付 東,張 盼,杜磊霞
(華北電力大學(xué) 環(huán)境科學(xué)與工程學(xué)院,河北 保定 071003)
工業(yè)生產(chǎn)及燃煤鍋爐大量排放的CO2已嚴(yán)重影響了環(huán)境保護(hù)和國民經(jīng)濟(jì)的可持續(xù)發(fā)展。為了應(yīng)對CO2的減排壓力,發(fā)展技術(shù)上可行、經(jīng)濟(jì)上可承受的煙氣中CO2減排方法,已引起廣泛關(guān)注。在眾多的CO2捕集方法中,醇胺吸收法[1~6]具有技術(shù)成熟、吸收量大、操作成本較低等優(yōu)點(diǎn),適宜大規(guī)模商業(yè)化應(yīng)用,特別是在天然氣和煉廠氣CO2分離方面,醇胺法處于主導(dǎo)地位。隨著華能北京熱電廠和華能上海石洞口第二電廠CO2捕集示范工程的展開,在火電廠CO2減排領(lǐng)域,醇胺吸收法也將占據(jù)舉足輕重的地位。
因醇胺水溶液吸收CO2后易腐蝕設(shè)備,CO2捕集過程需嚴(yán)格控制水溶液中醇胺的質(zhì)量分率。如以乙醇胺 (Monoethanolamine,MEA)水溶液為吸收劑時(shí),MEA的質(zhì)量分率不超過30%,以避免嚴(yán)重的腐蝕。但醇胺質(zhì)量分率較低時(shí),溶液中大量的水分導(dǎo)致吸收容量較小、高溫再生時(shí)加熱蒸汽消耗量巨大。為了降低操作成本,常使用復(fù)配醇胺水溶液作為吸收劑,即以吸收能力強(qiáng)且腐蝕性較小的 N-甲基二乙醇胺 (N-methyldiethanolamine,MDEA)或2-氨基-2-甲基-1-丙醇 (2-Amino-2-methyl-1-propanol,AMP)與吸收速率較快的MEA、二乙醇胺 (diethanolamine,DEA)或哌嗪(Piperazine,PZ)復(fù)配,以MDEA或AMP為吸收劑主體,以MEA,DEA或PZ為促進(jìn)劑,溶液中各種醇胺的總質(zhì)量分率不超過50%。Chakrvarty[2],Kohl和 Nielsen 等[3]實(shí)驗(yàn)驗(yàn)證了 MDEA-MEA及MDEA-DEA復(fù)配醇胺水溶液對CO2的吸收效果;Praxair公司采用MDEA-MEA復(fù)配醇胺水溶液作為吸收劑,當(dāng)MEA質(zhì)量分率介于10%~20%之間時(shí),既有效地提高了吸收速率和吸收容量,又可降低設(shè)備腐蝕,減少加熱蒸汽量。但吸收劑溶液中水分仍在50%左右,富液再生和貧液冷卻過程的能耗仍居高不下,開發(fā)新型吸收劑以進(jìn)一步節(jié)能降耗,尚有較大的拓展空間。
近年來,離子液體 (Ionic liquids,ILs)吸收CO2的研究已引起廣泛的關(guān)注[7~11]。與普通 ILs對CO2的物理吸收過程不同,功能型離子液體(Functionalized ionic liquids,F(xiàn)ILs)[12]通過化學(xué)反應(yīng)吸收CO2,具有吸收速率快和吸收容量大的特點(diǎn);同時(shí)由于FILs具有性能穩(wěn)定、蒸汽壓極低、再生溫度低和無腐蝕等特點(diǎn),與常用的MEA和MDEA等傳統(tǒng)醇胺吸收劑相比有較強(qiáng)的優(yōu)勢。目前,CO2在FILs及醇胺-FILs復(fù)配溶液中的溶解度和吸收動(dòng)力學(xué)研究已有大量報(bào)道[13~23]。研究結(jié)果均表明,F(xiàn)ILs可顯著改善MEA和MDEA等傳統(tǒng)醇胺水溶液對CO2的吸收效果,并降低再生溫度。
在眾多的FILS中,氨基酸離子液體 (amino acid ionic liquid,AAIL)在常壓下即對CO2具有較大的吸收容量和較高的吸收速率,同時(shí)具有原料易得、制備過程穩(wěn)定、生產(chǎn)成本低和產(chǎn)品毒性低等優(yōu)點(diǎn),在工程上具有很好的應(yīng)用前景。吸收動(dòng)力學(xué)實(shí)驗(yàn)表明[22],在MDEA水溶液中加入少量的AAIL,如四甲基銨甘氨酸 (Tetramethylammonium glycinate,[N1111][Gly]),即可顯著提高 CO2吸收速率。但AAIL粘度較大,且在吸收CO2后粘度進(jìn)一步上升,導(dǎo)致流動(dòng)阻力大、吸收過程傳質(zhì)不充分,難以直接應(yīng)用于碳捕集工程實(shí)踐。以適量的 AAIL與 MEA,MDEA,AMP等醇胺復(fù)配[13~23],既可保證適當(dāng)?shù)捏w系粘度,又可降低設(shè)備腐蝕、提高吸收速率并減少加熱蒸汽量,對目前在運(yùn)行的醇胺法CO2捕集工藝的改進(jìn)及新型醇胺法吸收工藝的開發(fā)均具有重要的指導(dǎo)意義。
在CO2醇胺吸收工藝中,粘度是控制氣-液傳質(zhì)過程的重要參數(shù),對吸收塔的設(shè)計(jì)及CO2吸收效果均具有重要影響。如在吸收塔中,從塔頂貧液到塔底富液,粘度隨CO2載荷的變化而變化,CO2擴(kuò)散難易程度也相應(yīng)變化。目前,醇胺-AAIL水溶液粘度研究已有報(bào)道,如Gao等[23]發(fā)現(xiàn),323.15K條件下,質(zhì)量分率為40%的MDEA水溶液中加入10%[N1111][Gly] 時(shí),水溶液的粘度為 1.81 mPa·s,與常用醇胺水溶液相當(dāng),適宜塔內(nèi)吸收;當(dāng)[N1111][Gly]質(zhì)量分率為15%時(shí),水溶液粘度快速上升為5.39 mPa·s。吸收CO2后,由于大量離子的存在,吸收液的粘度將顯著高于水溶液,如Fu等[24~28]的研究表明,當(dāng)醇胺水溶液吸收CO2后,在接近飽和的CO2載荷條件下,體系粘度比未吸收CO2的水溶液高數(shù)倍。因此,醇胺-AAIL吸收劑在碳捕集過程的應(yīng)用,首先應(yīng)保證醇胺-AAIL體系具有適當(dāng)?shù)恼扯取?/p>
迄今為止,醇胺-AAIL水溶液的粘度與操作溫度、醇胺類型和濃度、AAIL類型和濃度之間的定量關(guān)系尚不明晰;吸收CO2后的AAIL-醇胺-水溶液的粘度實(shí)驗(yàn)測定及理論計(jì)算均鮮見報(bào)道,CO2載荷對吸收液粘度的影響規(guī)律尚不明晰。水溶液和吸收液粘度實(shí)驗(yàn)數(shù)據(jù)及計(jì)算模型的缺乏,給吸收塔設(shè)計(jì)和涉及增強(qiáng)傳質(zhì)的過程設(shè)計(jì)帶來諸多困難。亟需結(jié)合實(shí)驗(yàn)測定和理論計(jì)算,闡明溫度、醇胺種類和濃度、AAIL種類和濃度、以及CO2載荷等諸多因素對體系粘度的影響規(guī)律。
適宜煙氣中CO2捕集的AAIL-醇胺吸收劑的遴選,可按圖1所示的路徑進(jìn)行。即首先通過溶解度和吸收動(dòng)力學(xué)實(shí)驗(yàn),確定AAIL對CO2的吸收容量及其對醇胺水溶液吸收CO2的促進(jìn)作用,在此基礎(chǔ)上,結(jié)合實(shí)驗(yàn)測定和理論計(jì)算,綜合考慮CO2載荷,確定吸收劑中AAIL和醇胺的組成,保證AAIL-醇胺水溶液及其CO2吸收液具有適當(dāng)?shù)恼扯龋瑥亩WC整塔范圍內(nèi),流動(dòng)阻力適當(dāng)、吸收過程傳質(zhì)充分。
圖1 適宜煙氣中CO2捕集的AAIL-醇胺吸收劑的遴選路徑
以AAIL促進(jìn)傳統(tǒng)醇胺水溶液對CO2的吸收效果,在碳捕集領(lǐng)域具有很好的應(yīng)用前景,但推廣應(yīng)用首先需解決體系的高粘問題。本文對AAIL促進(jìn)醇胺水溶液吸收CO2的動(dòng)力學(xué)及體系粘度的研究進(jìn)展進(jìn)行了綜述,并從吸收容量、促進(jìn)效果和體系粘度等3個(gè)方面分析了適宜煙氣中CO2捕集的AAIL-醇胺吸收劑的遴選方法。
[1]Nakicenovic N,John A.CO2Reduction and removal:measures for the next century[J].Energy,1991,16(11):1347-1377.
[2]Chakravarty T,Phukan U K,Weiland R H.Reaction of acid gases with mixtures of amines[J].Chem.Eng.Prog,1985,81(4),32-36.
[3]Kohl A L,Nielsen R.Gas Purification,5th Ed[M].Houston:Gulf Professional Publishing,1997.
[4]Navaza J M,Gomez-Diaz D,Rubia,La Rubia M D.Removal process of CO2using MDEA aqueous solutions in a bubble column reactor[J].Chemical Engineering Journal,2009,146(2):184-188.
[5]Dubois L,Thomas D.Screening of aqueous amine-ased solvents for postcombustion CO2capture by chemical absorption[J].Chemical Engineering & Technology,2012,35,513.
[6]Chowdhury F A,Yamada H,Higashii T,et al.CO2Capture by tertiary amine absorbents:A performance comparison study[J].Industrial& Engineering Chemistry Research,2013,52(24):8323-8331.
[7]Blanchard L A,Hancu D.Beckman E J.,et al.Green processing using ionic liquids and CO2[J].Nature,1999,399(6731):28-29.
[8]Anthony J L,Maginn E J,Brennecke J F.Solubilities and thermodynamieproperties of gases in the ionic liquid 1-n-Butyl-3-methylimi- dazolium hexafluorophosphate[J].Phys.Chem.B,2002,106,7315-7320.
[9]Perez-Salado Kamps A,Tuma D,Xia J,et al.Solubility of CO2in the ionic liquid[bmim][PF6][J].Journal of Chemical & Engineering Data,2003,48(3):746-749.
[10]Shiflett M B,Drew D W,Cantini R A,et al.Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate[J].Energy & Fuels,2010,24(10):5781-5789.
[11]Zhang X,Liu Z,Wang W.Screening of ionic liquids to capture CO2by COSMO-RS and experiments[J].AIChE journal,2008,54(10):2717-2728.
[12]Bates E D,Mayton R D,Ntai I,et al.CO2capture by a task-specific ionic liquid[J].Journal of the American Chemical Society,2002,124(6):926-927.
[13]Gurkan B E,de la Fuente J C,Mindrup E M,et al.E-quimolar CO2absorption by anion-functionalized ionic liquids[J].Journal of the American Chemical Society,2010,132(7):2116-2117.
[14]Baj S,Siewniak A,Chrobok A,et al.Monoethanolamine and ionic liquid aqueous solutions as effective systems for CO2capture[J].Journal of Chemical Technology and Biotechnology,2013,88(7):1220-1227.
[15]Yu H,Wu Y T,Jiang Y Y,et al.Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2[J].New Journal of Chemistry,2009,33(12):2385-2390.
[16]Zhang J,Zhang S,Dong K,et al.Supported absorption of CO2by tetrabutylphosphonium amino acid ionic liquids[J].Chemistry-a European Journal,2006,12(15):4021-4026.
[17]Galán Sánchez L M,Meindersma G W,De Haan A B.Kinetics of absorption of CO2in amino-functionalized ionic liquids[J].Chemical Engineering Journal,2011,166(3):1104-1115.
[18]Guo H,Zhou Z,Jing G.Kinetics of carbon dioxide absorption into aqueous[Hmim][Gly]solution[J].International Journal of Greenhouse Gas Control,2013,16:197-205.
[19]Zhou Z,Jing G,Zhou L.Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid[N1111][Gly]and 2-amino-2-methyl-1-propanol[J]. ChemicalEngineering Journal,2012,204:235-243.
[20]方誠剛,張鋒,馬靜文,等.氨基酸離子液體-MDEA混合水溶液對 CO2的降膜吸收[J].化工學(xué)報(bào),2011,62(3):723-729.
[21]Feng Z,Yuan G,Xian-Kun W,et al.Regeneration performance of amino acid ionic liquid(AAIL)activated MDEA solutions for CO2capture[J].Chemical Engineering Journal,2013,223:371-378.
[22]Feng Z,Jing-Wen M,Zheng Z,et al.Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions[J].Chemical Engineering Journal,2012,181:222-228.
[23]Gao Y,Zhang F,Huang K,et al.Absorption of CO2in amino acid ionic liquid(AAIL)activated MDEA solutions[J].Int.Greenh.GasCon,2013,19 ,379-386.
[24]Fu D,Chen L H,Qin L G.Experiment and model for the viscosity of CO2-MDEA-MEA aqueous solutions[J].Fluid Phase Equilibria,2012,319,42-47.
[25]Fu D,Chen L H,Qin L G.Experiment and model for the viscosity of CO2-MDEA-DEA aqueous solutions[J].Mol.Liq,2013,181,105-109.
[26]Fu D,Qin L G,Hao H M.Experiment and model for the viscosity of CO2-PZ-MDEA aqueous solutions[J].Mol.Liq,2013,186,81-84.
[27]Fu D,Hao H M,Liu F.Experiment and model for the viscosity of CO2-AMP-MEA and CO2-AMP-DEA aqueous solution[J].Mol.Liq,2013,188,37-41.
[28]Fu D,Li Z X,Liu F.Experiments and model for the viscosity of CO2-AMP-PZ aqueous solution[J].Chem.Thermodyn,2014,68,20-24.