国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

最終需求的完全碳排放強(qiáng)度變動(dòng)及其影響因素分析

2014-10-17 09:26肖皓楊佳衡蔣雪梅
關(guān)鍵詞:碳排放增加值

肖皓+楊佳衡+蔣雪梅

摘要

區(qū)別于傳統(tǒng)視角的碳排放強(qiáng)度研究,本文從供給和需求,產(chǎn)出和增加值的內(nèi)在聯(lián)系出發(fā),提出了最終需求視角下的完全碳排放強(qiáng)度及其消費(fèi)的完全碳排放強(qiáng)度、投資的完全碳排放強(qiáng)度和出口的完全碳排放強(qiáng)度相關(guān)概念和計(jì)算方法,并根據(jù)合并WIOD形成的1996-2009年的中國(guó)非競(jìng)爭(zhēng)型投入產(chǎn)出表完成了對(duì)各類(lèi)完全碳排放強(qiáng)度的測(cè)算,以及對(duì)完全碳排放強(qiáng)度的變動(dòng)的直接貢獻(xiàn)率分解,同時(shí)對(duì)各類(lèi)完全碳排放強(qiáng)度的變動(dòng)進(jìn)行了直接碳排放系數(shù)效應(yīng)、中間投入技術(shù)結(jié)構(gòu)效應(yīng)、增加值系數(shù)效應(yīng)和最終需求規(guī)模效應(yīng)4種驅(qū)動(dòng)因素的SDA分解。結(jié)果顯示:第一,期間消費(fèi)的完全碳排放強(qiáng)度均小于投資和出口的完全碳排放強(qiáng)度,且消費(fèi)的完全碳排放強(qiáng)度對(duì)完全碳排放強(qiáng)度變動(dòng)的直接貢獻(xiàn)率要大于投資和出口,表明消費(fèi)中隱含的碳排放與增加值的比例沿著“集約型”路徑不斷優(yōu)化,而出口和投資的增長(zhǎng)路徑則相對(duì)“粗放”。第二,各類(lèi)完全碳排放強(qiáng)度的減排路徑大體一致,直接碳排放系數(shù)效應(yīng)為正,而中間投入技術(shù)結(jié)構(gòu)效應(yīng)、增加值系數(shù)效應(yīng)和最終需求規(guī)模效應(yīng)均為負(fù),暗含投入產(chǎn)出結(jié)構(gòu)、各類(lèi)需求的隱含增加值系數(shù)以及規(guī)模變動(dòng)對(duì)碳排放強(qiáng)度下降并沒(méi)有起到積極作用,而主要源泉還是直接碳排放系數(shù)下降。其中直接碳排放系數(shù)、中間產(chǎn)品技術(shù)結(jié)構(gòu)效應(yīng)和增加值系數(shù)效應(yīng)的變化在投資的完全碳排放強(qiáng)度中作用較大,而最終需求規(guī)模的變化在消費(fèi)的完全碳排放強(qiáng)度中作用較大。第三,各類(lèi)完全碳排放強(qiáng)度變化以及其背后的驅(qū)動(dòng)力具有明顯的分階段特征。2002-2004年投資和出口的完全碳排放強(qiáng)度變化促使了完全碳排放強(qiáng)度上升,而2004-2009年則對(duì)完全碳排放強(qiáng)度的下降有一定的正貢獻(xiàn)。入世以前增加值系數(shù)對(duì)各類(lèi)需求的完全碳排放強(qiáng)度下降的貢獻(xiàn)為正,而其后貢獻(xiàn)為負(fù)。其中,在2003-2007年投資和出口的完全碳排放強(qiáng)度變化中表現(xiàn)更為明顯。因此,降低碳排放強(qiáng)度是一項(xiàng)系統(tǒng)工程,減排技術(shù)仍是最直接和有效的措施,而需求模式調(diào)整也是降低碳排放強(qiáng)度的重要手段之一,特別是降低出口和投資的中隱含碳和提高出口和投資中的增加值率,同時(shí)也要警惕消費(fèi)結(jié)構(gòu)變動(dòng)中如汽車(chē)等高能耗產(chǎn)品普及帶來(lái)的不利影響。

關(guān)鍵詞 碳排放;增加值;碳排放強(qiáng)度;最終需求;結(jié)構(gòu)分解分析

中圖分類(lèi)號(hào) F205

文獻(xiàn)標(biāo)識(shí)碼 A

文章編號(hào) 1002-2104(2014)10-0048-09 doi:10.3969/j.issn.1002-2104.2014.10.008

碳排放強(qiáng)度指單位國(guó)民生產(chǎn)總值的CO2排放量,體現(xiàn)了污染物和經(jīng)濟(jì)增長(zhǎng)的相互關(guān)系,是經(jīng)濟(jì)可持續(xù)發(fā)展的重要評(píng)價(jià)指標(biāo),已作為約束性指標(biāo)之一納入國(guó)內(nèi)統(tǒng)計(jì)、監(jiān)測(cè)和考核辦法。如中國(guó)在哥本哈根氣候變化會(huì)議上承諾2020年CO2排放強(qiáng)度將比2005年降低40%到45%,“十二五”規(guī)劃中明確提出單位GDP碳排放降低17%的目標(biāo)。碳排放主要源自化石燃料燃燒,因此碳排放強(qiáng)度取決于碳基能源的碳排放系數(shù)、能源構(gòu)成、能源強(qiáng)度等。而碳排放總量系各行業(yè)排放的加總,因此碳排放強(qiáng)度又與產(chǎn)業(yè)結(jié)構(gòu)密切聯(lián)系,取決于各行業(yè)單位GDP能耗,能耗部門(mén)占國(guó)民經(jīng)濟(jì)中的比重等。綜合而言,這些細(xì)分指標(biāo)受到了技術(shù)進(jìn)步、經(jīng)濟(jì)增長(zhǎng)、結(jié)構(gòu)調(diào)整、能源利用和經(jīng)濟(jì)周期等的影響。目前,在碳排放強(qiáng)度方面的研究中,能源強(qiáng)度是重要的前沿研究領(lǐng)域[1]。而傳統(tǒng)意義能源強(qiáng)度強(qiáng)調(diào)的是能源供給和產(chǎn)品生產(chǎn)過(guò)程,根據(jù)碳排放強(qiáng)度的定義和計(jì)算公式,作為分子的碳排放總量和作為分母的GDP測(cè)算均源自生產(chǎn)過(guò)程,如要體現(xiàn)消費(fèi)過(guò)程,分子不僅要測(cè)算國(guó)際貿(mào)易中的隱含碳,還要測(cè)算中國(guó)內(nèi)需中的隱含碳,分母GDP也不能簡(jiǎn)單采用收入法總量,還要根據(jù)需求部分進(jìn)行相應(yīng)分解。這樣才能得到相應(yīng)的碳排放強(qiáng)度,為減排路徑設(shè)計(jì)提供新的依據(jù)。那么,在需求視角的碳排放強(qiáng)度的概念下,我國(guó)碳排放強(qiáng)度的變化規(guī)律如何,內(nèi)在驅(qū)動(dòng)因素又有哪些特點(diǎn)?

鑒于此,區(qū)別于傳統(tǒng)視角碳排放強(qiáng)度的研究,本文從供給和需求,產(chǎn)出和增加值的內(nèi)在聯(lián)系出發(fā),構(gòu)造了消費(fèi)、投資和出口的完全碳排放強(qiáng)度及其相應(yīng)的計(jì)算指標(biāo)。在此基礎(chǔ)上,應(yīng)用歐盟開(kāi)發(fā)的全球投入產(chǎn)出數(shù)據(jù)庫(kù)(World InputOutput Database,WIOD)中的中國(guó)投入產(chǎn)出表,測(cè)算中國(guó)1996-2009年的完全碳排放強(qiáng)度,對(duì)我國(guó)完全碳排放強(qiáng)度的變動(dòng)進(jìn)行貢獻(xiàn)率分解,然后應(yīng)用結(jié)構(gòu)分解模型對(duì)引起完全碳排放強(qiáng)度變化的影響因素進(jìn)行分解。論文旨在從需求結(jié)構(gòu)層面提供降低我國(guó)碳排放強(qiáng)度的一種路徑,有助于分析我國(guó)的結(jié)構(gòu)調(diào)整戰(zhàn)略,協(xié)調(diào)低碳排放和經(jīng)濟(jì)增長(zhǎng)的均衡發(fā)展。

1 文獻(xiàn)回顧與概念提出

杜剛等[1]指出在碳排放強(qiáng)度的研究中,分解技術(shù)是主要的方法創(chuàng)新(經(jīng)典論文包括Ang[2-3]),其中指數(shù)分解分析(IDA)是最常用的方法。IDA系采用部門(mén)層面的數(shù)據(jù),對(duì)碳排放總量逐項(xiàng)進(jìn)行乘(和)式分解,并將其影響因素提取出來(lái)。可見(jiàn),該方法的技術(shù)路線是從生產(chǎn)過(guò)程對(duì)碳排放進(jìn)行分析,如Fan等[4]、Timilsina等[5]、陳詩(shī)一[6]、王峰等[7]等學(xué)者均采用了該方法,基本結(jié)論是能源強(qiáng)度是影響碳排放強(qiáng)度的主要因素。

結(jié)構(gòu)分解分析(SDA)是另一種比較常見(jiàn)的研究方法,建立在投入產(chǎn)出表的基礎(chǔ)上,利用投入和產(chǎn)出的平衡關(guān)系,采用Leontief逆矩陣分離出需求因素對(duì)產(chǎn)出的影響,進(jìn)而將產(chǎn)品中隱含碳解釋為需求拉動(dòng)的結(jié)果。因此,SDA分析方法是從需求過(guò)程描述碳排放,如李艷梅和付加鋒[8]、郭朝先[9]、姚亮等[10]等學(xué)者都利用SDA分解法對(duì)碳排放進(jìn)行研究。在具體應(yīng)用中,多數(shù)文獻(xiàn)使用的是競(jìng)爭(zhēng)型投入產(chǎn)出表,或在簡(jiǎn)單假設(shè)的基礎(chǔ)上將其調(diào)整成非競(jìng)爭(zhēng)型投入產(chǎn)出表,但這樣會(huì)在一定程度上錯(cuò)估一國(guó)的碳排放量。

目前采用SDA方法分析碳排放強(qiáng)度的研究主要以如下學(xué)者為主。Youguo Zhang[11]對(duì)我國(guó)1992-2006年的碳排放強(qiáng)度進(jìn)行研究,主要考慮生產(chǎn)碳排放,將我國(guó)碳排放強(qiáng)度的變化分解為生產(chǎn)模式、中間投入結(jié)構(gòu)和需求模式的變化,表明在1992-2002年期間生產(chǎn)模式是碳排放強(qiáng)度下降的主要原因,而在2002-2006年中間投入技術(shù)成為主要原因。其后,張友國(guó)[12]進(jìn)一步考慮生活能源消費(fèi)產(chǎn)生的CO2排放以及能源強(qiáng)度與中間投入之間的相關(guān)性,對(duì)碳排放強(qiáng)度進(jìn)行了研究。其他類(lèi)似的研究還包括籍艷麗[13]、付雪[14]。但這些研究實(shí)質(zhì)上仍延續(xù)碳排放量的SDA分解思路,主要特點(diǎn)是構(gòu)造了碳排放總量的分解式(含最終需求),而分母GDP則與最終需求相聯(lián)系,單獨(dú)作為一項(xiàng)因素提出。因此,從公式形式上看,除了最后一項(xiàng)外,碳排放總量的SDA分解式和碳排放強(qiáng)度的SDA分解式在形式上非常相似,進(jìn)而實(shí)證結(jié)果差異主要體現(xiàn)在最終需求的進(jìn)口率上(稱(chēng)為進(jìn)口率變化的影響因素)。那么,如何在需求層面重新表征GDP實(shí)現(xiàn)更有效的分析?

Lau、陳錫康和楊翠紅等學(xué)者[15]構(gòu)造了基于最終需求的完全增加值概念,是指在某商品產(chǎn)出過(guò)程中引起的直接增加值和所有間接增加值之和。從供需匹配出發(fā),商品的價(jià)值量最終也會(huì)反映在商品的需求中,其產(chǎn)出的價(jià)值要等于各項(xiàng)需求的價(jià)值之和。因此出口中完全增加值的計(jì)算過(guò)程反映的是出口需求帶來(lái)的所有增加值。類(lèi)似的,考慮所有需求,即包括中間產(chǎn)品需求、消費(fèi)需求、投資需求以及出口需求,其所帶來(lái)的完全增加值之和勢(shì)必要等于從生產(chǎn)過(guò)程中所產(chǎn)生的增加值之和(即生產(chǎn)法GDP),這為需求視角下分解增加值提供了可能。基于此,蔣雪梅和劉軼芳[16]提出了出口單位增加值隱含碳的概念,測(cè)算的也正是出口中隱含碳與出口中完全增加值的比值,某種意義上也是“出口的碳排放強(qiáng)度”。

同理,其他類(lèi)型的需求碳排放強(qiáng)度也可以類(lèi)似構(gòu)造。經(jīng)濟(jì)含義上代表了該類(lèi)需求模式的碳消費(fèi)特征,如假設(shè)在當(dāng)前的最終需求中,消費(fèi)模式和出口模式帶來(lái)相同的經(jīng)濟(jì)效應(yīng),前者所付出的環(huán)境代價(jià)要低,即出口單位增加值所需要承擔(dān)的碳排放高于最終消費(fèi),那么在最終需求的轉(zhuǎn)型中,最終消費(fèi)產(chǎn)品比例的上升和出口產(chǎn)品比例的下降會(huì)使我國(guó)整體的完全碳排放強(qiáng)度降低。

總之,污染物的增長(zhǎng)伴隨著經(jīng)濟(jì)增長(zhǎng),經(jīng)濟(jì)增長(zhǎng)的引擎離不開(kāi)供給推動(dòng)和需求拉動(dòng)。在經(jīng)濟(jì)-能源-環(huán)境的復(fù)雜系統(tǒng)中,各部門(mén)的生產(chǎn)過(guò)程與需求過(guò)程相互耦合,生產(chǎn)環(huán)節(jié)碳排放強(qiáng)度測(cè)算僅反映了系統(tǒng)中環(huán)境污染與經(jīng)濟(jì)增長(zhǎng)的一種依賴(lài)關(guān)聯(lián),而需求環(huán)節(jié)碳排放強(qiáng)度的測(cè)算將提供一種新的關(guān)聯(lián)測(cè)算。在接下來(lái)的指標(biāo)和模型構(gòu)建中,我們將進(jìn)一步詳細(xì)推導(dǎo)需求環(huán)節(jié)的碳排放強(qiáng)度,并就其主要影響因素提出相應(yīng)的分解模型。

2 數(shù)據(jù)說(shuō)明與模型構(gòu)建

2.1 數(shù)據(jù)說(shuō)明

目前多國(guó)投入產(chǎn)出數(shù)據(jù)庫(kù)主要有GTAP數(shù)據(jù)庫(kù)、AIO數(shù)據(jù)庫(kù)和WIOD數(shù)據(jù)庫(kù),各數(shù)據(jù)庫(kù)主要在投入產(chǎn)出表所涉及的范圍、構(gòu)造方法及數(shù)據(jù)來(lái)源等方面存在區(qū)別。其中WIOD數(shù)據(jù)庫(kù)由歐盟11個(gè)機(jī)構(gòu)共同編制,提供1995-2011年全球范圍投入產(chǎn)出表,同時(shí)該數(shù)據(jù)庫(kù)還提供能源、環(huán)境和就業(yè)等賬戶(hù),其中環(huán)境賬戶(hù)中的CO2排放量采用各國(guó)各部門(mén)的化石能源消費(fèi)量數(shù)據(jù)利用IPCC的碳排放估計(jì)法進(jìn)行計(jì)算,并將其細(xì)分至各部門(mén)。

論文采用了WIOD數(shù)據(jù)庫(kù)中可比價(jià)格的中國(guó)IO表,其較我國(guó)編制的投入產(chǎn)出表具有一些優(yōu)勢(shì),如在時(shí)間上較為連續(xù),且部門(mén)統(tǒng)一等。CO2排放數(shù)據(jù)來(lái)自WIOD數(shù)據(jù)庫(kù)

中的環(huán)境賬戶(hù)??紤]數(shù)據(jù)的可獲得性,選取1996-2009年共14年的數(shù)據(jù)。由于WIOD數(shù)據(jù)庫(kù)中的非競(jìng)爭(zhēng)型投入產(chǎn)出表以美元為單位,本文通過(guò)中國(guó)統(tǒng)計(jì)年鑒中各年匯率將其折算為人民幣。

2.2 完全碳排放強(qiáng)度指標(biāo)

一般意義上的碳排放強(qiáng)度是指單位國(guó)內(nèi)生產(chǎn)總值所產(chǎn)生的CO2排放量,計(jì)算過(guò)程源自生產(chǎn)法。而完全碳排放強(qiáng)度考慮了生產(chǎn)和需求的耦合關(guān)系,系對(duì)需求模式構(gòu)建相應(yīng)的碳排放強(qiáng)度,這里分別對(duì)這種耦合關(guān)系、完全碳排放、完全增加值進(jìn)行說(shuō)明。其中,完全碳排放強(qiáng)度是完全碳排放和完全增加值的比值。

本文采用區(qū)分了國(guó)產(chǎn)品和進(jìn)口品的非競(jìng)爭(zhēng)型投入產(chǎn)出表進(jìn)行闡述。令

3 實(shí)證分析

3.1 我國(guó)完全碳排放強(qiáng)度的實(shí)證結(jié)果

根據(jù)公式(11)-(14)計(jì)算得出我國(guó)各類(lèi)的完全碳排放強(qiáng)度,結(jié)果見(jiàn)圖1??梢园l(fā)現(xiàn),完全碳排放強(qiáng)度的變化趨勢(shì)與我國(guó)總體的碳排放強(qiáng)度是相符的,盡管我國(guó)的CO2排放總量增加迅猛,但碳強(qiáng)度得到了下降,且各類(lèi)完全碳排放強(qiáng)度也出現(xiàn)了明顯的下降。

在總量層面,投資的完全碳排放強(qiáng)度和消費(fèi)的完全碳排放強(qiáng)度在各年間始終是最大者和最小者,且消費(fèi)的完全

碳排放強(qiáng)度一直低于我國(guó)整體的完全碳排放強(qiáng)度,而投資的完全碳排放強(qiáng)度和出口的完全碳排放強(qiáng)度一直都高于我國(guó)完全碳排放強(qiáng)度。時(shí)序?qū)用?,我?guó)完全碳排放強(qiáng)度除了2003年和2004年有小幅度上升外,其他年份都是逐年遞減,2009年全國(guó)完全碳排放強(qiáng)度下降至1.88 t/萬(wàn)元,在1996年的基礎(chǔ)上降低了55.52%,年均下降速度約為4.27%;消費(fèi)的完全碳排放強(qiáng)度在1996年至2009年間逐3.2 完全碳排放強(qiáng)度變動(dòng)的貢獻(xiàn)率分解結(jié)果

根據(jù)公式(17)將中國(guó)1996-2009年完全碳排放強(qiáng)度變動(dòng)進(jìn)行貢獻(xiàn)率分解,具體結(jié)果見(jiàn)表2。其中貢獻(xiàn)率的符號(hào)含義如下:若我國(guó)完全碳排放強(qiáng)度整體是下降的,則貢獻(xiàn)率為正代表促進(jìn)完全碳排放強(qiáng)度的下降,為負(fù)表示抑制其下降;若我國(guó)完全碳排放強(qiáng)度整體是上升的,則貢獻(xiàn)率為負(fù)是抑制完全碳排放強(qiáng)度的上升,為正表示促進(jìn)其上升。根據(jù)完全碳排放強(qiáng)度的變動(dòng)趨勢(shì),將1996-2009年分為1996-2002年、2002-2004年和2004-2009年三個(gè)時(shí)段,其中第一時(shí)段和第三時(shí)段為下降階段,第二時(shí)段為上升階段。

在整個(gè)研究期間,消費(fèi)對(duì)完全碳排放強(qiáng)度變動(dòng)的貢獻(xiàn)率是最大的,其次是出口,貢獻(xiàn)率最小的是投資。分時(shí)段來(lái)看,在1996-2002年期間,消費(fèi)對(duì)我國(guó)完全碳排放強(qiáng)度下降的貢獻(xiàn)率遠(yuǎn)遠(yuǎn)大于投資的和出口的貢獻(xiàn)率。在2002-2004年期間,消費(fèi)對(duì)我國(guó)完全碳排放強(qiáng)度的貢獻(xiàn)率是負(fù)的,因?yàn)樵?002-2004年,我國(guó)完全碳排放強(qiáng)度是上升的,而消費(fèi)的完全碳排放強(qiáng)度是下降的,因此消費(fèi)的貢獻(xiàn)率為負(fù)值。而投資和出口的完全碳排放強(qiáng)度在該階段都是上升的,因而投資和出口的貢獻(xiàn)率都為正值。在2004-2009年期間,消費(fèi)是我國(guó)完全碳排放強(qiáng)度下降貢獻(xiàn)率中最大的。

因此總體來(lái)看消費(fèi)是我國(guó)完全碳排放強(qiáng)度下降的貢獻(xiàn)率中最大的,而另外兩類(lèi)貢獻(xiàn)率的大小在中國(guó)入世前后有明顯的變化,入世前投資的貢獻(xiàn)率大于出口,而入世后是出口的貢獻(xiàn)率較大。基于宋爽、樊秀峰[18]的研究結(jié)論,并結(jié)合以上的結(jié)果,可以更清晰地看出由消費(fèi)所帶來(lái)的增加值增長(zhǎng)屬于“集約型”增長(zhǎng),而由投資和出口所帶來(lái)的增加值增長(zhǎng)屬于“粗放型”增長(zhǎng),是以過(guò)度的能源消耗和環(huán)境污染為代價(jià)的。

3.3 完全碳排放強(qiáng)度的SDA分解結(jié)果

根據(jù)公式(20)將中國(guó)1996-2009年各類(lèi)完全碳排放強(qiáng)度變動(dòng)的影響因素分解為四大效應(yīng),即碳排放系數(shù)效應(yīng)、技術(shù)結(jié)構(gòu)效應(yīng)、增加值系數(shù)效應(yīng)和最終需求效應(yīng)。若效應(yīng)值為負(fù)說(shuō)明該影響因素是促使完全碳排放強(qiáng)度下降的,若效應(yīng)值為正則說(shuō)明該影響因素是抑制完全碳排放強(qiáng)度下降的。同時(shí)本文參考了魯萬(wàn)波、仇婷婷和杜磊[19]文中所劃分的階段,將1996-2009年劃分為四個(gè)階段,即1996-1998年為第一階段,1998-2003年為第二階段,2003-2007年為第三階段,2007-2009年為第四階段。整體看來(lái),這四個(gè)效應(yīng)在各類(lèi)完全碳排放強(qiáng)度的影響效果相差不大,具體結(jié)果如下(見(jiàn)表2)。

(1)四個(gè)階段中碳排放系數(shù)效應(yīng)均為負(fù)值,這說(shuō)明在1996-2009年間,我國(guó)單位產(chǎn)出的直接碳排放量出現(xiàn)了下降,并在整體上使得各類(lèi)完全碳排放強(qiáng)度也出現(xiàn)了下降。

整體看來(lái),在各類(lèi)完全碳排放強(qiáng)度中,碳排放系數(shù)效應(yīng)的變動(dòng)對(duì)投資的完全碳排放強(qiáng)度變動(dòng)的影響是最大的,占比為166.53%,而對(duì)消費(fèi)的完全碳排放強(qiáng)度變動(dòng)的影響最小,僅為133.54%。分時(shí)段來(lái)看,碳排放系數(shù)效應(yīng)都在第三階段較大。尤其是對(duì)于投資的完全碳排放強(qiáng)度,其在第三階段的變化中占比高達(dá)441.24%,而對(duì)消費(fèi)的完全碳排放強(qiáng)度在第三階段變化的影響相對(duì)較小,僅為163.62%。

(2)技術(shù)結(jié)構(gòu)效應(yīng)是各類(lèi)碳排放強(qiáng)度上升的最大推手。在各階段中,除了第四階段,其他三個(gè)階段的技術(shù)結(jié)構(gòu)效應(yīng)均為正,說(shuō)明技術(shù)結(jié)構(gòu)的變化,使得我國(guó)完全碳排放強(qiáng)度出現(xiàn)了一定程度的上升。而第四階段的負(fù)值是由于我國(guó)當(dāng)時(shí)正處于結(jié)構(gòu)轉(zhuǎn)型期,受益于國(guó)家的節(jié)能減排政策,我國(guó)投資品中減少了對(duì)資源性產(chǎn)品的依賴(lài),使得其在這一階段中出現(xiàn)了負(fù)值,即其對(duì)我國(guó)完全碳排放強(qiáng)度的上升起到了抑制作用。

整體看來(lái),該影響因素在投資的完全碳排放強(qiáng)度的變動(dòng)中作用最大,占比的絕對(duì)值為43.64%,其次是對(duì)出口的完全碳排放強(qiáng)度變動(dòng),其絕對(duì)值為43.50%,而對(duì)消費(fèi)的完全碳排放強(qiáng)度變動(dòng)的作用最小,絕對(duì)值僅為26.65%。分時(shí)段來(lái)看,技術(shù)結(jié)構(gòu)效應(yīng)在第三階段中表現(xiàn)最為明顯。其中在投資的完全碳排放強(qiáng)度第三階段變動(dòng)中的占比絕對(duì)值為226.85%,而在消費(fèi)的完全碳排放強(qiáng)度變動(dòng)中的占比絕對(duì)值僅為61.26%。

(3)在各階段中,增加值系數(shù)效應(yīng)表現(xiàn)不一,但大部分增加值系數(shù)效應(yīng)值為正,這說(shuō)明在1996-2009年間,我國(guó)單位產(chǎn)出的增加值出現(xiàn)了下降,并在其他因素不變的情況下,使得各類(lèi)完全碳排放強(qiáng)度上升了,即增加值系數(shù)的變化對(duì)各類(lèi)完全碳排放強(qiáng)度的降低具有負(fù)作用。從表中可知增加值系數(shù)效應(yīng)的負(fù)值出現(xiàn)在第一階段或者第二階段,說(shuō)明我國(guó)在該相應(yīng)階段的單位產(chǎn)品的增加值出現(xiàn)了上升,從而使得完全碳排放強(qiáng)度下降了。而出口產(chǎn)品的增加值系數(shù)在各階段均為正效應(yīng),說(shuō)明就出口產(chǎn)品而言,我國(guó)為獲得單位產(chǎn)出所付出的中間投入比例上升,增加值系數(shù)即單位產(chǎn)出的增加值反而出現(xiàn)了較大幅度的下降,使得各階段出口的完全碳排放強(qiáng)度上升了。

整體看來(lái),該影響因素在投資的完全碳排放強(qiáng)度的變動(dòng)中作用最大,占比絕對(duì)值為23.06%,其次是對(duì)出口的完全碳排放強(qiáng)度變動(dòng),其絕對(duì)值為20.47%,而對(duì)消費(fèi)的完全碳排放強(qiáng)度變動(dòng)的作用最小,其絕對(duì)值僅為4.98%。分時(shí)段來(lái)看,增加值系數(shù)效應(yīng)在第三階段中表現(xiàn)最為明顯。其中在出口的完全碳排放強(qiáng)度第三階段變動(dòng)的占比絕對(duì)值為121.05%,而在消費(fèi)的完全碳排放強(qiáng)度的占比絕對(duì)值僅為22.22%。尤其值得注意的是,該效應(yīng)在出口的完全碳排放強(qiáng)度變動(dòng)的占比在第三階段變化較大,其絕對(duì)值由第二階段的2.08%變化到第三階段的121.04%,說(shuō)明中國(guó)入世后單位增加值出現(xiàn)了較大幅度的下降,從而促進(jìn)了出口的完全碳排放強(qiáng)度的上升。

(4)各類(lèi)需求規(guī)模效應(yīng)在各階段中表現(xiàn)形式不一,但其對(duì)完全碳排放強(qiáng)度的作用是最小的。除了投資的完全碳排放強(qiáng)度,其他的需求規(guī)模效應(yīng)值均為正,說(shuō)明1996-2009年間需求規(guī)模的變動(dòng)使得完全碳排放強(qiáng)度上升了。

整體看來(lái),該影響因素在消費(fèi)的完全碳排放強(qiáng)度中作用較大,占比絕對(duì)值為1.90%,而對(duì)出口的完全碳排放強(qiáng)度變動(dòng)的占比絕對(duì)值僅為0.57%。分時(shí)段來(lái)看, 該效應(yīng)值在消費(fèi)的完全碳排放強(qiáng)度中第一階段和第二階段為負(fù),第三階段和第四階段為正;在投資的完全碳排放強(qiáng)度中第一階段和第四階段為負(fù),第二階段和第三階段為正;在出口的完全碳排放強(qiáng)度中,僅在第三階段為負(fù),且總體為負(fù)。

盡管本文是基于最終需求視角來(lái)分解碳排放強(qiáng)度,但碳排放的產(chǎn)生仍是源自生產(chǎn)過(guò)程,因而1996-2009年間各類(lèi)完全碳排放強(qiáng)度下降最主要的原因是碳排放系數(shù)的下降,即節(jié)能減排技術(shù)的進(jìn)步,不管是對(duì)于哪類(lèi)完全碳排放強(qiáng)度,碳減排的成效都超過(guò)了技術(shù)結(jié)構(gòu)效應(yīng)、增加值系數(shù)效應(yīng)以及需求規(guī)模效應(yīng)之和;其次增加值系數(shù)效應(yīng)在中國(guó)入世前后變化較大,且其在出口產(chǎn)品中,單位產(chǎn)出的增加值不斷下降,從而促進(jìn)了出口的完全碳排放強(qiáng)度上升;同時(shí)可以發(fā)現(xiàn)各效應(yīng)在第三階段中表現(xiàn)均較為明顯,尤其是增加值系數(shù)效應(yīng),說(shuō)明中國(guó)入世后對(duì)各類(lèi)完全碳排放強(qiáng)度產(chǎn)生了較大的影響,因而其各影響因素也出現(xiàn)了明顯的變化;當(dāng)然也還需要注意到各影響因素在各類(lèi)完全碳排放強(qiáng)度中作用的差異性,如碳排放系數(shù)、技術(shù)結(jié)構(gòu)效應(yīng)和增加值系數(shù)效應(yīng)的變化在投資的完全碳排放強(qiáng)度中作用最大,而最終需求規(guī)模的變化在消費(fèi)的完全碳排放強(qiáng)度中作用是最大的。

4 結(jié)論與討論

本文通過(guò)對(duì)完全碳排放強(qiáng)度的分析得出:①在最終需求的視角下,最終需求模式的變化帶來(lái)完全碳排放強(qiáng)度的提高,但增量較小。在未來(lái)的低碳發(fā)展中應(yīng)集中于清潔需求模式的培養(yǎng),當(dāng)然,生產(chǎn)領(lǐng)域的節(jié)能工作仍不能被忽視。②消費(fèi)的完全碳排放強(qiáng)度在各年都表現(xiàn)為最低,且均低于

我國(guó)的完全碳排放強(qiáng)度,而出口的完全碳排放強(qiáng)度和投資的完全碳排放強(qiáng)度都比我國(guó)完全碳排放強(qiáng)度高,其中投資的完全碳排放強(qiáng)度是最高的。同時(shí)消費(fèi)對(duì)我國(guó)完全碳排

放強(qiáng)度變動(dòng)的貢獻(xiàn)率是最大的。因此,從促進(jìn)經(jīng)濟(jì)環(huán)境共同協(xié)調(diào)發(fā)展的角度來(lái)看,鼓勵(lì)居民和政府的消費(fèi)需求,并大力激發(fā)消費(fèi)潛力,是降低我國(guó)碳排放強(qiáng)度、實(shí)現(xiàn)低碳經(jīng)濟(jì)發(fā)展目標(biāo)的重大戰(zhàn)略方向。③各類(lèi)完全碳排放強(qiáng)度的減排路徑大體一致,但仍存在一定的偏向。即在各類(lèi)完全碳排放強(qiáng)度的變動(dòng)中,碳排放系數(shù)效應(yīng)為正,而技術(shù)結(jié)構(gòu)效應(yīng)、增加值系數(shù)效應(yīng)和最終需求效應(yīng)均為負(fù)。但是,碳排放系數(shù)、技術(shù)結(jié)構(gòu)效應(yīng)和增加值系數(shù)效應(yīng)的變化在投資的完全碳排放強(qiáng)度中作用較大,而最終需求規(guī)模的變化在消費(fèi)的完全碳排放強(qiáng)度中作用較大。④1996-2009年各類(lèi)完全碳排放強(qiáng)度都出現(xiàn)了大幅的下降,但其背后的驅(qū)動(dòng)

力具有明顯的分階段特征。2002-2004年投資和出口的完全碳排放強(qiáng)度變化促使了完全碳排放強(qiáng)度上升,而2004-2009年則對(duì)完全碳排放強(qiáng)度的下降有一定的正貢獻(xiàn)。入世以前增加值系數(shù)對(duì)各類(lèi)需求的完全碳排放強(qiáng)度下降的貢獻(xiàn)為正,而其后貢獻(xiàn)為負(fù)。其中,在2003-2007年投資和出口的完全碳排放強(qiáng)度變化中表現(xiàn)更為明顯。

無(wú)疑,降低碳排放強(qiáng)度是一項(xiàng)系統(tǒng)工程,應(yīng)尋求更加多樣化的措施強(qiáng)化減排效果,其中一條重要路徑是最終需求模式調(diào)整,包括擴(kuò)大內(nèi)需的比例,鼓勵(lì)居民和政府的消費(fèi)需求,降低出口和投資的中隱含碳,提高出口和投資中的增加值率等。不過(guò)值得注意的是,居民消費(fèi)結(jié)構(gòu)變動(dòng)中,家電和汽車(chē)等高能耗消費(fèi)品普及可能并不利于消費(fèi)的完全碳排放強(qiáng)度下降,需要予以一定程度的警惕。同時(shí)我國(guó)在實(shí)現(xiàn)碳排放強(qiáng)度承諾目標(biāo)以及十二五規(guī)劃目標(biāo)時(shí),技術(shù)進(jìn)步始終是控制碳排放強(qiáng)度最為直接和有利的政策措施。當(dāng)然我國(guó)也應(yīng)該積極探索其他有助于降低碳排放強(qiáng)度的方法,如提升清潔能源比重、改善最終需求的產(chǎn)業(yè)結(jié)構(gòu)等。

參考文獻(xiàn)(References)

[1]杜剛,孫作人,苗建軍.基于文獻(xiàn)計(jì)量的碳排放強(qiáng)度研究前沿理論綜述[J].經(jīng)濟(jì)學(xué)動(dòng)態(tài),2012,(4):88-91.[Du Gang, Sun Zuoren, Miao Jianjun. Frontier Theoretical Review of Carbon Intensity Based on Bibliometric[J]. Economic Perspectives, 2012, (4):88-91.]

[2]Ang B W, Zhang F Q. A Survey of Index Decomposition Analysis in Energy and Environmental Studies[J]. Energy, 2000, (12):1149-1176.

[3]Ang B W. Decomposition Analysis for Policymaking in Energy: Which Is the Preferred Method [J]. Energy, 2004, (9):1131-1139.

[4]Fan Ying, Liu Lancui, Wu Gang, et al. Changes in Carbon Intensity in China: Empirical Findings from 1980–2003 [J]. Ecological Economics, 2007, (62):683-691.

[5]Govinda R, Timilsina, Ashish Shrestha. Transport Sector CO2 Emissions Growth in Asia: Underlying Factors and Policy Options [J]. Energy Policy, 2009, (11):4523-4539.

[6]陳詩(shī)一.中國(guó)碳排放強(qiáng)度的波動(dòng)下降模式及經(jīng)濟(jì)解釋[J].世界經(jīng)濟(jì),2011,(4):124-143.[Chen Shiyi. Fluctuant Descent Mode of Carbon Intensity in China and Its Economic Interpretation [J]. The Journal of World Economy, 2011, (4):124-143.]

[7]王峰,馮根福,吳麗華.中國(guó)經(jīng)濟(jì)增長(zhǎng)中碳強(qiáng)度下降的省區(qū)貢獻(xiàn)分解[J].經(jīng)濟(jì)研究,2013,(8):143-155. [Wang Feng, Feng Genfu, Wu Lihua. Regional Contribution to the Decline of National Carbon Intensity in Chinas Economic Growth [J]. Economic Research Journal, 2013, (8):143-155.]

[8]李艷梅,付加鋒.中國(guó)出口貿(mào)易中隱含碳排放增長(zhǎng)的結(jié)構(gòu)分解分析[J].中國(guó)人口·資源與環(huán)境,2010,20(8):53-57. [Li Yanmei, Fu Jiafeng. Structural Decomposition Analysis on Carbon Emissions Growth Embodied in Exports in China [J]. China Population, Resources and Environment, 2010, 20(8):53-57.]

[9]郭朝先.中國(guó)二氧化碳排放增長(zhǎng)因素分析:基于SDA分解技術(shù)[J].中國(guó)工業(yè)經(jīng)濟(jì),2010,(12):47-56. [Guo Chaoxian. An Analysis of the Increase of CO2 Emission in China:Based on SDA Technique [J]. China Industrial Economics, 2010, (12):47-56.]

[10]姚亮,劉晶茹,王如松.中國(guó)城鄉(xiāng)居民消費(fèi)隱含的碳排放對(duì)比分析[J].中國(guó)人口·資源與環(huán)境,2011,21(4):25-29. [Yao Liang, Liu Jingru, Wang Rusong. Comparison and Analysis of Carbon Emissions Embodied in Household Consumption between Urban and Rural Area of China [J]. China Population, Resources and Environment, 2011, 21(4):25-29.]

[11]Zhang Y. Structural Decomposition Analysis of Sources of Decarbonizing Economic Development in China: 1992–2006 [J]. Ecological Economics, 2009, 68:2399-2405.

[12]張友國(guó).經(jīng)濟(jì)發(fā)展方式變化對(duì)中國(guó)碳排放強(qiáng)度的影響[J].經(jīng)濟(jì)研究,2010,(4):120-133. [Zhang Youguo. Economic Development Pattern Change Impact on Chinas Carbon Intensity [J]. Economic Research Journal, 2010, (4):120-133.]

[13]籍艷麗,郜元興.二氧化碳排放強(qiáng)度的實(shí)證研究[J].統(tǒng)計(jì)研究,2011,28(7):37-44. [Ji Yanli, Gao Yuanxing. An Empirical Study on Carbon Dioxide Emissions Intensity [J]. Statistical Research, 2011, 28(7):37-44.]

[14]付雪,王桂新,魏濤遠(yuǎn).上海碳排放強(qiáng)度結(jié)構(gòu)分解分析[J].資源科學(xué),2011,33(11):2124-2130. [Fu Xue, Wang Guixin, Wei Taoyuan. Structure Decomposition on Carbon Emission Intensity of Shanghai [J]. Resources Science, 2011, 33(11):2124-2130.]

[15]劉遵義,陳錫康,楊翠紅,等.非競(jìng)爭(zhēng)型投入占用產(chǎn)出模型及其應(yīng)用:中美貿(mào)易順差透視[J].中國(guó)社會(huì)科學(xué),2007,(5):91-103. [Lawrence J L, Chen Xikang, Yang Cuihong, et al. Inputoccupancyoutput Models of the Noncompetitive Type and Their Application:An Examination of the China—US Trade Surplus [J]. Social Sciences in China, 2007, (5):91-103.]

[16]蔣雪梅,劉軼芳.全球貿(mào)易隱含碳排放格局的變動(dòng)及其影響因素[J].統(tǒng)計(jì)研究,2013,30(9):29-36. [Jiang Xuemei, Liu Yifang. Research on the Pattern Change of Carbon Emission Embodied in International Trade and Its Determinants[J]. Statistical Research, 2013, 30(9):29-36.]

[17]Dietzenbacher E, Los B. Structural Decomposition Techniques: Sense and Sensitivity [J]. Economic Systems Research, 1998, (10):307-323.

[18]宋爽,樊秀峰.最終需求模式演變、產(chǎn)業(yè)結(jié)構(gòu)變遷與CO2排放:基于投入產(chǎn)出模型和SDA方法的分析[J].山西財(cái)經(jīng)大學(xué)學(xué)報(bào),2013,35(9):73-83. [Song Shuang, Fan Xiufeng. Evolution of Final Demand Pattern, Changes in Industrial Structure and CO2 Emission in China: Based on Inputoutput Model and SDA Method [J]. Journal of Shanxi Finance and Economics University, 2013, 35(9):73-83.]

[19]魯萬(wàn)波,仇婷婷,杜磊.中國(guó)不同經(jīng)濟(jì)增長(zhǎng)階段碳排放影響因素研究[J].經(jīng)濟(jì)研究, 2013,(4):106-118. [Lu Wanbo, Qiu Tingting, Du Lei. A Study on Influence Factors of Carbon Emissions under Different Economic Growth Stages in China [J]. Economic Research Journal, 2013, (4):106-118.]

[20]秦昌才,劉樹(shù)林.碳排放影響因素研究的現(xiàn)狀、比較與啟示[J].經(jīng)濟(jì)與管理評(píng)論,2012, (3):29-33.[Qin Changcai,Liu Shulin.Current Situation,Comparison and Enlightenment of the Study on the Influencing Factors of Carbon Emissions[J].Review of Economy and Management, 2012,(3):29-33.]

[21]包玉香.高效生態(tài)經(jīng)濟(jì)與低碳能力建設(shè)的耦合作用機(jī)制研究[J].山東師范大學(xué)學(xué)報(bào):人文社會(huì)科學(xué)版,2012,(2):86-93.[Bao Yuxiang.Study on the Coupling Mechanism Between High Efficient Ecological Economy and Capacity Building of Low Carbon Economy[J].Journal of Shangdong Normal University:Humanities and Social Sciences Edition,2012,(2):86-93.]

[22]張偉,孫燕玲,朱萌.區(qū)域性中心城市的碳排放測(cè)定及影響因素分析:以青島市為例[J].經(jīng)濟(jì)與管理評(píng)論,2012,(4):150-156.[Zhang Wei,Sun Yanling,Zhu Meng.The Carbon Emission Determination for Regional Central Cities and the Analysis of the Influencing Factors:Taking Qingdao as an Example[J].Review of Economy and Management,2012,(4):150-156.]

Analysis of the Change of Complete Carbon Intensity and Its Determinantsfrom the Perspective of Final Demand

XIAO Hao1,2 YANG Jiaheng1 JIANG Xuemei2

(1. School of Economics and Trade, Hunan University, Changsha Hunan 410079, China;2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract Different from former researches on carbon intensity, based on the links between supply and demand as well as that between output and value added, firstly this paper proposes such concepts as complete carbon intensity (CI) and its consumptionoriented complete carbon intensity (CCI), investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (XCI) from the perspective of final demand. By using Chinese noncompetitive inputoutput model during 1996-2009 merged from World InputOutput Database (WIOD), this paper then estimates all kinds of complete carbon intensities and decomposes the change rate of complete carbon intensity. Meanwhile, we use structural decomposition analysis (SDA) to decompose changes of all kinds of complete carbon intensities into four factors: direct carbon emission coefficient effect, input technology structure effect, value added coefficient effect and scale effect of final demand. The results are as follows: ① From 1996 to 2009, consumptionoriented complete carbon intensity is the lowest, and it has the greatest impact on complete carbon intensity(CI), which indicates the proportions of carbon emissions to value added embodied in consumption products is gradually optimized along the “intensive” path, while the growth modes of export and investment are relatively ‘extensive. ② Different complete carbon intensities are reduced almost in the same way. The coefficient of direct carbon emission is positive while the coefficient of input technology structure, valueadded coefficient and final demand are negative. It indicates that direct carbon emission coefficient is the main source of carbon intensity reduction, in which other factors do not play active roles. In particular, the fluctuation of investmentoriented complete carbon intensity (ICI) is mainly influenced by fluctuation of direct carbon emission, input technology structure and valueadded. On the contrary, changes in the scale of final demand impact consumptionoriented complete carbon intensity (CCI) greatly. ③ Various complete carbon intensities and their driving forces change in different time intervals. Fluctuation of investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (CCI) contribute to the growth of complete carbon intensity (CI) during 2002-2004 but promote the decrease of complete carbon intensity (CI) during 2004-2009. Before Chinas entry into WTO, changes in valueadded coefficient positively affect the decline of all final demands complete carbon intensities, but their effects turn to negative afterwards. Such phenomenon is mostly apparent for the changes in investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (ECI) from 2003 to 2007. In conclusion, reducing complete carbon intensity is a systematic project that calls for measures from all aspects. Carbon emission reduction technology is still the most direct and efficient measure, while readjusting demand structure is also a key point. It is necessary to reduce the carbon emissions embodied in export and investment while improve the value added rate in them. Nevertheless, we should also be vigilant about the adverse effects of changes in consumption structure, for example the popularity of high energy consumption products like cars.

Key words carbon emission; addedvalue; carbon intensity; final demand; structural decomposition analysis

[21]包玉香.高效生態(tài)經(jīng)濟(jì)與低碳能力建設(shè)的耦合作用機(jī)制研究[J].山東師范大學(xué)學(xué)報(bào):人文社會(huì)科學(xué)版,2012,(2):86-93.[Bao Yuxiang.Study on the Coupling Mechanism Between High Efficient Ecological Economy and Capacity Building of Low Carbon Economy[J].Journal of Shangdong Normal University:Humanities and Social Sciences Edition,2012,(2):86-93.]

[22]張偉,孫燕玲,朱萌.區(qū)域性中心城市的碳排放測(cè)定及影響因素分析:以青島市為例[J].經(jīng)濟(jì)與管理評(píng)論,2012,(4):150-156.[Zhang Wei,Sun Yanling,Zhu Meng.The Carbon Emission Determination for Regional Central Cities and the Analysis of the Influencing Factors:Taking Qingdao as an Example[J].Review of Economy and Management,2012,(4):150-156.]

Analysis of the Change of Complete Carbon Intensity and Its Determinantsfrom the Perspective of Final Demand

XIAO Hao1,2 YANG Jiaheng1 JIANG Xuemei2

(1. School of Economics and Trade, Hunan University, Changsha Hunan 410079, China;2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract Different from former researches on carbon intensity, based on the links between supply and demand as well as that between output and value added, firstly this paper proposes such concepts as complete carbon intensity (CI) and its consumptionoriented complete carbon intensity (CCI), investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (XCI) from the perspective of final demand. By using Chinese noncompetitive inputoutput model during 1996-2009 merged from World InputOutput Database (WIOD), this paper then estimates all kinds of complete carbon intensities and decomposes the change rate of complete carbon intensity. Meanwhile, we use structural decomposition analysis (SDA) to decompose changes of all kinds of complete carbon intensities into four factors: direct carbon emission coefficient effect, input technology structure effect, value added coefficient effect and scale effect of final demand. The results are as follows: ① From 1996 to 2009, consumptionoriented complete carbon intensity is the lowest, and it has the greatest impact on complete carbon intensity(CI), which indicates the proportions of carbon emissions to value added embodied in consumption products is gradually optimized along the “intensive” path, while the growth modes of export and investment are relatively ‘extensive. ② Different complete carbon intensities are reduced almost in the same way. The coefficient of direct carbon emission is positive while the coefficient of input technology structure, valueadded coefficient and final demand are negative. It indicates that direct carbon emission coefficient is the main source of carbon intensity reduction, in which other factors do not play active roles. In particular, the fluctuation of investmentoriented complete carbon intensity (ICI) is mainly influenced by fluctuation of direct carbon emission, input technology structure and valueadded. On the contrary, changes in the scale of final demand impact consumptionoriented complete carbon intensity (CCI) greatly. ③ Various complete carbon intensities and their driving forces change in different time intervals. Fluctuation of investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (CCI) contribute to the growth of complete carbon intensity (CI) during 2002-2004 but promote the decrease of complete carbon intensity (CI) during 2004-2009. Before Chinas entry into WTO, changes in valueadded coefficient positively affect the decline of all final demands complete carbon intensities, but their effects turn to negative afterwards. Such phenomenon is mostly apparent for the changes in investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (ECI) from 2003 to 2007. In conclusion, reducing complete carbon intensity is a systematic project that calls for measures from all aspects. Carbon emission reduction technology is still the most direct and efficient measure, while readjusting demand structure is also a key point. It is necessary to reduce the carbon emissions embodied in export and investment while improve the value added rate in them. Nevertheless, we should also be vigilant about the adverse effects of changes in consumption structure, for example the popularity of high energy consumption products like cars.

Key words carbon emission; addedvalue; carbon intensity; final demand; structural decomposition analysis

[21]包玉香.高效生態(tài)經(jīng)濟(jì)與低碳能力建設(shè)的耦合作用機(jī)制研究[J].山東師范大學(xué)學(xué)報(bào):人文社會(huì)科學(xué)版,2012,(2):86-93.[Bao Yuxiang.Study on the Coupling Mechanism Between High Efficient Ecological Economy and Capacity Building of Low Carbon Economy[J].Journal of Shangdong Normal University:Humanities and Social Sciences Edition,2012,(2):86-93.]

[22]張偉,孫燕玲,朱萌.區(qū)域性中心城市的碳排放測(cè)定及影響因素分析:以青島市為例[J].經(jīng)濟(jì)與管理評(píng)論,2012,(4):150-156.[Zhang Wei,Sun Yanling,Zhu Meng.The Carbon Emission Determination for Regional Central Cities and the Analysis of the Influencing Factors:Taking Qingdao as an Example[J].Review of Economy and Management,2012,(4):150-156.]

Analysis of the Change of Complete Carbon Intensity and Its Determinantsfrom the Perspective of Final Demand

XIAO Hao1,2 YANG Jiaheng1 JIANG Xuemei2

(1. School of Economics and Trade, Hunan University, Changsha Hunan 410079, China;2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract Different from former researches on carbon intensity, based on the links between supply and demand as well as that between output and value added, firstly this paper proposes such concepts as complete carbon intensity (CI) and its consumptionoriented complete carbon intensity (CCI), investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (XCI) from the perspective of final demand. By using Chinese noncompetitive inputoutput model during 1996-2009 merged from World InputOutput Database (WIOD), this paper then estimates all kinds of complete carbon intensities and decomposes the change rate of complete carbon intensity. Meanwhile, we use structural decomposition analysis (SDA) to decompose changes of all kinds of complete carbon intensities into four factors: direct carbon emission coefficient effect, input technology structure effect, value added coefficient effect and scale effect of final demand. The results are as follows: ① From 1996 to 2009, consumptionoriented complete carbon intensity is the lowest, and it has the greatest impact on complete carbon intensity(CI), which indicates the proportions of carbon emissions to value added embodied in consumption products is gradually optimized along the “intensive” path, while the growth modes of export and investment are relatively ‘extensive. ② Different complete carbon intensities are reduced almost in the same way. The coefficient of direct carbon emission is positive while the coefficient of input technology structure, valueadded coefficient and final demand are negative. It indicates that direct carbon emission coefficient is the main source of carbon intensity reduction, in which other factors do not play active roles. In particular, the fluctuation of investmentoriented complete carbon intensity (ICI) is mainly influenced by fluctuation of direct carbon emission, input technology structure and valueadded. On the contrary, changes in the scale of final demand impact consumptionoriented complete carbon intensity (CCI) greatly. ③ Various complete carbon intensities and their driving forces change in different time intervals. Fluctuation of investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (CCI) contribute to the growth of complete carbon intensity (CI) during 2002-2004 but promote the decrease of complete carbon intensity (CI) during 2004-2009. Before Chinas entry into WTO, changes in valueadded coefficient positively affect the decline of all final demands complete carbon intensities, but their effects turn to negative afterwards. Such phenomenon is mostly apparent for the changes in investmentoriented complete carbon intensity (ICI) and exportoriented complete carbon intensity (ECI) from 2003 to 2007. In conclusion, reducing complete carbon intensity is a systematic project that calls for measures from all aspects. Carbon emission reduction technology is still the most direct and efficient measure, while readjusting demand structure is also a key point. It is necessary to reduce the carbon emissions embodied in export and investment while improve the value added rate in them. Nevertheless, we should also be vigilant about the adverse effects of changes in consumption structure, for example the popularity of high energy consumption products like cars.

Key words carbon emission; addedvalue; carbon intensity; final demand; structural decomposition analysis

猜你喜歡
碳排放增加值
一季度國(guó)民經(jīng)濟(jì)開(kāi)局總體平穩(wěn)
規(guī)模以上工業(yè)增加值增長(zhǎng)5.5%
地區(qū)生產(chǎn)總值同比增長(zhǎng)6.7%
濟(jì)南市公共交通低碳發(fā)展路徑探索
新疆碳排放與經(jīng)濟(jì)增長(zhǎng)實(shí)證研究
新疆碳排放與經(jīng)濟(jì)增長(zhǎng)實(shí)證研究
寧夏碳排放與經(jīng)濟(jì)增長(zhǎng)的脫鉤關(guān)系研究
重慶市碳排放現(xiàn)狀及低碳發(fā)展路徑分析
碳排放、產(chǎn)業(yè)結(jié)構(gòu)與經(jīng)濟(jì)增長(zhǎng)的關(guān)系研究
國(guó)家統(tǒng)計(jì)局:上半年GDP同比增長(zhǎng)7.0%
苍山县| 休宁县| 伽师县| 龙胜| 页游| 玉树县| 绥江县| 新绛县| 商洛市| 莆田市| 英德市| 邮箱| 驻马店市| 安图县| 朝阳区| 定远县| 仪陇县| 隆德县| 凤山市| 台中县| 金平| 白河县| 嘉黎县| 和政县| 宁武县| 西青区| 瓦房店市| 阿拉善左旗| 绩溪县| 武义县| 东台市| 庄浪县| 洛宁县| 武川县| 和硕县| 周宁县| 寿阳县| 彭泽县| 西峡县| 高青县| 高密市|