王嫻,佟慧
(河北大學(xué) 數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北 保定 071002)
變分包含是經(jīng)典變分不等式的一個(gè)重要推廣,在許多領(lǐng)域(例如:物理學(xué)、最優(yōu)控制、非線性規(guī)劃、經(jīng)濟(jì)與工程學(xué))中都有著廣泛的應(yīng)用.因此,近年來(lái),變分問(wèn)題被諸多學(xué)者研究.
Verma發(fā)展了Eckstein-Bertsekas的關(guān)于A-極大單調(diào)算子[1]和(A,η)-極大單調(diào)算子[2]的混合逼近點(diǎn)算法.這些結(jié)論推廣了單值的極大單調(diào)算子,包含了文獻(xiàn)[3]中在Hilbert空間中關(guān)于H-極大單調(diào)算子的結(jié)論.目前,關(guān)于(A,η)-極大單調(diào)算子的廣義預(yù)解算法也已被介紹和研究.本文中,將文獻(xiàn)[4]結(jié)果推廣到了Banach空間,它和其他在Hilbert空間中討論的結(jié)果不同,這樣所得到的關(guān)于變分包含的結(jié)論就可以應(yīng)用到Lp,Wm,p(Ω)空間中去.
設(shè)X是實(shí)的Banach空間,X*是其對(duì)偶空間,‖·‖表示X上的范數(shù),〈·,·〉表示X和X*之間的配對(duì),2X表示X的一切非空子集族.
廣義對(duì)偶映射Jq(x):X→2X定義為
Jq(x)={f*∈X*:〈x,f*〉=‖x‖p,‖f*‖=‖x‖q-1},q>1.
特別地,J2為正規(guī)對(duì)偶映射.眾所周知,Jq=‖x‖q-2J2,?x∈X.若X*為嚴(yán)格凸的,則Jq(x)為單值的.
引理1[5]設(shè)X為一致光滑的實(shí)Banach空間,則X為q-一致光滑的當(dāng)且僅當(dāng)存在常數(shù)cq>0使得
‖x+y‖q≤‖x‖q+q〈y,Jq(x)〉+cq‖y‖q,?x,y∈X.
(1)
定義1[6]設(shè)M:X→2X*為多值算子,H:X→X*,η:X×X→X為單值算子,
1)稱X為單調(diào)的,如果〈x-y,u-v〉≥0,?u,v∈X,x∈Mu,y∈Mv.
2)稱M為η-單調(diào)的,如果〈x-y,η(u,v)〉≥0,?u,v∈X,x∈Mu,y∈Mv.
3)稱M為η-強(qiáng)單調(diào)的,如果存在某個(gè)常數(shù)r>0使得〈x-y,η(u,v)〉≥r‖u-v‖2,?u,v∈X,x∈Mu,y∈Mv.
4)稱M為m-松弛-η-單調(diào)的,如果存在某個(gè)常數(shù)m>0使得〈x-y,η(u,v)〉≥-m‖u-v‖2,?u,v∈X,x∈Mu,y∈Mv.
5)稱M為H-單調(diào)的,若M是單調(diào)的且對(duì)任何λ>0,(H+λM)X=X*.
6)稱M為(H,η)-單調(diào)的,若M是η-單調(diào)的且對(duì)任何λ>0,(H+λM)X=X*.
7)稱M為H-η-單調(diào)的,若M為m-松弛-η-單調(diào)的且對(duì)任何λ>0,(H+λM)X=X*.(在文獻(xiàn)[4]和[11]中H-η-單調(diào)算子被稱為(H,η)單調(diào)算子).
注1 在文獻(xiàn)[7]中首先介紹了η-單調(diào)算子,H-單調(diào)算子和(H,η)-單調(diào)算子,[8]中又介紹了H-η-單調(diào)算子.顯然,H-η-單調(diào)算子是(H,η)-單調(diào)算子的推廣.
定義3[9-10]稱算子T:X→X*關(guān)于H°g為強(qiáng)增生的,如果存在某常數(shù)λ>0使得
(2)
在定理1的基礎(chǔ)上來(lái)討論下面變分包含問(wèn)題
f∈F(x,U(x))+M(g(x))
(3)
的解的迭代算法.其中x∈X,f,h∈X*,F:X×X→X*,g:X→X,U:X→X為3個(gè)單值算子,M:X→2X*為一個(gè)多值算子,關(guān)于它的非線性變分包含問(wèn)題已在文獻(xiàn)[11]中考慮.顯然問(wèn)題(3)包含了很多變分包含問(wèn)題,見(jiàn)文獻(xiàn)[10].
(4)
其中ρ>0為常數(shù).
證明:由定理1直接得到.
定理2 設(shè)X*為q-一致光滑的Banach空間,η:X×X→X為τ-Lipschitz連續(xù)算子,g:X→X為γ-強(qiáng)增生且t-Lipschitz連續(xù)的.H:X→X*為(r,η)-強(qiáng)單調(diào)且s-Lipschitz連續(xù)算子,U:X→X為ξ-Lipschitz連續(xù)算子.設(shè)M:X→2X*為H-η-單調(diào)多值算子.設(shè)F:X×X→X*為一個(gè)算子,使得對(duì)任意(x,u)∈X×X,F(xiàn)(·,u)關(guān)于H°g為強(qiáng)增生且σ-υ-Lipschitz連續(xù)的,F(xiàn)(x,·)為μ-Lipschitz連續(xù)的.對(duì)任意的給定的初值x0,構(gòu)造如下序列{xk}:
xk+1=(1-αk)xk+αkyk,?k>0,
(5)
yk滿足
(6)
(7)
證明:由于g為γ-強(qiáng)增生的,故有
‖g(u)-g(v)‖‖u-v‖q-1=‖g(u)-g(v)‖‖Jq(u-v)‖q-1≥
〈g(u)-g(v),Jq(u-v)〉≥γ‖u-v‖q,
由上面的式子可知,g-1為單值算子且有
因此算法(5),(6)有意義.
由假設(shè)和(2)得到
‖Hg(xk)-Hg(x*)-ρk[F(xk,U(xk))-F(x*,U(xk))]‖q≤
(8)
[1-αk(1-θk)]‖xk-x*‖=dk‖xk-x*‖,
由xk+1=(1-αk)xk+αkyk,有xk+1-xk=αk(yk-xk),于是
故有
‖xk+1-x*‖≤‖zk+1-x*‖+‖xk+1-zk+1‖≤‖zk+1-x*‖+αkδk‖yk-xk‖≤
‖zk+1-x*‖+δk‖xk+1-xk‖≤
‖zk+1-x*‖+δk‖xk+1-x*‖+δk‖xk-x*‖,
(9)
注2 條件(7)的證明可見(jiàn)文獻(xiàn)[10].
參 考 文 獻(xiàn):
[1] VERMA R U. A-monotonicity and its role in nonlinear variational inclusions[J]. Optimization Theory and Applications, 2006,129(3) :457-467.
[2] VERMA R U. Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J]. Applied Mathematics Letters, 2006,19: 1409-1413.
[3] FANG Yaping, HUANG Nanjing. H-monotone operators and system of variational inclusions[J]. Communications on Applications and Nonlinear Analysis, 2004,11(1):93-101.
[4] VERMA R U. A hybrid proximal point algorithm based on the (A,η)- maximal monotonicity framework[J]. Applied Mathematics Letters, 2008,21:142-147.
[5] XU H K. Inequalities in Banach spaces with applications[J]. Nonlinear Analysis, 1991,16(12):1127-1138.
[6] FANG Yaping, HUANG Nanjing. A new system of variational inclusions with monotone operators in Hilbert spaces[J]. Computers & Mathematics with Applications, 2005,49:365-374.
[7] HUANG Nanjing,FANG Yaping. Fixed point theorems and a new system of multivalued generalized order complementarity problems[J]. Applied Mathematics Letters, 2003,7:257-265.
[8] ZHANG Qingbang. Generalized implicit variational-like inclusion problems involvingG-η- monotone mappings[J]. Applied Mathematics Letters, 2007,20:216-221.
[9] FANG Yaping, HUANG Nanjing.H-Accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces[J]. Applied Mathematics Letters, 2004,17:647-653.
[10] HOU Jian , HE Xinfeng, HE Zhen. Iterative methods for solving a system of variational inclusions involvingH-η-monotone operators in Banach spaces[J]. Computers & Mathematics with Applications, 2008,55:1832-1841.
[11] VERMA R U. Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A,η)-monotone mappings[J]. Journal of Mathematical Analysis and Applications, 2008,337: 969-975.