国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

單顆粒氣溶膠質(zhì)譜儀串聯(lián)熱稀釋器在線測(cè)量單個(gè)氣溶膠顆粒的揮發(fā)性

2014-09-02 21:13戴守輝等
分析化學(xué) 2014年8期
關(guān)鍵詞:氣溶膠揮發(fā)性活性炭

戴守輝等

摘要顆粒揮發(fā)性可以影響顆粒在大氣中的壽命,對(duì)大氣顆粒物中二次氣溶膠的形成機(jī)制研究有一定的參考價(jià)值。以往研究測(cè)量顆粒揮發(fā)性采用的是熱熔蝕器,其活性炭吸附器一旦老化后,在較高溫度下可能會(huì)釋放出活性炭,造成測(cè)量失真。本研究針對(duì)熱熔蝕器的上述缺點(diǎn),以稀釋器替代活性炭吸附器部分,與單顆粒氣溶膠質(zhì)譜儀(SPAMS)連接,建立了一種在線分析單個(gè)氣溶膠顆粒揮發(fā)性的測(cè)量方法。氣溶膠顆粒分別通過兩個(gè)通道進(jìn)入SPAMS分析顆粒信息。通道1,氣溶膠顆粒由管路進(jìn)入加熱器,被加熱至不同的溫度,顆粒揮發(fā)產(chǎn)生的氣體和揮發(fā)后的顆粒內(nèi)核進(jìn)入稀釋器部分,利用干凈干燥冷的稀釋氣對(duì)加熱揮發(fā)后的氣體和顆粒進(jìn)行稀釋,使顆粒溫度降低并短時(shí)間內(nèi)不與氣體發(fā)生冷凝,最后進(jìn)入SPAMS進(jìn)行檢測(cè)。通道2為單獨(dú)硅膠管,其長(zhǎng)度與通道1相同,氣溶膠顆粒通過通道2直接進(jìn)入SPAMS檢測(cè)。通過對(duì)比通道1和通道2獲得的顆粒信息(粒徑、數(shù)目和質(zhì)譜信息等),得到氣溶膠顆粒在不同溫度下的揮發(fā)性。實(shí)驗(yàn)室用標(biāo)準(zhǔn)物質(zhì)進(jìn)行評(píng)估測(cè)試,結(jié)果表明,采用稀釋器可以避免活性炭吸附器使用時(shí)間變長(zhǎng)而失效,防止揮發(fā)性物質(zhì)冷凝回到顆粒中。應(yīng)用本方法初步測(cè)定了廣州市春季氣溶膠的揮發(fā)性,表明春季氣溶膠多為高度揮發(fā)性和中度揮發(fā)性物質(zhì)。

1引言

大氣氣溶膠顆粒對(duì)空氣質(zhì)量、區(qū)域和全球氣候變化,以及人類健康都有重要影響\[1~3\]。揮發(fā)性是氣溶膠顆粒的一個(gè)重要特性,它主要由顆粒內(nèi)部物質(zhì)的化學(xué)性質(zhì)決定。當(dāng)氣溶膠被加熱或被干凈的空氣稀釋時(shí)會(huì)揮發(fā),比如柴油動(dòng)力車排放的有機(jī)化合物在低溫或高濃度的情況下會(huì)優(yōu)先以凝聚相存在于顆粒中,但是當(dāng)排放物被稀釋或加熱時(shí),這些物質(zhì)則會(huì)從顆粒相中揮發(fā)出來\[4\]。顆粒揮發(fā)性會(huì)通過二次反應(yīng)和干濕沉降的去除而直接影響其化學(xué)組分在大氣中的壽命\[5\];Pratt等通過表征加熱前后老化顆粒的化學(xué)特征,發(fā)現(xiàn)很多230 ℃加熱后的顆粒和新鮮汽車尾氣、生物質(zhì)燃燒、海鹽以及粉塵顆粒有相似的化學(xué)特征,表明顆粒揮發(fā)性的研究可以將高度老化的顆粒追溯至它們的初始來源\[6\],為顆粒物源解析提供參考。

顆粒揮發(fā)性可以在一定程度上反映顆粒的老化過程,對(duì)大氣顆粒物中二次氣溶膠的形成機(jī)制研究有一定的參考價(jià)值\[7\]。最早氣溶膠揮發(fā)性的測(cè)量和分析,被稱作熱分餾\[8\],主要是利用顆粒中不同物質(zhì)在一定溫度下會(huì)快速揮發(fā),而該特征溫度與這些物質(zhì)的蒸氣壓、沸點(diǎn)和蒸發(fā)焓等有密切相關(guān)\[9,10\]。揮發(fā)性的測(cè)量目前普遍采用金屬加熱管與活性炭吸附器串聯(lián)使用,合稱熱熔蝕器(Thermodenuder, TD)\[11\],如圖1所示,其原理是:氣溶膠顆粒首先進(jìn)入加熱管,在不同的設(shè)定溫度下,易揮發(fā)的物質(zhì)從顆粒相中逃逸出來,之后進(jìn)入活性炭吸附器?;钚蕴课狡鞯淖饔檬俏綋]發(fā)出來的氣相物質(zhì),防止這部分物質(zhì)在冷凝后重新和顆粒相結(jié)合。熱熔蝕器通常與一些化學(xué)分析類儀器,如氣溶膠質(zhì)譜儀(AMS)、掃描電遷移顆粒分析儀(SMPS)、氣溶膠飛行時(shí)間質(zhì)譜儀(ATOFMS)等聯(lián)用,可在線分析揮發(fā)性組分的化學(xué)組成及揮發(fā)后顆粒的粒徑等信息 \[7,12,13\]?;钚蕴课狡鞯牧硗庖粋€(gè)作用就是使加熱后的顆粒冷卻,以便儀器檢測(cè)。

使用熱熔蝕器的缺點(diǎn)是一旦活性炭吸附器的吸附能力失效后,揮發(fā)物就會(huì)重新回到顆粒物中或形成新的可冷凝態(tài)\[9,14\],影響顆粒揮發(fā)性的測(cè)量。此外,活性炭吸附器可能會(huì)由于氣體溫度過高造成活性碳的釋放,造成測(cè)量失真。本研究針對(duì)目前熱熔蝕器的這些缺點(diǎn),采用稀釋器替代活性炭吸附器部分,與國(guó)產(chǎn)單顆粒氣溶膠質(zhì)譜儀(SPAMS)連接,建立一種在線分析氣溶膠顆粒揮發(fā)性的測(cè)量方法,并對(duì)該方法進(jìn)行了實(shí)驗(yàn)室評(píng)估和實(shí)際大氣的應(yīng)用。本研究可為二次氣溶膠的研究提供一定的參考價(jià)值。

2LI Lei, TAN GuoBin, ZHANG Li, FU Zhong, NIAN HuiQing, HUANG ZhengXu, ZHOU Zhen, LI Mei. Chinese J. Anal. Chem., 2013, 41(12): 1831-1836

李 磊, 譚國(guó)斌, 張 莉, 傅 忠, 粘慧青, 黃正旭, 周 振, 李 梅. 分析化學(xué), 2013, 41(12): 1831-1836

3Watson J G. J. Air Waste Manage., 2002, 52(6): 628-713

4Lipsky E M, Robinson A L. Environ. Sci. Technol., 2006, 40(1): 155-162

5Simcik M F, Franz T P, Zhang H X, Eisenreich S J. Environ. Sci. Technol., 1998, 32(2): 251-257

6Pratt K A, Prather K A. Environ. Sci. Technol., 2009, 43(21): 8276-8282

7Jonsson A M, Hallquist M, Saathoff H. J. Aerosol Sci., 2007, 38(8): 843-852

8Hudson J G, Da X Y. J. Geophys. Res., 1996, 101(D2): 4435-4442

9Burtscher H, Baltensperger U, Bukowiecki N, Cohn P, Huglin C, Mohr M, Matter U, Nyeki S, Schmatloch V, Streit N, Weingartner E. J. Aerosol Sci., 2001, 32(4): 427-442

10Villani P, Picard D, Marchand N, Laj P. Aerosol Sci. Technol., 2007, 41(10): 898-906

11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

猜你喜歡
氣溶膠揮發(fā)性活性炭
活性炭生產(chǎn)尾氣處理技術(shù)
病毒通過氣溶膠傳播,還能開窗通風(fēng)嗎
氣溶膠傳播病毒概率有多大
廣州汽修企業(yè)6月30日前要完成整改
活性炭也有“保質(zhì)期”
閱讀七選五專項(xiàng)訓(xùn)練
臟水變干凈
Water is Found in Moon Rocks
氣溶膠科學(xué)
提高吸附效率 延長(zhǎng)使用壽命