉默信息調(diào)節(jié)子1(SIRT1)特異性抑制劑尼克酰胺(40 mmol/L)處理HUVECs細胞株24 h。實驗分為對照組、高糖組、甘露醇組、NaHS(5×10-5、1×10-4、5×10-4、1×10-3、5×10-3 mol/L)組、高糖+NaHS(5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L)組和高糖+NaHS(10-3 mol/L)+尼克酰胺組。采用MTT比色法檢測細胞活力,流式細胞術(shù)檢測細胞內(nèi)的內(nèi)活性氧(ROS)水平,Western bolt法檢測SIRT1的表達。 結(jié)果 與對照組比較,高糖組細胞活力顯著降低[OD值分別為(0.76±0.09)和(0.18±0.01),t = 5.34, P < 0.05],細胞內(nèi)ROS水平顯著增加[ROS水平分別為(356.18±42.96)au和(1183.63±84.31)au,t = 6.72,P < 0.05]。與高糖組比較,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)組細胞活力顯著增加[OD值分別為(0.18±0.01)、(0.39±0.05)、(0.68±0.04)和(0.51±0.08),t1 = 3.16,t2 = 3.95,t3 = 3.86,均P < 0.05],細胞內(nèi)ROS水平顯著降低[ROS水平分別為(1183.63±84.31)、(874.32±85.36)、(628.65±54.27)和(439.56±53.64)au,t1 = 3.46,t2 = 3.97,t3 = 5.13,均P < 0.05]。與對照組比較,高糖組細胞中SIRT1蛋白表達顯著下調(diào)[蛋白相對表達量分別為(0.48±0.04)和(0.17±0.03),t = 3.94,P < 0.05]。與高糖組比較,高糖+NaHS(10-3 mol/L)組細胞中SIRT1表達顯著上調(diào)[蛋白相對表達量分別為(0.17±0.03)和(0.59±0.08),t = 4.36,P < 0.05]。SIRT1抑制劑尼克酰胺取消了NaHS抑制高糖誘導(dǎo)的HUVECs細胞活力的降低[高糖+NaHS組和高糖+NaHS+尼克酰胺組OD值分別為(0.52±0.04)和(0.23±0.03),t = 2.98,P < 0.05]和細胞內(nèi)ROS水平的增加[高糖+NaHS組和高糖+NaHS+尼克酰胺組ROS水平分別為(628.65±54.27)au和(1052.84±113.42)au,t = 3.76,P < 0.05]。 結(jié)論 外源性H2S抑制了高糖誘導(dǎo)的HUVECs氧化應(yīng)激損傷,其機制可能與H2S上調(diào)SIRT1的表達有關(guān)。
[關(guān)鍵詞] 硫化氫;高糖;氧化應(yīng)激;沉默信息調(diào)節(jié)子1
[中圖分類號] R3 [文獻標識碼] A [文章編號] 1673-7210(2014)10(b)-0019-06
Hydrogen sulfide inhibits high glucose-induced oxidative stress injury by modulating silent information regulator 1 in human umbilical vein endothelial cells
TIAN Sa PENG Xuejun HE Yuming WU Rong
Department of Internal Medicine, the Staff-worker Hospital of Railroad Institute of Central South University, Hu'nan Province, Changsha 410075, China
[Abstract] Objective To investigate the protective effect of extrogenous hydrogen sulfide (H2S) on the injury of oxidative stress induced by high glucose and explore the possible mechanism in human umbilical vein endothelial cells (HUVECs). Methods HUVECs were incubated by 25 mmol/L D-glucose (high glucose) to induce injury and cells were treated with H2S donor sodium bisulfide (NaHS) (5×10-5, 1×10-4, 5×10-4, 1×10-3 and 5×10-3 mol/L) for 24 h. The inhibitor of silent information regulator 1 (SIRT1) niacinamide was used in the study. The cells were divided into the control group, high glucose group, mannitol group, NaHS(5×10-5, 1×10-4, 5×10-4, 1×10-3, 5×10-3 mol/L)groups, high glucose + NaHS (5×10-5, 1×10-4, 5×10-4, 1×10-3 and 5×10-3 mol/L) groups and high glucose + NaHS (10-3 mol/L) + niacinamide group. MTT assay was used to detect the cell viability. The level of reactive oxygen species (ROS) was measured by flow cytometry. The expression of SIRT1 was tested by Western blot. Results Compared with the control group, the cell viability was significantly decreased [OD were (0.76±0.09) and (0.18±0.01) respectively, t = 5.34, P < 0.05], and the level of ROS was significantly increased [the levels of ROS were (356.18±42.96) au and (1183.63±84.31) au respectively, t = 6.72, P < 0.05] in high glucose group. Compared with high glucose group, the cells viability were significantly increased [OD were (0.18±0.01), (0.39±0.05), (0.68±0.04) and (0.51±0.08) respectively, t1 = 3.16, t2 = 3.95, t3 = 3.86, P < 0.05], and the levels of ROS were significantly decreased [the levels of ROS were (1183.63±84.31), (874.32±85.36), (628.65±54.27) and (439.56±53.64) au respectively, t1 = 3.46, t2 = 3.97, t3 = 5.13, all P < 0.05] in high glucose+NaHS (5×10-4, 10-3 and 5×10-3 mol/L) groups. Compared with the control, the expression of SIRT1 was significantly down-regulated in high glucose group [relative expression levels were (0.48±0.04) and (0.17±0.03) respectively, t = 3.94, P < 0.05]. Compared with high glucose group, the expression of SIRT1 was significantly up-regulated in high glucose+NaHS (10-3 mol/L) group [relative expression levels were (0.17±0.03) and (0.59±0.08) respectively, t = 4.36, P < 0.05]. Compared with the high glucose+NaHS (10-3 mol/L) group, the cell viability was significantly decreased [OD were (0.52±0.04) and (0.23±0.03) respectively, t = 2.98, P < 0.05) and the level of ROS was significantly increased [the level of ROS was (628.65±54.27) au and (1052.84±113.42) au, t = 3.76, P < 0.05) in high glucose+NaHS (10-3 mol/L) + niacinamide group. Conclusion Extrogenous H2S prevents the injury of oxidative stress induced by high glucose in HUVECs, the mechanisms may be related to the up-regulation of SIRT1 induced by H2S.endprint
[Key words] Hydrogen sulfide; High glucose; Oxidative stress; Silent information regulator 1
糖尿病是常見的代謝障礙性疾病,糖尿病血管病變是糖尿病患者致殘致死的主要原因之一,血管內(nèi)皮損傷和功能紊亂是糖尿病血管病變的始動環(huán)節(jié)和主要的病理生理學基礎(chǔ)[1]。高血糖是糖尿病血管內(nèi)皮功能損傷的主要原因,高血糖可直接損傷血管內(nèi)皮細胞,還可誘導(dǎo)氧化應(yīng)激損傷血管內(nèi)皮細胞[2]。硫化氫(hydrogen sulfide,H2S)是繼一氧化氮和一氧化碳之后的第三類氣體信號分子。H2S在心血管系統(tǒng)、神經(jīng)系統(tǒng)、泌尿系統(tǒng)和消化系統(tǒng)中均有分布,參與了許多重要的生理和病理生理過程[3]。研究報道H2S對血管內(nèi)皮細胞具有保護作用,H2S也具有較強的抗氧化活性[4]。沉默信息調(diào)節(jié)子1(silent information regulation homolog 1,SIRT1)是在真核生物細胞中普遍表達的去乙?;鞍?,也是一種被稱為“能量感受器”的核轉(zhuǎn)錄因子[5]。SIRT1可感受機體能量狀態(tài),如高糖、高脂的改變,調(diào)節(jié)其他轉(zhuǎn)錄因子的表達,也參與了調(diào)節(jié)內(nèi)皮細胞代謝穩(wěn)態(tài)和氧化應(yīng)激損傷的過程[6]。因此本研究擬采用人臍靜脈內(nèi)皮細胞(human umbilical vein endothelial cells, HUVECs)作為研究對象,用硫氫化鈉(sodium hydrosulfide,NaHS)作為外源性H2S的供體,觀察外源性H2S對高糖誘導(dǎo)HUVECs氧化應(yīng)激損傷的保護作用,并從SIRT1的角度探討其可能的機制。
1 材料與方法
1.1 材料
DMEM培養(yǎng)基(Invitrogen公司,批號:14800017),胎牛血清(杭州四季青公司,批號:1401113),NaHS(批號:06315DJ)、胰蛋白酶(批號:H20100116)、D-葡萄糖(批號:026K1516)、二甲基亞砜(dimethyl sulfoxide,DMSO,批號:67-68-5)、四甲基偶氮唑藍(methyl thiazolyl tetrazolium,MTT,批號:61k5318)、雙氫-乙酰乙酸二氯熒光黃(2′-7′-dichlorofluorescin diacetate, DCFH-DA,批號:4091-99-0)和尼克酰胺(批號:3TP05)均為Sigma公司產(chǎn)品。BCA蛋白定量試劑(Pierce公司,批號:23225),鼠抗人SIRT1抗體以及辣根過氧化物酶標記二抗(Santa Cruz公司,批號:sc-47778)。流式細胞測定儀(Beckman公司)和Elx800型酶標儀(Bio-TEK公司)。
1.2 實驗方法
1.2.1 人臍靜脈內(nèi)皮細胞的培養(yǎng) HUVECs細胞株接種于含10%胎牛血清(fetal bovine serum,F(xiàn)BS)和2 mmol/L的L-谷氨酰胺的DMEM培養(yǎng)基培養(yǎng),置于37℃、5%CO2的培養(yǎng)箱中靜止培養(yǎng),2~3 d換液。待細胞生長融合至90%后棄去培養(yǎng)液,加入適量0.25%胰蛋白酶消化數(shù)分鐘,吹打分散細胞,加入含10%FBS的DMEM培養(yǎng)液制成細胞懸液,調(diào)整細胞密度為1×106個/mL,接種于12孔板,每孔1 mL細胞懸液。
1.2.2 實驗分組 取對數(shù)生長期的HUVECs細胞進行實驗,分為對照組:含10%FBS的DMEM培養(yǎng)基培養(yǎng),培養(yǎng)基中含5.5 mmol/L葡萄糖;高糖組:含25 mmol/L D-葡萄糖培養(yǎng)基培養(yǎng)細胞24 h;甘露醇組:含25 mmol/L甘露醇培養(yǎng)液培養(yǎng)細胞24 h;NaHS組:含5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS培養(yǎng)液培養(yǎng)細胞24 h;高糖+NaHS組:用含5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS和25 mmol/L D-葡萄糖的培養(yǎng)液共同孵育細胞24 h;尼克酰胺組:用含40 mmol/L SIRT1特異性抑制劑尼克酰胺的培養(yǎng)液培養(yǎng)細胞24 h;NaHS+高糖+尼克酰胺組:用含1×10-3 mol/L NaHS、25 mmol/L D-葡萄糖和40 mmol/L尼克酰胺的培養(yǎng)液共同孵育細胞24 h。
1.2.3 MTT比色法檢測細胞增殖 細胞胰酶消化后制成懸液,細胞密度為1×104個/mL,接種96孔培養(yǎng)板,每個培養(yǎng)孔100 μL細胞懸液,每組實驗設(shè)3個重復(fù)孔,置于37℃、5%CO2培養(yǎng)箱中孵育30 min。在實驗結(jié)束前3 h每孔加入100 μL MTT,使MTT的終濃度為0.5 mg/mL,空白對照組不加MTT,繼續(xù)在培養(yǎng)箱中孵育3 h。吸去全部棄培養(yǎng)液,每孔加入100 μL DMSO,振蕩10 min,DMSO結(jié)晶完全溶解后,在Elx800型酶標儀上測定波長為570 nm的吸光度值(OD值)。
1.2.4 流式細胞儀檢測細胞內(nèi)活性氧(reactive oxygen species,ROS) 采用DCFH-DA作為ROS的捕獲劑,用10 μmol/L DCFH-DA孵育各組細胞30 min,空白對照組不加DCFH-DA。用磷酸鹽緩沖液(phosphate buffer,PBS)漂洗2次,0.25%胰蛋白酶消化后收集細胞,PBS漂洗1次,上機檢測二氯熒光黃的平均熒光強度,以氬離子激光488 nm作為激發(fā)光,每個樣品平均測定10 000個活細胞,以平均熒光強度表示細胞內(nèi)ROS的水平。
1.2.5 Western blot法檢測SIRT1的蛋白表達 采用總蛋白提取試劑盒按說明操作提取細胞總蛋白,BAC法測定蛋白濃度。取100 μg蛋白質(zhì)樣本加入2×SDS凝膠加樣緩沖液中煮沸使蛋白質(zhì)變性。用十二烷基磺酸鈉聚丙烯酰胺凝膠電泳1 h分離蛋白,將分離的蛋白電轉(zhuǎn)移至0.22 μm的PVDF膜上,麗春紅染色觀察轉(zhuǎn)移效果。5%脫脂牛奶室溫下封閉2 h,加入鼠抗人SIRT1(1∶500)和β-actin(1∶1000)一抗,4℃孵育過夜。用TBST振搖洗膜3次,加入辣根過氧化物酶標記的二抗(1∶1000),室溫下孵育2 h,再用TBST振搖洗膜3次。蛋白質(zhì)印跡熒光檢測試劑盒顯示于X線片,顯影、定影后用凝膠圖像分析系統(tǒng)掃描膠片,用Image lab軟件對條帶進行半定量分析。endprint
1.3 統(tǒng)計學方法
采用SPSS 19.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,對照組與高糖組的比較采用t檢驗,高糖組與NaHS各亞組間的比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗。以P < 0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 高糖和外源性H2S對HUVECs細胞活力的影響
結(jié)果如圖1所示:與對照組比較,高糖組HUVECs的細胞活力顯著降低[OD值分別為(0.76±0.09)和(0.18±0.01),t = 5.34,P < 0.05];而甘露醇組的細胞活力與對照組比較差異無統(tǒng)計學意義[OD值分別為(0.76±0.09)和(0.75±0.07),t = 0.01,P > 0.05)。與對照組比較,NaHS(5×10-4、1×10-3和5×10-3 mol/L)組的細胞活力顯著增加[OD值分別為(0.76±0.09)、(0.95±0.14)、(1.14±0.09)和(1.06±0.12),t1=2.93,t2=3.41,t3=3.22,均P < 0.05],以1×10-3 mol/L的NaHS作用最強。與高糖組比較,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)組細胞活力顯著增加[OD值分別為(0.18±0.01)、(0.39±0.05)、(0.68±0.04)和(0.51±0.08),t1=3.16,t2=3.95,t3=3.86,均P < 0.05),以1×10-3 mol/L的NaHS作用最強。
A:高糖、甘露醇和外源性H2S單獨處理對人臍靜脈內(nèi)皮細胞活力的影響;B:外源性H2S對高糖誘導(dǎo)的人臍靜脈內(nèi)皮細胞活力降低的影響;與對照組比較,*P < 0.05;與高糖組比較,#P < 0.05;NaHS:硫氫化鈉;OD:吸光度
圖1 高糖和外源性H2S對人臍靜脈內(nèi)皮細胞活力的影響
2.2 高糖和外源性H2S對HUVECs細胞內(nèi)ROS水平的影響
以DCF平均熒光強度反映細胞內(nèi)ROS水平,結(jié)果如圖2所示:與對照組比較,高糖組HUVECs細胞內(nèi)ROS水平顯著增加[ROS水平分別為(356.18±42.96)au和(1183.63±84.31)au,t = 6.72,P < 0.05),而甘露醇組細胞內(nèi)ROS水平與對照組比較差異無統(tǒng)計學意義[ROS水平分別為(356.18±42.96)au和(349.75±36.15)au,t = 0.08,P > 0.05]。與對照組比較,NaHS組(5×10-4、1×10-3和5×10-3 mol/L)細胞內(nèi)ROS水平顯著降低[ROS水平分別為(356.18±42.96)、(286.14±24.51)、(218.24±29.64)和(201.35±26.41)au,t1 = 2.25,t2=2.84,t3 = 3.17,均P < 0.05)。與高糖組比較,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)組細胞內(nèi)ROS水平顯著降低[ROS水平分別為(1183.63±84.31)、(874.32±85.36)、(628.65±54.27)和(439.56±53.64)au,t1 = 3.46,t2 = 3.97,t3 = 5.13,均P < 0.05)。
2.3 高糖和外源性H2S對HUVECs細胞內(nèi)SIRT1表達的影響
結(jié)果如圖3所示:與對照組比較,高糖組HUVECs細胞中SIRT1表達顯著下調(diào)[蛋白相對表達量分別為(0.48±0.04)和(0.17±0.03),t = 3.94,P < 0.05),而甘露醇組細胞中SIRT1表達與對照組比較差異無統(tǒng)計學意義[蛋白相對表達量分別為(0.48±0.04)和(0.47±0.06),t = 0.03,P > 0.05]。與對照組比較,1×10-3 mol/L NaHS組細胞中SIRT1表達顯著上調(diào)[蛋白相對表達量分別為(0.48±0.04)和(0.86±0.09),t = 4.68,P < 0.05]。與高糖組比較,高糖+NaHS(1×10-3 mol/L)組HUVECs細胞中SIRT1表達顯著上調(diào)[蛋白相對表達量分別為(0.17±0.03)和(0.59±0.08),t = 4.36,P < 0.05]。
2.4 SIRT1抑制劑尼克酰胺對H2S作用的影響
結(jié)果如圖4所示:SIRT1抑制劑尼克酰胺取消外源性H2S供體NaHS抑制了高糖誘導(dǎo)的HUVECs細胞活力的降低[高糖+NaHS組和高糖+NaHS+尼克酰胺組OD值分別為(0.52±0.04)au和(0.23±0.03)au,t = 2.98,P < 0.05]和高糖誘導(dǎo)的HUVECs細胞內(nèi)ROS水平的增加[高糖+NaHS組和高糖+NaHS+尼克酰胺組ROS水平分別為(628.65±54.27)au和(1052.84±113.42)au,t = 3.76,均P < 0.05]。
A:尼克酰胺對H2S保護高糖誘導(dǎo)的人臍靜脈內(nèi)皮細胞損傷的影響;B:尼克酰胺對H2S降低高糖誘導(dǎo)的人臍靜脈內(nèi)皮細胞中ROS水平的影響;1:對照組;2:高糖組;3:高糖+硫氫化鈉(1×10-3 mol/L)組;4:高糖+硫氫化鈉(1×10-3 mol/L)+尼克酰胺(40 mmol/L)組;與對照組比較,*P < 0.05;與高糖組比較,#P < 0.05;與高糖+硫氫化鈉(10-3 mol/L)組比較,▲P < 0.05;ROS:活性氧;OD:吸光度
圖4 沉默信息調(diào)節(jié)子1抑制劑尼克酰胺對H2S作用的影響
3 討論
高糖可以通過多種途徑損傷內(nèi)皮細胞和促進內(nèi)皮細胞凋亡。研究發(fā)現(xiàn)高糖通過激活絲氨酸/蘇氨酸蛋白激酶依賴性磷酸酯酶與張力蛋白同源物(phosphatase and tensin homolog,PTEN)抑制Akt磷酸化,從而促進HUVECs的凋亡[7]。高糖可以增加還原型輔酶Ⅱ氧化酶含量,促進PKC磷酸化,從而增加細胞內(nèi)ROS的生成,ROS增加又可以活化JNK,從而激活Caspase-3,繼而導(dǎo)致HUVECs的凋亡[8]。因此本研究中用高糖孵育HUVECs誘導(dǎo)損傷,結(jié)果顯示25 mmol/L的D-葡萄糖顯著降低了HUVECs的細胞活力,而相同濃度的甘露醇沒有影響HUVECs的細胞活力,這些表明高糖誘導(dǎo)內(nèi)皮細胞損傷與滲透壓無關(guān)。endprint
H2S是繼一氧化氮和一氧化碳之后,發(fā)現(xiàn)的第三類氣體信號分子。研究表明,H2S具有廣泛的生物學效應(yīng),也參與了多種疾病的發(fā)生發(fā)展。體內(nèi)H2S的產(chǎn)生是以L-半胱氨酸為底物,由胱硫醚-γ-裂解酶、胱硫醚β合成酶、半胱氨酸轉(zhuǎn)移酶和3-巰基丙酮酸轉(zhuǎn)硫酶等催化產(chǎn)生[9]。H2S是一種重要的具有細胞保護作用的物質(zhì),對多種細胞具有保護作用[10]。NaHS在溶液中可分離出Na+和HS-,隨后HS-和H+生成H2S,能維持溶液穩(wěn)定的HS-和H+,常作為外源性H2S供體使用。
氧化應(yīng)激是高糖誘導(dǎo)內(nèi)皮細胞損傷的重要原因。ROS是生物有氧代謝過程中的一種副產(chǎn)品,主要包括氧離子、過氧化物和含氧自由基等,氧化應(yīng)激時細胞內(nèi)ROS水平明顯增加[11]。為了探討H2S對高糖誘導(dǎo)HUVECs氧化應(yīng)激損傷的保護作用,本實驗中用5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS和25 mmol/L D-葡萄糖的培養(yǎng)液共同孵育細胞24 h。結(jié)果表明,高糖處理HUVECs 24 h后細胞活力明顯降低;NaHS與高糖共同處理顯著增加了HUVECs的細胞活力。這些結(jié)果提示NaHS可以拮抗高糖誘導(dǎo)的HUVECs氧化應(yīng)激損傷。
SIRT1是在哺乳動物體內(nèi)發(fā)現(xiàn)的第一個sirtuins家族成員,具有去乙?;富钚?,對組蛋白、轉(zhuǎn)錄因子、轉(zhuǎn)錄共調(diào)控因子等在翻譯后具有去乙?;男揎椬饔肹12]。SIRT1是與能量代謝、機體應(yīng)激反應(yīng)、細胞衰老和細胞凋亡等密切相關(guān)的轉(zhuǎn)錄因子,是機體重要的能量感受器,被稱為長壽蛋白[13]。研究發(fā)現(xiàn),SIRT1在保護血管內(nèi)皮細胞功能、促進內(nèi)皮細胞的存活中具有重要作用[14]。陳麗琴等[15]研究顯示SIRT1途徑參與了高糖誘導(dǎo)的炎性反應(yīng)。Li等[16]的研究發(fā)現(xiàn)H2S通過上調(diào)SIRT1的表達抑制了甲醛誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激,這表明H2S能調(diào)節(jié)SIRT1的表達。本實驗的結(jié)果顯示,高糖組HUVECs細胞中SIRT1表達與對照組比較顯著下調(diào),而NaHS逆轉(zhuǎn)了高糖誘導(dǎo)的HUVECs細胞中SIRT1表達的下調(diào)。SIRT1抑制劑尼克酰胺取消外源性H2S供體NaHS抑制高糖誘導(dǎo)的HUVECs細胞活力的降低和高糖誘導(dǎo)的HUVECs細胞內(nèi)ROS水平的增加。這些表明外源性H2S抑制了高糖誘導(dǎo)的HUVECs氧化應(yīng)激損傷,可能與H2S調(diào)節(jié)SIRT1的表達有關(guān)。
總之,本研究表明外源性H2S抑制了高糖誘導(dǎo)的人臍靜脈內(nèi)皮細胞氧化應(yīng)激損傷,其機制可能與H2S上調(diào)SIRT1的表達有關(guān)。本研究為糖尿病血管病變的防治提供了一種新的治療策略和方法。
[參考文獻]
[1] Fandi?觡o-Vaquero R,F(xiàn)ernández-Trasancos A,Alvarez E,et al. Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease [J]. Atherosclerosis,2014,235(2):281-288.
[2] Gao W,F(xiàn)erguson G,Connell P,et al. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression [J]. Diab Vasc Dis Res,2014, 11(4):270-280.
[3] 張媛,韓輝,高聆,等.硫化氫抑制高糖誘導(dǎo)的內(nèi)皮細胞損傷的研究[J].山東大學學報:醫(yī)學版,2012,50(5):1-4.
[4] 宋成潔,齊洪娜,劉磊,等.硫化氫對高糖誘導(dǎo)的人臍靜脈內(nèi)皮細胞凋亡的影響及其機制研究[J].徐州躍學院學報,2011,31(8):515-518.
[5] Wang Y,Liang Y,Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model [J]. FEBS Lett,2011,585(7):986-994.
[6] 周曦,易龍,金鑫,等.SIRT1/UCP2 通路在白藜蘆醇抑制血管內(nèi)皮細胞氧化應(yīng)激損傷中的作用[J].第三軍醫(yī)大學學報,2013,35(16):1671-1675.
[7] Li J,Yang L,Qin W,et al. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus [J]. PLoS One,2013,8(6):e65549.
[8] Kanikarla-Marie P,Jain SK. L-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS [J]. Mol Cell Biochem,2014,391(1-2):251-256.
[9] Wang K,Ahmad S,Cai M,et al. Response to Letter Regarding Article, "Dysregulation of Hydrogen Sulfide(H2S)Producing Enzyme Cystathionine γ-lyase(CSE)Contributes to Maternal Hypertension and Placental Abnormalities in Preeclampsia" [J]. Circulation,2014,129(22):517-518.endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陳麗琴,李夢辰,孫承軍,等.SIRT1對高糖高脂培養(yǎng)胰島微血管內(nèi)皮細胞炎性反應(yīng)激活的影響[J].國際內(nèi)分泌代謝雜志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文編輯:程 銘)endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陳麗琴,李夢辰,孫承軍,等.SIRT1對高糖高脂培養(yǎng)胰島微血管內(nèi)皮細胞炎性反應(yīng)激活的影響[J].國際內(nèi)分泌代謝雜志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文編輯:程 銘)endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陳麗琴,李夢辰,孫承軍,等.SIRT1對高糖高脂培養(yǎng)胰島微血管內(nèi)皮細胞炎性反應(yīng)激活的影響[J].國際內(nèi)分泌代謝雜志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文編輯:程 銘)endprint