魏丹鳳,曾黎輝
(福建農(nóng)林大學(xué)園藝學(xué)院,福建 福州 350002)
木本果樹開花相關(guān)基因的研究進展
魏丹鳳,曾黎輝
(福建農(nóng)林大學(xué)園藝學(xué)院,福建 福州 350002)
開花是植物從營養(yǎng)生長向生殖生長的轉(zhuǎn)變過程。擬南芥中存在多條調(diào)控開花時間的信號途徑如光周期途徑、春化途徑、赤霉素途徑和自動途徑等。與草本植物相比,木本植物成花調(diào)控研究進展較緩慢。本文綜述了木本果樹中開花綜合基因,即綜合不同成花調(diào)控途徑信號的關(guān)鍵基因,如CO、FLC、SVP、FT、LFY、TFL、AP1、SOC1等的研究進展,以期為進一步探索木本植物成花的分子調(diào)控機制提供參考。
木本果樹; 開花途徑; 開花綜合基因
木本多年生植物成花調(diào)控包括童期調(diào)控和成年期花芽的誘導(dǎo)。木本果樹實生苗一般需要經(jīng)歷5-10年的童期之后,才具備開花能力;成年樹開花誘導(dǎo)具有周期性,這些因素制約著果樹及林木的遺傳改良。植物成花過程由外部環(huán)境因子和內(nèi)部生長發(fā)育狀態(tài)共同決定,對果樹開花的研究主要是借鑒擬南芥等模式植物的研究成果。擬南芥花芽分化主要受光周期途徑、春化途徑、赤霉素(GA)途徑和自主開花途徑調(diào)節(jié)(圖1),以及最近提出的年齡相關(guān)(age-related)途徑[1,2]。這些成花途徑相互作用,有多個基因參與影響植物開花,其中FLOWERINGLOCUST(FT)、SUPPRESSOROFOVEREXPRESSIONOFCONSTANS1(SOC1)、APETALA1(AP1)和LEAFY(LFY)等綜合基因(integrator gene)綜合多條誘導(dǎo)途徑信號,決定確切的開花時間;TERMINALFLOWER1(TFL1)、FLOWERINGLOCUSC(FLC)和SHORTVEGETATIVEPHASE(SVP)是成花調(diào)控網(wǎng)絡(luò)的抑制基因,也是連接不同調(diào)控途徑的綜合基因。以上基因在擬南芥、水稻以及其他高等植物之間具有很高的保守性。目前,已將蘋果FT基因[3]和龍眼FT、AP1基因[4]轉(zhuǎn)入擬南芥中表達影響開花;而擬南芥FT、LFY、AP1基因同樣可以調(diào)控柑橘的成花轉(zhuǎn)變[5];此外,擬南芥基因在蘋果[6](LFY)、楊樹[7,8](FT/LFY)、梨[9](FT)、枳橙[10](AP1/LFY)的表達也已獲得成功。但是木本植物具有童期、開花季節(jié)性等特殊的成花特性說明其可能有與草本植物不同的開花調(diào)控途徑和作用網(wǎng)絡(luò)。
本文側(cè)重綜述了木本果樹中幾個綜合基因的研究進展,以期為進一步探索木本植物成花的分子調(diào)控機制提供參考,為人工調(diào)控果樹花芽分化和縮短童期提供新方法。
箭頭表示促進;橫線表示抑制。
擬南芥中光周期途徑通過激活開花整合基因FT、SOC1促進植物的開花。CONSTANS(CO)是光周期途徑中的關(guān)鍵基因[11],可以整合光信號和生物鐘信號,節(jié)律性地激活下游基因FT的表達從而誘導(dǎo)開花。CO的過量表達促進擬南芥在任何光周期下提早開花。CO基因位于GIGANTEA(GI)基因的下游、FT和SOC1的上游。短日照通常使擬南芥CO基因表達下降導(dǎo)致晚花,長日照下CO基因表達上升可以誘發(fā)FT表達和開花。目前已知的晝夜節(jié)律類基因如EARLYFLOWERING3 (ELF3)、FLAVINBINDINGKELCH-REPEATF-BOX1 (FKF1)、TIMINGOFCABEXPRESSION1 (TOC1)、ZEITLUPE(ZTL)、LUXARRHYTHMO(LUX)和LOVKELCHPROTEIN2 (LKP2)均能激活CO的表達。ELF3基因介導(dǎo)GI基因在光下的節(jié)律表達,GI和FKF1可通過影響CDF1調(diào)控CO表達,CDF1(CYCLINGDOFFACTOR1)蛋白通過結(jié)合到CO基因啟動子上抑制CO表達。長日照下GI代替CO與CDF1結(jié)合,F(xiàn)KF1使CDF1蛋白降解,故CO表達上升[12]。另一個CO轉(zhuǎn)錄抑制因子CDF2也被FKF1作為目標(biāo)減弱表達。除CDF蛋白外,還有主要在長日照下影響CO、FT表達的抑制因子REDANDFAR-REDINSENSITIVE2(RFI2)及短日照下抑制CO表達的DAYNEUTRALFLOWERING(DNF)[13]。近期從葡萄中分離出CO的同源基因VvCOL1、VvCO[14]。VvCOL1可能參與芽休眠誘導(dǎo)與維持的光周期轉(zhuǎn)錄調(diào)控。VvCO在潛伏芽的作用途徑表明葡萄可能與擬南芥具有相似的光周期調(diào)控路徑[14]。然而,富士蘋果中CO同源基因MdCOL1、MdCOL2的表達模式異于擬南芥,表現(xiàn)出器官特異性,對生殖器官的生長發(fā)育有重要作用[15]。
溫度對植物成花誘導(dǎo)具有重要作用,與溫度有關(guān)的開花途徑主要是春化(低溫)作用。植物春化特性由多基因控制,且基因之間存在復(fù)雜的作用關(guān)系。在擬南芥中,與春化作用相關(guān)的基因主要有VERNALIZATION1(VRN1)、VERNALIZATION2(VRN2)、VERNALIZATIONINDEPENDENT3(VRN3)、FRIGIDA(FRI)和FLC。目前擬南芥FLC的表達機制較清楚,而十字花科之外的研究很少。FLC基因?qū)Τ苫ň哂幸种谱饔?,表達水平越高,開花時間則越晚。在春化途徑中,VRN類基因和HIGHEXPRESSIONOFOSMOTICALLYRESPONSIVEGENES1 (HOS1)基因能抑制FLC基因的表達。VRN1、VRN2可以維持對FLC的抑制,VIN3只在低溫時表達,并且隨低溫處理時間的增加表達水平升高。FRI基因參與FLC的表達而延遲植物開花,F(xiàn)RI的存在可增強FLC的抑制作用,但自動途徑的FCA基因可以逆轉(zhuǎn)FRI對FLC的促進作用。各個途徑通過FLC基因相互聯(lián)系,自主途徑可能與春化途徑共同通過染色體甲基化、乙?;确绞娇刂艶LC的表達。與野生型相比擬南芥的fca、fy、fpa、ld、fld、flk、fve突變體能提高FLC基因的表達水平,在長日照和短日照下均表現(xiàn)為晚花。LD與FCA、FPA、FVE、FY、FPA、FLK等基因可能通過轉(zhuǎn)錄后修飾和染色體組蛋白修飾抑制FLC基因表達,共同促進開花[16]。此外,年齡相關(guān)途徑則通過miR156、miR172及其靶基因SQUAMOSAPROMOTERBINDINGLIKE(SPL)、APETALA2 (AP2)的表達響應(yīng)低溫春化調(diào)控開花時間[1,2]。
FLC基因通過春化和自動途徑調(diào)控植物開花已經(jīng)在枳的研究中得到證明[17]。PtFLCmRNA在普通枳和早實枳中存在不同的選擇性剪切本,這些剪切本在普通枳和早實枳的各個發(fā)育階段有不同的表達量,由此推測枳由童期向成年樹的轉(zhuǎn)變可能與PtFLC的特異性剪切有關(guān)[18]。將枳PtFLC不同剪切序列構(gòu)建表達載體在早實枳及椪柑中超量表達,結(jié)果表明PtSOC1嚴(yán)格響應(yīng)PtFLC的負(fù)調(diào)控[19]。在擬南芥中,ELF5調(diào)控FLC的表達。研究發(fā)現(xiàn),童期枳PtELF5的表達水平高于PtFLC,成年樹二者的表達受季節(jié)和花發(fā)育調(diào)控,推測PtELF5是在枳早花中發(fā)揮重要作用的基因[20,21]。最近研究發(fā)現(xiàn)了FLC基因在植物中影響開花以外的功能。從山核桃花芽中鑒定到2個FLC的同源基因。與1、2年生植物相比,該基因可能在山核桃中發(fā)生了功能分化,它們可能在不同時間抑制雌、雄花器官的發(fā)育[22]。此外,相關(guān)研究發(fā)現(xiàn),F(xiàn)LC除在花調(diào)控中發(fā)揮作用,對種子的萌發(fā)過程也有重要影響[23]。
SVP是響應(yīng)環(huán)境溫度以調(diào)控植物開花的另一個重要基因。SVP是MADS-box轉(zhuǎn)錄因子,位于自動途徑FCA、FVE基因下游,其功能是維持營養(yǎng)生長,能夠抑制開花但不改變光周期和春化作用對開花時間的影響[24]。SVP接受環(huán)境溫度信號,調(diào)控FT的表達,此外,還接受自動途徑以及GA誘導(dǎo)途徑信號,在芽和葉片中直接調(diào)控SOC1的表達。近期研究表明,SVP是熱敏感途徑的關(guān)鍵基因[25]。SVP不調(diào)控FLC,但在營養(yǎng)生長階段,SVP與FLC形成復(fù)合體,抑制FT的表達,二者協(xié)調(diào)作用,抑制開花。此外,SVP還與AGL24以及SOC1形成復(fù)合體,阻止擬南芥花分生組織的過早分化,促進花器官的正常發(fā)育。目前對木本果樹SVP功能的研究主要集中在落葉果樹休眠的開始和解除,包括獼猴桃[26]、枳殼[27]、懸鉤子[28]、桃[29,30]等。桃有6個SVP同源基因,這6個基因至少有4種不同的表達模式[29],其中PpDAM5和PpDAM6的表達與芽的休眠密切相關(guān)[30];獼猴桃中發(fā)現(xiàn)了4個拷貝的SVP同源基因,在芽休眠和開花過程中具有不同功能[26]。
FT基因是光周期途徑關(guān)鍵調(diào)控因子CO的直接靶基因,在葉片和維管組織特異表達,與LFY基因共同激活A(yù)P1的轉(zhuǎn)錄促進擬南芥開花,是可以長距離運輸?shù)拈_花素信號分子[31]。FT基因在木本植物成花中也有重要作用,楊樹開花時FT同源基因的表達量上升[32,33]。轉(zhuǎn)基因FT過量表達能使楊樹[7]、梨樹[9]早花。在楊樹中發(fā)現(xiàn)了2個FT同源基因FT1和FT2,F(xiàn)T1響應(yīng)低溫調(diào)控生殖生長,F(xiàn)T2響應(yīng)溫暖的氣溫和長日照抑制芽轉(zhuǎn)變,調(diào)控營養(yǎng)生長[7]。在龍眼中分離到2個與擬南芥FT高度同源的基因DlFT1和DlFT2,二者在擬南芥的異位表達使得開花時間出現(xiàn)變化,推測DlFT1使葉分生組織向花轉(zhuǎn)變,促進開花,DlFT2則抑制開花[4]。柑橘童期長達6-10年。將從溫州蜜柑中分離的FT同源基因CiFT1轉(zhuǎn)入枳后持續(xù)表達,該35S::CiFT1轉(zhuǎn)基因枳表現(xiàn)早花[34]。FT基因在植物生長階段扮演著很多角色。龍眼DlFT2基因可能參與葉的形成[4]。在針葉樹中,F(xiàn)T基因不僅與開花有關(guān),還與童期隨季節(jié)周期生長有關(guān)[35]。將蘋果MdFT1和MdFT2基因轉(zhuǎn)入擬南芥,發(fā)現(xiàn)它們參與調(diào)控細(xì)胞增殖和新生組織形成,并與TCP和VOZ基因家族蛋白相互作用而影響葉、果實的發(fā)育[3]。對溫州蜜柑成年樹進行低溫處理后,隨著莖和葉分生組織總CiFT1的表達量升高,樹體開花潛力也增強,低溫促使CiFTs表達量升高從而誘導(dǎo)溫州蜜柑開花[5]。從以上研究可以看出,F(xiàn)T在木本果樹中的功能出現(xiàn)分化,但過量表達FT會促進木本果樹縮短童期,提早開花。
TFL1與FT基因同屬一個家族,功能上卻相反。擬南芥中TFL1基因抑制莖端分生組織形成花原基,延遲植物由營養(yǎng)生長向生殖生長的轉(zhuǎn)變[36]。TFL1同源基因在發(fā)育階段早期的芽中表達量較高,但在花發(fā)育過程中不表達[37]。TFL1能夠抑制AP1對開花的正調(diào)控,在甜橙中發(fā)現(xiàn)的TFL1同源基因CsTFL與LFY和AP1在柑橘中的表達負(fù)相關(guān)[38]。近來研究發(fā)現(xiàn),木本植物中TFL1基因的功能可能與童期有關(guān)。薔薇科的玫瑰和草莓發(fā)現(xiàn)有連續(xù)開花的變異品種,變異性狀都與TFL1有關(guān),玫瑰是由于反轉(zhuǎn)錄轉(zhuǎn)座子插入到其TFL1同源基因KSN中,使得KSN轉(zhuǎn)錄受阻,而草莓的連續(xù)開花變異是因為其TFL1編碼區(qū)發(fā)生了2個堿基的缺失[39]。早花枳殼1年之中也能開花2-3次[40],F(xiàn)T、SOC1等基因的表達量增加,TFL1等抑制基因的表達量下降[18,40]。MdTFL1-1 和MdTFL1-2在蘋果的童期和成年樹營養(yǎng)組織中均表達,具有調(diào)控植物分生組織和抑制開花的作用[37]。將蘋果MdTFL1基因在童期為5年的正常蘋果植株中反義表達,轉(zhuǎn)基因蘋果在移栽溫室8個月后即開始誘導(dǎo)開花[41]。抑制MdTFL基因的表達同樣可以使蘋果樹縮短童期提早開花[42]。有人認(rèn)為這可用于加快蘋果育種[43]。擬南芥tfl1突變體腋生花序發(fā)育成頂花,莖端分生組織終止提前開花。利用轉(zhuǎn)基因RNAi干擾使梨的PcTFL1-1、PcTFL1-2基因表達沉默,梨提早開花[44]。
LFY基因是花分生組織特性基因,不但控制花序分生組織向花分生組織的轉(zhuǎn)變,還控制開花時間,在由營養(yǎng)生長向生殖生長轉(zhuǎn)變過程中起主要的調(diào)控作用。目前已從多種木本果樹如桃[45]、龍眼[46]、蘋果[47]、銀杏[48]、桉樹[49]等中克隆到LFY的同源基因。
LFY基因的表達貫穿于花序和花發(fā)育的各個階段,被認(rèn)為是花發(fā)育的主要調(diào)控基因[50]。LFY基因的超量表達能使擬南芥花期提前[51]。把LFY基因轉(zhuǎn)入楊樹中,轉(zhuǎn)基因植株的頂端開花時間顯著提前,從8-20年縮短到幾個月[8]。LFY與AP1基因?qū)Q定花分生組織特性是必需的。LFY基因在柑橘的過量表達能縮短童期而導(dǎo)致早花[52]。將LFY和AP1分別轉(zhuǎn)入枳橙后出現(xiàn)早花,且產(chǎn)生可育花,轉(zhuǎn)基因植株2-20個月后初次開花,最早1年后開始結(jié)果[10]。但從擬南芥獲得LFY基因,轉(zhuǎn)入蘋果表達未出現(xiàn)早花現(xiàn)象,但植株表型有變化,猜測LFY基因在不同物種中可能具有不同的功能[6]。龍眼成花逆轉(zhuǎn)時LFY同源基因LLFY的表達下降,表明LLFY與龍眼花芽分化及維持有關(guān)[53]。
在擬南芥中AP1編碼MADS蛋白,既是花分生組織決定基因,又是花器官特征基因(花萼和花瓣特異調(diào)控基因),調(diào)節(jié)花分生組織的形成和花器官的確認(rèn)與發(fā)生,突變會導(dǎo)致植物開花的延遲[54]。研究表明,AP1可以作為檢測木本植物是否處于花發(fā)育階段的標(biāo)志[55]。甜橙成花轉(zhuǎn)變時期CsAP1表達升高[38];相比營養(yǎng)枝,F(xiàn)T、AP1在蘋果結(jié)果枝中的表達量更高[56],證明AP1基因與花器官生長有關(guān)。但是AP1和LFY的過量表達并不能使轉(zhuǎn)基因蘋果植株提前開花[6]。沙梨中AP1的同源基因PpAP1只在花芽或花中表達,轉(zhuǎn)入擬南芥后呈現(xiàn)早花,證明PpAP1在花發(fā)育中起重要作用,但PpAP1在雄蕊少量表達說明它不是A功能基因[57]。從龍眼中分離到DlAP1-1和DlAP1-2基因,其中DlAP1基因序列高度保守,轉(zhuǎn)入擬南芥后早于野生型開花,但長日照條件下35S::DlAP1-1轉(zhuǎn)基因植株表現(xiàn)出晚花現(xiàn)象[3]。
SOC1基因也是開花途徑整合子之一,屬于MADS-box基因家族,受光周期途徑、春化途徑、自主途徑和赤霉素途徑等調(diào)控,促進營養(yǎng)分生組織向花序分生組織轉(zhuǎn)變,而促進開花。光周期途徑CO基因是SOC1基因的上游調(diào)節(jié)因子,但CO基因不直接調(diào)控SOC1的表達,而是通過作用于FT基因,間接激活SOC1基因,從而促進植物開花[58]。SOC1基因具有非常復(fù)雜的作用網(wǎng)絡(luò),在植物生長的各階段都發(fā)揮著重要作用[58]。從芒果中克隆SOC1基因,該SOC1蛋白與橙SOC1蛋白親緣關(guān)系最近,與葡萄、咖啡豆SOC1蛋白親緣關(guān)系最遠,因此推測SOC1基因在不同物種中的進化程度可能存在差異[59]。PTM5是山楊木中SOC1的同源基因,在維管組織中特異表達,與山楊木材的形成有關(guān),該基因可能參與作用1年生植物和多年生植物之間的進化差異[60]。在4年生白樺莖尖中分離得到1條SOC1-likecDNABpSOC1,BpSOC1既參與白樺的營養(yǎng)生長,又參與生殖生長[61]。甜橙中SOC1的同源基因CsSL1和CsSL2在營養(yǎng)器官和花器官中均有表達,其中CsSL1在莖、葉、頂芽、花蕾和雄蕊處表達,CsSL2基因表達則更為廣泛[62]。
植物開花是遺傳因子和環(huán)境因素協(xié)同作用的復(fù)雜過程,受錯綜復(fù)雜的網(wǎng)絡(luò)信號途徑調(diào)控。而木本植物大多數(shù)童期較長,始花期晚。柑橘的童期根據(jù)品種不同可持續(xù)5-10年不等,而一些林木經(jīng)濟作物如黃連木的童期則長達12年。嫁接等技術(shù)雖然能提早開花,但遺傳性質(zhì)未變,不能從本質(zhì)上解決問題。盡管果樹的遺傳轉(zhuǎn)化取得了一定的進展,但轉(zhuǎn)化成功的案例普遍集中在少數(shù)品種。果樹開花過程復(fù)雜,如柑橘結(jié)果樹小年花誘導(dǎo)時期FT、AP1和LFY的表達量高于大年;但SOC1基因的表達量大小年無變化[63],說明人們對高等植物成花完全理解需要一個較長的研究過程。因此,借鑒模式植物的研究成果,利用現(xiàn)代分子生物學(xué)、基因組等技術(shù)研究開花途徑關(guān)鍵基因的調(diào)控機理和調(diào)控網(wǎng)絡(luò),是真正實現(xiàn)木本植物成花遺傳調(diào)控的基礎(chǔ)。
[1]ZHOU C M,ZHANG T Q,WANG X,et al. Molecular basis of age-dependent vernalization in cardamine flexuosa[J]. Science,2013,340(10):1097-1100.
[2]BERGONZI S,ALBANI M C,THEMAAT E V L V,et al. Mechanisms of age-dependent response to winter temperature in perennial flowering ofArabisalpina[J]. Science,2013,340:1094-1097.
[3]MIMIDA N,KIDOU S I,IWANAMI H,et al. AppleFLOWERINGLOCUSTproteins interact with transcription factors implicated in cell growth and organ development[J]. Tree Physiology,2011(31):555-566.
[4]PATRICK W,PIMSIRI T,ALON S,et al. Isolation and characterization ofFLOWERINGLOCUSTsubforms andAPETALA1 of the subtropical fruit treeDimocarpuslongan[J]. Plant Physiology and Biochemistry,2013,71:184-190.
[5]NISHIKAWA F,ENDO T,SHIMADA T,et al. IncreasedCiFTabundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (CitrusunshiuMarc.)[J]. Journal of Experimental Botany,2007,58(14):3915-3927.
[6]FLACHOWSKY H,HTTASCH C,MONIKA H,et al. Overexpression ofLEAFYin apple leads to a columnar phenotype with shorter internodes[J]. Planta,2010,231:251-263.
[7]HSU C Y,ADAMS J P,KIM H J,et al.FLOWERINGLOCUSTduplication coordinates reproductive and vegetative growth in perennialpoplar[J]. Proceedings of the National Academy of Sciences,2011,26(108):10576-10761.
[8]楊傳平,劉桂豐,魏志剛.高等植物成花基因的研究[J].遺傳,2002,24(3):379-384.
[9]MATSUDA N,IKEDA K,KUROSAKA M,et al. Early flowering phenotype in transgenic pears (PyruscommunisL.) expressing theCiFTgene[J]. Journal of the Japanese Society for Horticultural Science,2009,78:410-416.
[10]FRED G,GMITTER J,CHEN C X,et al. Citrus genomics[J]. Tree Genetics and Genomes,2012,8:611-626.
[11]KOBAYASHI Y,WEIGEL D. Move on up,it′s time for change—mobile signals controlling photoperiod-dependent flowering[J]. Genes and Development,2007,21(19):2371-2384.
[12]SAWA M,NUSINOW D,KAY S,et al.FKF1 andGIGANTEAcomplex formation is required for day-length measurement inArabidopsis[J]. Science,2007,318:261-265.
[13]MORRIS K,THORNBER S,CODRAI L,et al.DAYNEUTRALFLOWERINGrepressesCONSTANSto preventArabidopsisflowering early in short days[J]. The Plant Cell,2010,22(4):1118-1128.
[14]ALMADA R,CABRERA N,CASARETTO J A,et al.VvCOandVvCOL1,twoCONSTANShomologous geneareregulated during flower induction and dormancy in grapevine uds[J]. Plant Cell Reporter,2009,28:1193-1203.
[15]JEONG D H,SUNG S K,AN G. Molecular cloning and characterization ofCONSTANS-like cDNA clones of the Fuji apple[J]. Journal of Plant Biology,1999,42(1):23-31.
[16]WOLLENBERG A C,STRASSER B,CERDAN P D,et al. Acceleration of flowering during shade avoidance inArabidopsisalters the balance betweenFLOWERINGLOCUSC—mediated repression and photoperiodic induction of flowering[J]. Plant Physiol,2008,148(3):1681-1694.
[17]HOU X J,LIU S R,KHAN M R G,et al. Genome-wide identification,classification,expression profiling,and SSR marker development of the MADS-box gene family in citrus[J]. Plant Molecular Biology Reporter,2013,32(1):28-41.
[18]ZHANG J Z,LI Z M,MEI L,et al.PtFLChomolog from trifoliate orange (Poncirustrifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level[J]. Planta,2009,229:847-859.
[19]胡璐.PtFLC選擇性剪切本的遺傳轉(zhuǎn)化及功能分析[D].武漢:華中農(nóng)業(yè)大學(xué),2013.
[20]ZHANG J Z,LI Z M,YAO J L,et al. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (PoncirustrifoliataL.Raf.) by suppression subtraction hybridization (SSH) and macroarray[J]. Gene,2009,430(1-2):95-104.
[21]ZHANG J Z,AI X Y,SUN L M,et al. Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (PoncirustrifoliataL.Raf.) mutant[J]. Plant Molecular Biology,2011,76:187-204.
[22]楊希宏.山核桃CcFLC同源基因鑒定與表達分析[D].浙江:浙江農(nóng)林大學(xué),2012.
[23]CHIANG G C,BARUA D,KRAMER E M,et al. Major flowering time gene,FLOWERINGLOCUSC,regulates seed germination inArabidopsisthaliana[J]. Proceedings of the National Academy of Sciences,2009,106(28):11661-11666.
[24]LI D,LIU C,SHEN L,et al. A repressor complex governs the integration of flowering signals inArabidopsis[J]. Development Cell,2008,15(1):110-120.
[25]LEE J H,YOO S J,PARK S H,et al. Role ofSVPin the control of flowering time by ambient temperature inArabidopsis[J]. Genes and Development,2007,21(4):397-402.
[26]WU R M,WALTON E F,RICHARDSON A C,et al. Conservation and divergence of four kiwifruitSVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering[J]. Journal of Experimental Botany,2012,63:797-807.
[27]LI Z M,ZHANG J Z,MEI L,et al.PtSVP,anSVPhomolog from trifoliate orange (PoncirustrifoliataL. Raf.),shows seasonal periodicity of meristem determination and affects flower development in transgenicArabidopsisand tobacco plants[J]. Plant Molecular Biology,2010,74:129-142.
[28]MAZZITELLI L,HANCOCK R D,HAUPT S,et al. Co-ordinated gene expression during phases of dormancy release in raspberry (RubusidaeusL.) buds[J]. Journal of Experimental Botany,2007,58:1035-1045.
[29]LI Z G,REIGHARD G L,ABBOTT A G,et al. Dormancy-associated MADS genes from theEVGlocus of peach [Prunuspersica(L.) Batsch]have distinct seasonal and photoperiodic expression patterns[J]. Journal of Experimental Botany,2009,60:3521-3530.
[30]YAMANE H,OOKA T,JOTATSU H,et al. Expressional regulation ofPpDAM5 andPpDAM6,peach (Prunuspersica) dormancy-associated MADS-box genes,by low temperature and dormancy-breaking reagent treatment[J]. Journal of Experimental Botany,2011,62:3481-3488.
[31]李昱,羅志鵬,趙淑清.擬南芥開花時間調(diào)控的整合途徑[J].植物生理學(xué)通訊,2007,43(5):799-804.
[32]B?HLENIUS H,HUANG T,CHARBONNEL-CAMPAA L,et al.CO/FTregulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science,2006,312:1040-1043.
[33]HSU C Y,LIU Y,LUTHE D S,et al.PoplarFT2 shortens the juvenile phase and Promotes seasonal flowering[J]. Plant Cell,2006,18:1846-1861.
[34]ENDO T,SHIMADA T,FUJII H,et al.Ectopic expression of anFThomolog fromCitrusconfers an early fowering phenotype on trifoliate orange (PoncirustrifoliataL.Raf.) [J]. Transgenic Research,2005,14:703-712.
[35]GYLLENSTRAND N,CLAPHAM D,KALLMAN T,et al. A Norway spruceFLOWERINGLOCUSThomolog is implicated in control of growth rhythm in conifers[J]. Plant Physiology,2007,144:248-257.
[36]常麗麗,吳連成,庫麗霞,等.植物FLOWERINGLOCUST/TERMINALFLOWER1基因家族的研究進展[J].西北植物學(xué)報,2008,28(4):843-851.
[37]MIMIDA N,KOTODA N,UEDA T,et al. FourTFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus×domesticaBorkh.)[J]. Plant Cell Physiol,2009,50:394-412.
[38]FLACHOWSKY H,LE ROUX P M,PEIL A,et al. Application of a high-speed breeding technology to apple (Malus×domestica) based on transgenic early flowering plants and marker-assisted selection[J]. New Phytol,2011,192:364-377.
[39]IWATA H,GASTON A,REMAY A. TheTFL1 homologueKSNis a regulator of continuous flowering in rose and strawberry[J]. The Plant Journal,2012,69:116-125.
[40]ZHANG J Z,AI X Y,SUN L M,et al. Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirustrifoliata(L.) Raf.]by massively parallel signature sequencing[J]. BMC Genomics,2011b,12(1):1-20.
[41]KOTODA N,IWANAMI H,TAKAHASHI S,et al. Antisense expression ofMdTFL1,aTFL1-like gene,reduces the juvenile phase in apple[J]. Journal of the American Society for Horticultural Science,2006,131:74-81.
[42]KOTODA N,WADA M,MASUDA T,et al. The break-through in the reduction of juvenile phase in apple using transgenic approaches[J]. Acta Horticulturae,2003,625:337-343.
[43]PILLITTERI L J,LOVATT C J,WALLING L L,et al. Isolation and characterization of aTERMINALFLOWERhomolog and its correlation with juvenility inCitrus[J]. Plant Physiology,2004,135(3):1540-1551.
[44]FREIMAN A,SHLIZERMAN L,GOLOBOVITCH S,et al. Development of atransgenic early flowering pear (PyruscommunisL.) genotype by RNAi silencing ofPcTFL1-1 andPcTFL1-2[J]. Planta,2012,235:1239-1251.
[45]安麗君,李天紅.桃成花基因PpLFY的克隆與表達及多克隆抗體制備[J].園藝學(xué)報,2008,28(8):1573-1580.
[46]官磊.龍眼LEAFY基因克隆與功能研究[D].福州:福建農(nóng)林大學(xué),2008.
[47]WADA M,CAO Q F,KOTODA N,et al. Apple has two orthologues ofFLORICAULA/LEAFYinvolved in flowering[J]. Plant Molecular Biology,2002,49:567-577.
[48]ZHANG J Y,CHEN L G,HU X Q,et al.LEAFYhomologous gene cloned in maiden hair tree (GinkgobilobaL.)[J]. Scientia Silvae Sinicae,2002,38(4):167-170.
[49]SOUTHERTON S G,STRAUSS S H,OLIVE M R,et al. Eucalyptus has a functional equivalent of theArabidopsisfloral meristem identity geneLFY[J]. Plant Molecular Biology,1998,37:897-910.
[50]MOYROUD E,KUSTERS E,MONNIAUX M,et al. LEAFY blossoms[J].Plant Science,2010,6(15):346-352.
[51]何新華,郭永澤,張利.金柑LEAFY同源基因克隆與全序列分析[J].廣西農(nóng)業(yè)生物科學(xué),2007,26(4):273.
[52]PENA L,MARTIN-TRILLO M,JUAREZ J,et al. Constitutive expression ofArabidopsisLEAFYorAPETALA1 genes in citrus reduces their generation time[J]. Nature Biotechnology,2001,19:263-267.
[53]ZENG L H,GUAN L,WU S H.LLFY,a LonganLEAFYortholog,is associated with differentiation and maintenance of inflorescence bud[J]. International Society for Horticultural Science,2010,863:123-128.
[54]段艷欣,郭文武.木本植物開花調(diào)節(jié)基因的分離克隆及其童期控制[J].中國生物工程雜志,2004,24(10):22-26.
[55]JAYA E S,CLEMENS J,SONG J,et al.Quantitative expression analysis of meristem identity genes inEucalyptusoccidentalis:AP1 is an expression marker for flowering[J]. Tree Physiol,2010,30:304-312.
[56]KOTODA N,HAYASHI H,SUZUKI M,et al. Molecular characterization ofFLOWERINGLOCUST-like genes of apple (Malus×domesticaBorkh.)[J]. Plant and Cell Physiology,2010,51(4):561-75.
[57]LIU Y X,KONG J,LI T Z,et al. Isolation and characterization of anAPETALA1-like gene from pear (Pyruspyrifolia)[J]. Plant Molecular Biology Reporter,2013,31:1031-1039.
[58]LEE J,LEE I.Regulation and function ofSOC1,a flowering pathway integrator[J]. Journal of Experimental Botany,2010,61(9):2247-2254.
[59]羅聰.芒果SCoT分子標(biāo)記與逆境和重要開花時間相關(guān)基因研究[D].廣西:廣西大學(xué),2012.
[60]CSEKE L J,ZHENG J,PODILA G K. Characterization ofPTM5 in aspen trees:a MADS-box gene expressed during woody vascular development[J]. Gene,2003,318:55-67.
[61]劉菲菲,李慧玉,王姍.白樺BpSOC1基因的克隆及時序表達分析[J].東北林業(yè)大學(xué)學(xué)報,2011,39(4):1-4.
[62]TAN F C,SWAIN S M.Funetional charaeterization ofAP3,SOC1 andWUShomologues from citrus(Citrussinensis)[J]. Physiologia Plantarum,2007,131:481-495.
[63]SHALOM L,SAMUELS S,ZUR N,et al. Alternate bearing inCitrus:changes in the expression of flowering control genes and in global gene expression in ON-versus OFF-crop trees[J]. PLOS ONE,2012,7(10):1-16.
(責(zé)任編輯:陳幼玉)
Floweringintegratorgenesinwoodyfruittrees
WEI Dan-feng,ZENG Li-hui
(College of Horticulture,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China)
Flowering is an important process for plants to transfer from vegetative to reproductive development. Studies onArabidopsisrevealed several pathways were involved in flowering time control,such as photoperiod pathway,vernalization pathway,GA pathway,and autonomous pathway. Compared with herbs,the research progress of flowering regulation in woody plants is slowly and have a big divergence. This review summarizes recent progresses on flowering integrator genes such asCO,FLC,SVP,FT,TFL,AP1,SOC1 andLFYin woody fruit trees,so as to provide reference for further explore about flowering molecular mechanism of woody plants.
woody fruit tree; flowering pathways; flowering genes
2014-03-12
魏丹鳳(1988- ),女,碩士研究生。研究方向:果樹分子遺傳。Email:15980248065@163.com。通訊作者曾黎輝(1973- ),女,教授,博士生導(dǎo)師。研究方向:果樹遺傳育種與分子生物學(xué)。Email:lhzeng@hotmail.com。
Q945
A
1673-0925(2014)02-0134-07