汪夢甫+汪幟輝+唐毅
文章編號:16742974(2014)06000907
收稿日期:20130902
基金項目:國家自然科學基金資助項目(50978091,51278181);教育部博士學科點專項科研基金資助項目(20120161110022)
作者簡介:汪夢甫(1965-),男,湖北通城人,湖南大學教授,博士生導師
通訊聯系人,E-mail:wangmengfu@126.com
摘 要:將選擇的746條各國強震記錄按照我國建筑抗震設計規(guī)范中的規(guī)定進行場地分類.按照最新的識別近場強速度脈沖地震記錄的定量方法,將選擇的地震記錄劃分為中遠地震、近震及近場強脈沖地震記錄.利用這些強震記錄, 統(tǒng)計得到了近場強脈沖地震對應Ⅰ, Ⅱ, Ⅲ, Ⅳ四類場地的等延性位移比譜、等強度位移比譜的計算公式,并由此研究了場地條件及各種地震動參數對等延性位移比譜、等強度位移比譜的影響.結果表明:近場地震動的脈沖作用在中短周期段[0.3 s,5 s]對等延性位移比譜的影響較大,近場地震動的脈沖作用在中短周期段[0.5 s,3 s]對等強度位移比譜的影響較大且部分可達80%以上,場地條件對影響周期段的范圍有重要影響;峰值地面速度與峰值地面加速度比(PGV/PGA)是影響近場地震動位移比譜最大的參數.
關鍵詞:近場地震動;位移比譜;地震動參數;脈沖強度指數;地震
中圖分類號:P315.95 文獻標識碼:A
Influence of Nearfault Pulsetype Ground Motions
on Inelastic Displacement Ratio Spectra
WANG Mengfu, WANG Zhihui, TANG Yi
(College of Civil Engineering, Hunan Univ, Changsha, Hunan 410082, China)
Abstract:Based on the classified site criterion in current seismic design code of building (GB 50011-2010) and quantitative classification scheme of nearfault ground motions proposed by Baker, the sites of 746 accelerograms from the strongmotion databank of some countries were classified as four site classes, and the 746 accelerograms were classified as farfield, nearfault and nearfault pulsetype ground motion accelerograms. Using the selected accelerograms, the empirical equations of nearfault pulsetype ground motion corresponding to four kinds of sites were presented for the inelastic displacement ratio spectra of constant ductility and constant yielding strength. The effects of site condition and different ground motion parameters on inelastic displacement ratio spectra were also evaluated. It is concluded that the influences of nearfault pulsetype ground motion on displacement ratio spectra of constant ductility and constant yielding strength are significant at periods [0.3 s,5 s] and periods [0.5 s,3 s] respectively, and site condition can control the period ranges of the above significant effect. PGV/PGA can provide the largest influence on displacement ratio spectra for nearfield ground motions.
Key words: nearfault pulsetype ground motions; inelastic displacement response spectra; ground motion parameter; pulse indicator; earthquakes
應用彈性分析結果估計最大非彈性位移的研究已有多年.Veletsos等[1-2]通過對單自由度體系在簡單脈沖與3個地震地面運動作用下的彈性與非彈性變形計算,率先得到了在低頻區(qū)體系最大非彈性變形與最大彈性變形相同的所謂“等位移規(guī)則”.Newmark等[3-5]進一步完善了中頻區(qū)、高頻區(qū)體系最大非彈性變形與最大彈性變形的關系,建立了較為經典的應用彈性分析結果估計最大非彈性位移的簡化方法.由于工程界普遍采用基于力的設計方法,在20世紀70年代后,很少有人研究如何改善應用彈性分析結果估計最大非彈性位移的簡化方法.
隨著基于位移的結構抗震設計的推廣與應用,非彈性位移的計算顯得十分重要.由于應用非彈性位移比譜從最大彈性位移估計最大非彈性位移簡單、有效,從2000年開始,國內外研究人員對非彈性位移比譜進行了大量研究[6-11],取得了一些實用的重要成果,并已寫入一些國家的抗震設計規(guī)范[12].
隨著地震記錄數量的大幅增加,研究人員[13-16]從獲得的記錄分析發(fā)現,近場地震記錄的動力脈沖效應顯著,對結構震害形成影響較大,雖然幾次地震均為中等強度的地震,但對建筑結構和橋梁造成極大破壞.于是,近場地震速度脈沖效應的研究逐步開展起來,速度脈沖對結構抗震設計的重要性逐漸為工程研究者關注.為了在結構抗震設計中考慮近場強脈沖影響,Baez等[17]比較了82條近場地震記錄(斷層距R≤15 km,震級M≥5.6,原始記錄PGA≥0.2 g ,PGV≥20 cm/s)與218條遠場地震記錄的等延性非彈性位移比譜(自振周期0.0~3.0 s),結果表明:近場地震動的脈沖作用在0.1~1.3 s的周期段對等延性非彈性位移比譜的影響最大,在此周期段,等延性非彈性位移比譜增大了近22%左右;通過研究不同地震動參數對近場位移比譜的影響發(fā)現,峰值地面速度與最大增量地面加速度對近場地震動非彈性位移比譜有重要影響.翟長海等[18-19]比較了137條近場地震記錄(斷層距R≤20 km,震級M≥5.6,原始記錄速度時程中含有明顯的脈沖)與476條遠場地震記錄的等延性非彈性位移比譜(自振周期0.0~6.0 s),得到了近場地震動的脈沖作用在0.2~1.5 s的周期段對非彈性位移比譜的影響最大的結果,這與Baez等人的研究結論幾乎相同.王京哲等[20]對3條Chichi地震的脈沖型近場地震記錄和1條Imperial Valley地震的一般記錄的響應特點作了簡單分析,得到的近場地震速度脈沖下的反應譜加速度敏感區(qū)明顯較寬.上述研究存在的主要問題在于缺乏判斷脈沖的定量指標,似乎近場地震動就是近場強速度脈沖地震動,由此導致研究結論出現較大差異,在一定程度上阻礙了在概率地震危險性分析與工程建筑規(guī)范中考慮近場強脈沖影響.
近年來,美國斯坦福大學的Baker[21]將小波分析與EMD分解相結合,提出在近場地震動中識別近場強速度脈沖地震記錄的脈沖強度指數(Is),這種識別近場強速度脈沖地震記錄的定量方法客觀,已開始在研究中得到應用.Chioccarelli等[22]利用美國NGA(Next Generation Attenuation)地震記錄庫的地震記錄,按照Baker[21]的識別近場強速度脈沖地震記錄的定量方法進行分類,計算得到了近場脈沖型地震作用時等強度非彈性位移比譜的一些特征,并應用LAquila地震記錄進行了映證.
RuizGarcìa[23]進一步完善了Chioccarelli等[22]的工作,得到了近場脈沖型地震作用時非彈性位移比譜與強度折減系數、周期比(T/Tg)(T,Tg分別代表結構自振周期、地震動卓越周期)的統(tǒng)計公式.Iervolino等[24]改進了RuizGarcìa[23]的工作,得到了近場脈沖型地震作用時非彈性位移比譜與強度折減系數、周期比(T/Tp)(T,Tp分別代表結構自振周期、脈沖周期)的統(tǒng)計公式.
為了推動在抗震設計中考慮近場強脈沖影響,為在我國實施基于位移的結構抗震設計提供知識儲備,本文將選擇的746條各國強震記錄按照我國建筑抗震設計規(guī)范(GB 50011—2010)中的規(guī)定[25]進行場地分類.按照最新的識別近場強速度脈沖地震記錄的定量方法,將選擇的地震記錄劃分為中遠地震、近震及近場強脈沖地震記錄.利用這些強震記錄,統(tǒng)計得到了近場強脈沖地震對應Ⅰ, Ⅱ, Ⅲ, Ⅳ四類場地,阻尼比為5%,自振周期從0.05 s到6.0 s的等延性位移比譜、等強度位移比譜的計算公式.通過與遠震、近場脈沖地震相應等延性位移比譜、等強度位移比譜的比較,重點探討了近場強脈沖作用對非彈性位移比譜的影響.
1 地震記錄的選取
1.1 場地類別
不同國家的抗震規(guī)范對場地類別給出了不同的分類標準.美國USGS的分類標準是根據場地30 m深度范圍以內的平均剪切波速的大小將場地劃分為A, B, C, D, E, F六類.我國現行的建筑抗震設計規(guī)范(GB 50011—2010)根據土層等效剪切波速和場地覆蓋層厚度將場地類別分為Ⅰ,Ⅱ,Ⅲ,Ⅳ四類.為了推動在抗震設計中考慮近場強脈沖影響,為在我國實施基于位移的結構抗震設計提供知識儲備,本文將所選的746條強震記錄按我國設計規(guī)范分類.
1.2 中遠地震、近震及近場強脈沖地震
本文首先利用已有的50條地震波和從美國Berkeley大學地震工程研究中心網站上下載的272條地震波加速度記錄(共計322條);再選用近斷層速度脈沖424條和強脈沖156條.其中近斷層速度脈沖滿足斷層距R≤60 km,震級M≥4.5,原始記錄PGA≥0.1 g ,PGV≥5.0 cm/s,PGD≥0.5 cm,記錄時間≥10 s;并采用Baker[21]的分析程序進行脈沖分類,要求脈沖強度指數0.5≤Is≤1.0;對于強脈沖:斷層距≤30 km ,M≥5.5級,PGA≥0.1 g,PGV≥30 cm/s,脈沖強度指數0.85≤Is≤1.0.在計算中,各地震波記錄峰值加速度調整為0.4 g.
2 結構計算中的相關參數與概念
2.1 結構參數的選取
影響結構動力特性的主要結構參數一般有:恢復力特性(模型)、結構周期及阻尼.
鑒于雙線性恢復力模型具有形式簡單、計算方便但同時又能反映結構彈塑性滯回本質的特點,本文在計算非彈性位移比譜時,假定結構的恢復力特性為雙線性恢復力模型, 雙折線恢復力模型的第二剛度取為0.02倍初始剛度.在計算非彈性位移比譜時,單自由度系統(tǒng)的自振周期從0.08~6 s均等取值;結構的阻尼比取為0.05.
2.2 幾個相關概念
延性系數(μ)反映的是結構在彈塑性階段的變形能力,其具體定義為結構的最大彈塑性位移(xpmax)與結構的屈服位移(xy)之間的比值,即
μ=xpmax xy.(1)
屈服強度系數(ξy)的定義有很多種,本文采取的定義是ξy為結構的屈服強度(Fy)與結構保持完全彈性所需要的最低強度(Fe)之間的比值,即
ξy=FyFe.(2)
表示非彈性結構在地震動作用下最大相對位移反應xpmax與相應彈性結構(具有相同初始周期)在同一地震作用下的最大相對位移反應xemax的比隨結構周期(T)變化的曲線稱為非彈性位移比譜,即
Cμ或CR=SDpSDe=xpmax xemax .(3)
等延性位移比譜(Cμ)是指結構在各周期時的延性系數都相同,計算結構在該指定延性系數下的位移比譜;等強度位移比譜(CR )是指結構在各周期時的屈服強度都相同,計算結構在該指定屈服強度下的位移比譜.
本文取延性系數μ=2, 3, 4, 5, 6和8等6種延性計算等延性位移比譜;取ξy=0.5, 0.333, 0.25, 0.2, 0.167五種情況計算等強度位移比譜.
3 近斷層強脈沖下等延性位移比譜
本文對近斷層強脈沖下的等延性位移比譜進行擬合.擬合式如下:
Cμ=(aTb)-c+d. (4)
參數a, b, c, d采用三次多項式擬合,與延性μ有關,即:P(μ)=a1μ3+a2μ2+a3μ+a4.參數取值見表1.
表1 等延性位移比譜擬合公式中的參數
Tab.1 The regression coefficients in equation (4)
場地類別
參數
參數
a 1
a 2
a 3
a 4
Ⅰ類場地
a
0.931 4
-14.324 0
64.121 0
-68.557 0
b
0.066 4
-0.988 3
4.363 4
-4.655 0
c
-0.194 6
2.787 0
-11.601 0
15.120 0
d
-0.001 1
0.012 8
-0.033 6
0.973 8
Ⅱ類場地
a
-0.076 2
1.033 9
-4.115 9
6.843 3
b
-0.037 0
0.494 6
-1.852 6
2.238 1
c
0.143 8
-1.775 3
6.215 0
-3.723 7
d
0.001 5
-0.030 1
0.147 9
0.693 8
Ⅲ類場地
a
0.013 1
-0.107 4
-0.023 4
2.307 2
b
0.057 3
-0.687 5
2.509 0
-2.525 0
c
-0.083 9
0.982 1
-3.234 8
6.204 7
d
0.001 6
-0.029 2
0.116 8
0.745 3
Ⅳ類場地
a
0.571 6
-9.154 5
43.496 0
-53.811 0
b
0.109 1
-1.767 9
8.539 0
-10.838 0
c
-0.287 9
5.175 6
-29.158 0
52.512 0
d
0.001 8
-0.027 8
0.068 9
0.792 3
4 近斷層強脈沖下等強度位移比譜
本文對近斷層強脈沖下的等強度位移比譜進行擬合.擬合式如下:
CR=(aTb)-c+1. (5)
參數a, b, c與ξy有關,用式:P(ξy)=a1ln(ξy)+a2ξy+a3ξy3+a4ξy/ln(ξy)擬合.擬合參數取值見表2.
表2 等強度位移比譜擬合公式中的系數
Tab.2 The regression coefficients in equation (5)
場地類別
參數
參數
a 1
a 2
a 3
a 4
Ⅰ類場地
Ⅱ類場地
Ⅲ類場地
Ⅳ類場地
a
b
c
a
b
c
a
b
c
a
b
c
9.930
2.241
-9.934
0.782 4
0.986
-24.908
-1.524 4
-1.683
-67.53
0.078 2
0.722 5
-12.936
799.346
163.416
-406.418
102.117
88.913
-1 901.977
-88.841
-144.94
-6966.586
35.487
56.362
-427.504
5 583.784
1 120.601
-2735.44
734.746
632.977
-13 888.96
-635.851
-1 034.84
-51187.76
235.282
389.028
-2 787.18
1 507.64
304.612
-749.45
193.105
169.398
-3 704.812
-172.328
-278.53
-13 643.56
63.309
105.419
-772.546
5 近場脈沖型地震對等延性位移比譜的影響
由圖1~圖4可以看到近場強脈沖下的譜值>近場>遠場,在短周期段和大于5 s后影響不是很大,且隨著延性的增大而增大.近場脈沖作用下峰值
T/s(a) 近場、遠場位移比譜的比較
T/s (b) 近場強脈沖、遠場位移比譜的比較
圖1Ⅰ類場地不同地震動位移比譜的比較
Fig.1Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅰ
點和影響范圍隨著場地特征周期的增大而增大;Ⅰ類場地、Ⅱ類場地在0.32~3.5 s,Ⅲ類場地在0.4~4 s,Ⅳ類場地在0.5~5 s周期段對位移比譜產生較大影響;影響大部分在20%以下.近場強脈沖作用下μ≥4比值為20%,μ≥6后高達30%以上.
近場地震動普遍擁有較高的PGV/PGA值,也就是有較寬的加速度敏感區(qū),因此較高的PGV/PGA值可能會對結構的非彈性位移比譜產生較大的影響.所以本文將所有地震動按PGV/PGA值分為了2組,大于等于0.2的地震動為第一組,小于0.2的地震動作為第二組,以此來考察PGV/PGA影響的大小.為考察PGV的影響,按PGV≥50 cm/s和PGV<50 cm/s分成2組.
T/s(a) 近場、遠場位移比譜的比較
T/s (b) 近場強脈沖、遠場位移比譜的比較
圖2Ⅱ類場地不同地震動位移比譜的比較
Fig.2 Comparison of different displacement ratiospectrum
of constant ductility for site conditionⅡ
T/s(a) 近場、遠場位移比譜的比較
T/s (b) 近場強脈沖、遠場位移比譜的比較
圖3 Ⅲ類場地不同地震動位移比譜的比較
Fig.3 Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅲ
T/s(a) 近場、遠場位移比譜的比較
T/s (b) 近場強脈沖、遠場位移比譜的比較
圖4 Ⅳ類場地不同地震動位移比譜的比較
Fig.4 Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅳ
由圖5可知,PGV/PGA≥0.2的位移比譜在0~4.5 s范圍內均高于PGV/PGA<0.2的位移比譜,其影響隨著延性的增大而增大,μ≥6后在1~3 s范圍內高達40%以上,部分達到60%以上,可見PGV/PGA值對近場地震動位移比譜的影響很大.PGV的影響相對要小,PGV≥50 cm/s的值在0~4.0 s范圍內均高于PGV<50 cm/s的值,μ<6時影響在10%左右,只在短周期內達到10%以上,對長周期影響不大;μ≥6后影響才達到20%左右,且只在小于1 s的范圍內.
T/s(a)PGV/PGA值對位移比譜的影響
T/s(b) PGV值對位移比譜的影響
圖5 PGV/PGA值及PGV值的影響
Fig.5 Effect of PGV/PGA and PGV
on displacement ratio of constant ductility
6 近場脈沖型地震對等強度位移比譜的影響
由圖6可以直觀地看出:近場強脈沖作用下的等強度位移比譜在中短周期段內要高一些,近場強脈沖的影響隨著ξy的減小而增大,部分可達80%以上;影響范圍隨著四類場地而增大,Ⅳ類場地可達整個周期段;峰值點所對應的周期點和平臺段隨著場地特征周期的增大而增大.
由圖7可以看到PGV/PGA值的影響很大,隨著ξy的減小而增大,最高達150%左右,影響范圍也很廣,大約為0~5 s.PGV的影響相對要小一些,影響范圍只有0~1.8 s;隨著ξy的減小稍有增大,當ξy<0.333后,影響基本一致.
T/s(a) Ⅰ類場地
T/s(b) Ⅱ類場地
T/s (c) Ⅲ類場地
T/s (d) Ⅳ類場地
圖6 不同場地地震動位移比譜的比較
Fig.6Comparison of different displacement ratio
spectrum of constant yielding strength for site condition
T/s(a)PGV/PGA值對位移比譜的影響
T/s(b) PGV值對位移比譜的影響
圖7 PGV/PGA值及PGV值的影響的比較
Fig.7Effect of PGV/PGA and PGV
on displacement ratio of constant yielding strength
7 結 論
1) 本文將選擇的746條各國強震記錄按照我國建筑抗震設計規(guī)范中的規(guī)定進行場地分類.按照最新的識別近場強速度脈沖地震記錄的定量方法,將選擇的地震記錄劃分為中遠地震、近震及近場強脈沖地震記錄.利用這些強震記錄,統(tǒng)計得到了近場強脈沖地震對應Ⅰ, Ⅱ, Ⅲ, Ⅳ四類場地,阻尼比為5%,自振周期從0.05 s到6.0 s的等延性位移比譜、等強度位移比譜的計算公式.
2) 近場脈沖作用下等延性位移比譜峰值點和影響范圍隨著場地特征周期的增大而增大;Ⅰ類場地、Ⅱ類場地在0.32~3.5 s,Ⅲ類場地在0.4~4 s,Ⅳ類場地在0.5~5 s周期段對等延性位移比譜產生較大影響;影響大部分在20%以下.近場強脈沖作用下μ≥4比值為20%,μ≥6后高達30%以上.
3) 近場強脈沖作用下的等強度位移比譜在中短周期段內要高一些,近場強脈沖的影響隨著ξy的減小而增大,部分可達80%以上;影響范圍隨著四類場地而增大,Ⅳ類場地可達整個周期段;峰值點所對應的周期點和平臺段隨著場地特征周期的增大而增大.
4) PGV/PGA≥0.2的等延性位移比譜在0~4.5 s范圍內均高于PGV/PGA<0.2的位移比譜,其影響隨著延性的增大而增大,μ≥6后在1~3 s范圍內高達40%以上,部分達到60%以上.PGV≥50 cm/s的等延性位移比譜值在0~4.0 s范圍內均高
于PGV<50 cm/s的值,μ<6時影響在10%左右,只在短周期內達到10%以上,對長周期影響不大;μ≥6后影響才達到20%左右,且只在小于1 s的范圍內.
5) PGV/PGA值對等強度位移比譜的影響隨著ξy的減小而增大,最高達150%左右,影響范圍也很廣,大約為0~5 s.PGV的影響相對要小一些,影響范圍只有0~1.8 s;隨著ξy的減小稍有增大,當ξy<0.333后,影響基本一致.
參考文獻
[1] VELETSOS A S, NEWMARK N M. Effect of inelastic behavior on the response of simple systems to earthquake motions[C]// Proceedings of the 2th World Conference on Earthquake Engineering. Tokyo and Kyoto, Japan, 1960: 895-912.
[2] VELETSOS A S, NEWMARK N M, CHEPALATI C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motion[C]//Proceedings of the 3th WCEE. New Zealand, 1965: 663-682.
[3] NEWMARK N M, HALL W J. Procedures and criteria for earthquake resistant design[R]. Building Research Series No. 46. Washington, DC: National Bureau of Standards, Dept of Commerce, 1973:209-236.
[4] NEMARK N M, RIDDELL R A. Statistical study of inelastic response spectra[C]//Proceedings of 2nd US National Conference on Earthquake Engineering. Stanford, US, 1979: 6-12.
[5] NEMARK N M, HALL W J. Earthquake spectra and design [M]. Berkeley, California: EERI ,1982.
[6] MIRANDA E. Inelastic displacement ratios for structures on firm sites [J]. Journal of Structural Engineering, 2000, 126(10):1150-1159.
[7] RUIZGARCA J, MIRANDA E. Inelastic displacement ratios for evaluation of existing structures [J]. Earthquake Engineering and Structural Dynamics, 2003, 32(8):1237-1258.
[8] RUIZGARCA J, MIRANDA E. Inelastic displacement ratios for evaluation of structures built on soft soil sites [J]. Earthquake Engineering and Structural Dynamics, 2006,35(6):679-694.
[9] 肖明葵.抗震結構的彈塑性位移譜[J]. 重慶建筑大學學報,2000, 22(S1): 34-40.
XIAO Mingkui. The response spectrum of elastoplastic displacement for seismic structures [J]. Journal of Chongqing Jianzhu University,2000, 22(S1):34-40. (In Chinese)
[10]肖明葵,白紹良.抗震結構的彈塑性位移譜[J].重慶大學學報,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]呂西林,周定松.考慮場地類別與設計分組的延性需求譜和彈塑性位移反應譜[J].地震工程與工程振動,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟長海,李爽,謝禮立, 等.近場脈沖型地震動位移比譜特征研究[J].土木工程學報,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近場地震速度脈沖下的反應譜加速度敏感區(qū)[J]. 中國鐵道科學, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震設計規(guī)范[S].北京:中國建筑工業(yè)出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)
[10]肖明葵,白紹良.抗震結構的彈塑性位移譜[J].重慶大學學報,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]呂西林,周定松.考慮場地類別與設計分組的延性需求譜和彈塑性位移反應譜[J].地震工程與工程振動,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟長海,李爽,謝禮立, 等.近場脈沖型地震動位移比譜特征研究[J].土木工程學報,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近場地震速度脈沖下的反應譜加速度敏感區(qū)[J]. 中國鐵道科學, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震設計規(guī)范[S].北京:中國建筑工業(yè)出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)
[10]肖明葵,白紹良.抗震結構的彈塑性位移譜[J].重慶大學學報,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]呂西林,周定松.考慮場地類別與設計分組的延性需求譜和彈塑性位移反應譜[J].地震工程與工程振動,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟長海,李爽,謝禮立, 等.近場脈沖型地震動位移比譜特征研究[J].土木工程學報,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近場地震速度脈沖下的反應譜加速度敏感區(qū)[J]. 中國鐵道科學, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震設計規(guī)范[S].北京:中國建筑工業(yè)出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)