国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物Cu,Zn—SOD分子調(diào)控機(jī)理研究進(jìn)展

2014-08-12 17:14姚婕趙艷玲
熱帶農(nóng)業(yè)科學(xué) 2014年3期

姚婕 趙艷玲

摘 要 銅/鋅超氧化物歧化酶(Cu,Zn-SOD)能清除植物體內(nèi)有害的活性氧(ROS),參與植株遭受逆境脅迫時(shí)的應(yīng)激反應(yīng)等過(guò)程。銅分子伴侶(CCS)可以傳遞銅離子到Cu,Zn-SOD當(dāng)中,并將其激活生成有活性的酶分子,依賴CCS協(xié)助是Cu,Zn-SOD主要的激活途徑。植物在銅缺乏的環(huán)境下會(huì)誘導(dǎo)啟動(dòng)子結(jié)合蛋白(SPL7)和小RNA398(miR398)的表達(dá),miR398通過(guò)降解編碼Cu,Zn-SOD的mRNA抑制Cu,Zn-SOD的生成,從而調(diào)控植物體內(nèi)銅平衡。本文主要對(duì)植物Cu,Zn-SOD激活和調(diào)控途徑進(jìn)行綜述。

關(guān)鍵詞 Cu,Zn-SOD ;CCS ;miR398 ;SPL7 ;調(diào)控途徑

分類號(hào) Q943.2

Abstract Superoxide dismutases (Cu,Zn-SODs) are important antioxidant enzymes that catalyze the disproportionation of superoxide anion to oxygen and hydrogen peroxide to guard cells against superoxide toxicity. The major pathway for activation of copper/zinc SOD (CSD) requiring the CCS copper chaperone to insert copper and activate SOD1 through oxidation of an intramolecular disulfide. Expression of miR398 and SPL7 (for SQUAMOSA promoter binding protein-like7) are induced in response to copper deficiency and miR398 is involved in the degradation of mRNAs encoding copper/zinc superoxide dismutase. This paper reviewed on plant Cu, Zn-SOD activation and regulatory pathways.

Keywords Cu,Zn-SOD ; CCS ; miR398 ; SPL7 ; regulatory pathways

1972年,美國(guó)Richardson實(shí)驗(yàn)室首次獲得了可供X射線晶體結(jié)構(gòu)分析的Cu,Zn-SOD(CSD)晶體[1]。1982年,JA Tainer等從牛血紅蛋白中得到了由SOD1基因編碼的Cu,Zn-SOD的三維結(jié)構(gòu),并建立了以其結(jié)構(gòu)為基礎(chǔ)的酶催化機(jī)制和快速反應(yīng)機(jī)制[2]。在Cu,Zn-SOD成熟過(guò)程中,銅離子的獲得是關(guān)鍵步驟,熱力學(xué)分析顯示,Cu,Zn-SOD利用銅結(jié)合位點(diǎn)逐漸增強(qiáng)的親和力,才實(shí)現(xiàn)了銅離子在含銅蛋白之間的傳遞[3]。銅分子伴侶(copper chaperone for SOD1, CCS)可以傳遞銅離子到Cu,Zn-SOD當(dāng)中,并將其激活生成有活性的酶分子。第一個(gè)描述酵母和人類CCS的是Valentine & Gralla[4]1997年發(fā)表于Science的一篇文章,此后,CCS就被廣泛發(fā)現(xiàn)存在于真核生物中,并和Cu/Zn-SOD一起表達(dá)。目前,擬南芥、水稻、玉米、大豆、土豆、龍眼[5]等植物的CCS已被克隆。

最近的研究表明,Cu,Zn-SOD的表達(dá)受到miRNA的調(diào)控。植物在銅缺乏的環(huán)境下會(huì)誘導(dǎo)生成啟動(dòng)子結(jié)合蛋白(SQUAMOSA promoter binding protein-like7,SPL7),SPL7直接和miR398啟動(dòng)子結(jié)合并激活其表達(dá),miR398通過(guò)降解編碼Cu,Zn-SOD的mRNA從而抑制了Cu,Zn-SOD的生成,此時(shí)銅離子則參與到植物體內(nèi)另一個(gè)重要的含銅蛋白-質(zhì)體藍(lán)素的合成過(guò)程當(dāng)中,保證了植物的正常生長(zhǎng)[6]。

1 Cu,Zn-SOD激活途徑

1.1 CCS的研究進(jìn)展

分子進(jìn)化分析顯示,CCS的中心結(jié)構(gòu)域和Cu,Zn-SOD高度同源[7],其N端結(jié)構(gòu)域?qū)せ頒u,Zn-SOD起決定性作用[8]。CCS基因啟動(dòng)子區(qū)域包含了與植物生長(zhǎng)素和應(yīng)激響應(yīng)有關(guān)的順勢(shì)作用元件,會(huì)被植物生長(zhǎng)素,赤霉素,果糖,蔗糖,葡萄糖等誘導(dǎo)表達(dá)。不同植物組織中的CCS表達(dá)量也有所差異,Trindade[9]將馬鈴薯CCS啟動(dòng)子融合熒光色素基因,發(fā)現(xiàn)CCS在皮質(zhì)區(qū),如莖、匍匐枝和塊莖表達(dá)水平最高,根部和花表達(dá)水平較低。植物在衰老狀態(tài)下,CCS的表達(dá)量也會(huì)隨之增加[10]。

Cohu等[11]發(fā)現(xiàn),當(dāng)擬南芥CCS無(wú)效突變后,Cu,Zn-SOD活性會(huì)隨之喪失,這說(shuō)明擬南芥細(xì)胞質(zhì)和葉綠體中的Cu,Zn-SOD需要CCS才能激活。細(xì)胞X連鎖凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)也需要CCS傳遞銅離子,XIAP的環(huán)指結(jié)構(gòu)包含E3泛素連接酶活性,通過(guò)泛素蛋白酶體途徑可促進(jìn)XIAP自身或與其相互作用的蛋白分子泛素化而降解,因此XIAP被認(rèn)為是通過(guò)對(duì)含銅蛋白的降解從而調(diào)控銅離子平衡的。有趣的是CCS與XIAP的互相作用而導(dǎo)致的泛素化卻能增強(qiáng)CCS對(duì)Cu,Zn-SOD的活性而不是自身蛋白酶體的降解[12]。這些研究表明CCS在調(diào)控植物體內(nèi)銅離子平衡過(guò)程中發(fā)揮特殊作用。

1.2 依賴CCS的CSD激活途徑

近幾年來(lái),關(guān)于依賴CCS激活Cu,Zn-SOD的機(jī)制已被闡明。SOD1前體多肽內(nèi)由于第144位上含有一個(gè)脯氨酸(pro),這個(gè)結(jié)構(gòu)阻止了5.5 處兩個(gè)半胱氨酸(cys)分子內(nèi)二硫鍵的形成,所以SOD1前體多肽內(nèi)并沒(méi)有二硫鍵[13]。鋅離子在銅離子與SOD1結(jié)合之前首先進(jìn)入金屬結(jié)合位點(diǎn)。在氧脅迫條件下,SOD1前體比成熟的Cu,Zn-SOD更容易形成有害的多聚體。鋅離子插入后,SOD1構(gòu)象發(fā)生變化,形成了適合Cu-CCS復(fù)合體結(jié)合的狀態(tài)。CCS結(jié)構(gòu)域III通過(guò)靜電識(shí)別捕獲Cu1+并和Cys殘基連接。之后CCS構(gòu)象轉(zhuǎn)變,提高了和SOD1之間的互相作用。接下來(lái)Cu-CCS和SOD1形成了二聚體復(fù)合物,氧氣攻擊被CCS-SOD1復(fù)合物捕獲的Cu1+,伴隨氧化還原反應(yīng)的發(fā)生Cu1+插入到SOD1當(dāng)中,氧氣的存在還促進(jìn)了硫醇基的氧化,最后引起SOD1中Cys57和CCS中與Cu1+離子連接的Cys229分子間二硫鍵的形成。Cu1+進(jìn)入SOD1金屬位點(diǎn)后誘導(dǎo)Cys殘基周圍分子構(gòu)象的改變,促進(jìn)了分子間二硫氧化物到分子內(nèi)的二硫氧化物的轉(zhuǎn)變。經(jīng)過(guò)快速重排CSD1分子內(nèi)二硫鍵形成,然后活性酶分子被釋放[13-14](圖1)。endprint

迄今為止,所有檢測(cè)的Cu,Zn-SOD每個(gè)亞基都含有一個(gè)保守的二硫鍵,二硫鍵的形成過(guò)程本來(lái)很慢,Cu-CCS復(fù)合體的結(jié)合加速了這一過(guò)程[13]。一旦形成,二硫鍵能保持很高的穩(wěn)定性,甚至在細(xì)胞質(zhì)中存在大量還原劑的情況下也不會(huì)發(fā)生斷裂[15]。在SOD1成熟過(guò)程中,如果銅離子插入之前就形成二硫鍵的話,酶就不能被Cu-CCS激活,保守的二硫鍵在CCS協(xié)助下為銅離子正確插入金屬活性位點(diǎn)提供支持并引導(dǎo)底物進(jìn)入酶活性中心,對(duì)SOD1的激活和催化起關(guān)鍵作用[16]。但在真核細(xì)胞中,還原環(huán)境下的二硫鍵是如何形成且能保持高穩(wěn)定性以及其他功能還不清楚,活性SOD1和CCS晶體顯示出的分子間的二硫鉸鏈作用是否是結(jié)晶化的結(jié)果也不得而知。除了二硫鍵形成之外,初期SOD1多肽必需經(jīng)過(guò)3種其他的修飾,即銅、鋅離子的獲得和二聚化。每種修飾過(guò)程都會(huì)使酶發(fā)生嚴(yán)格的構(gòu)象改變,決定了酶分子的最終形成。雖然內(nèi)質(zhì)網(wǎng)有專門的機(jī)制來(lái)氧化蛋白質(zhì)折疊,很多證據(jù)表明SOD1并不是在內(nèi)質(zhì)網(wǎng)上折疊形成的[17]。當(dāng)CCS過(guò)量表達(dá)時(shí),會(huì)加快SOD1形成有害的多聚體,在人體內(nèi)會(huì)導(dǎo)致肌萎縮側(cè)索硬化癥的發(fā)生[18-19]。

1.3 不依賴CCS的CSD激活途徑

在早期的大部分研究中,CCS突變菌株中的Cu,Zn-SOD由于缺乏銅離子和分子內(nèi)二硫鍵而失去活性,所以CCS一直被認(rèn)為是激活Cu,Zn-SOD的唯一途徑。然而,2000年Wong[20]發(fā)現(xiàn)一只CCS變異的白鼠體內(nèi)依然存在少量的Cu,Zn-SOD活性。此外,線蟲(chóng)CSD的激活就完全不需要CCS[21],不依賴CCS的激活途徑在老鼠、擬南芥和蜘蛛中陸續(xù)被發(fā)現(xiàn),且適用于酵母表達(dá)體系[22],由此證明了CCS并不是唯一的CSD激活途徑。

目前對(duì)不依賴CCS激活途徑機(jī)制還不太清楚,但可以確定,一個(gè)未知因子和谷胱甘肽(GSH)一起參與到此途徑當(dāng)中[23]。由此提出了兩種模型(圖2)。第一種模型:銅離子從Cu-GSH復(fù)合物傳遞到Cu,Zn-SOD,中間需要未知因子參與,未知因子起蛋白質(zhì)支架的作用,提供Cu,Zn-SOD和Cu-GSH結(jié)合的平臺(tái)。第二種模型:銅離子從Cu-GSH傳遞到未知因子,然后再通過(guò)未知因子傳遞到Cu,Zn-SOD,這里的未知因子起銅離子的傳遞作用,并可以建立銅離子和Cu,Zn-SOD的連接[24]。不管是哪種模型,Cu,Zn-SOD和未知因子間的相互作用都是非常重要的。人類Cu,Zn-SOD C-末端144位的pro被推測(cè)是Cu-GSH和Cu,Zn-SOD的連接位點(diǎn)[25],由此推測(cè)第一種模型的可能性更大。

1.4 兩種激活途徑之間的關(guān)系

迄今為止,Cu,Zn-SOD的兩條激活途徑均已被證實(shí)。這兩條激活途徑的不同點(diǎn)在于:首先依賴CCS激活的Cu,Zn-SOD第144位上有一個(gè)Pro,這個(gè)空間構(gòu)象阻止了5.5 處兩個(gè)Cys分子內(nèi)二硫鍵的形成,而Cu-CCS的存在可以克服這一不利因素;其次依賴CCS激活途徑需要分子氧參與,不需要CCS的激活途徑,卻可以在含氧量很低乃至無(wú)氧條件下激活Cu,Zn-SOD[13-15]。研究發(fā)現(xiàn),在酵母細(xì)胞中,Cu,Zn-SOD的二硫鍵是被Cu-CCS復(fù)合體氧化生成的[13],但在不依賴CCS激活途徑的線蟲(chóng)中,二硫鍵卻能一直保持氧化狀態(tài)[15]。因此,如果細(xì)胞處于還原環(huán)境且Cu,Zn-SOD二硫鍵氧化趨勢(shì)很低時(shí),就可能需要CCS的協(xié)助。

擬南芥細(xì)胞3種Cu,Zn-SOD對(duì)激活途徑有不同的偏好,主要取決于其所處的亞細(xì)胞環(huán)境,細(xì)胞質(zhì)中的CSD1,有64%依賴CCS激活,36%不依賴CCS;葉綠體中的CSD2完全依賴于CCS才能被激活;過(guò)氧化物酶體中的CSD3則完全不需要CCS的協(xié)助[23]。由此推測(cè),真核生物根據(jù)自己的生境會(huì)選擇不同的Cu,Zn-SOD激活途徑,一些生物體必需依賴CCS,而另一些則不需要,但大多數(shù)真核生物都同時(shí)存在這兩種激活途徑,且發(fā)現(xiàn)以依賴CCS的激活途徑為主。

2 Cu,Zn-SOD調(diào)控機(jī)制

含銅蛋白如CSD1、CSD2、CCS、質(zhì)體藍(lán)素等都能通過(guò)miRNA來(lái)調(diào)控,由啟動(dòng)子結(jié)合蛋白SPL7誘導(dǎo)表達(dá)的miR398可以阻礙CSD1、CSD2和CCS mRNA的轉(zhuǎn)錄[26]。miR398不僅被環(huán)境中高濃度銅所抑制,還能被高濃度蔗糖所誘導(dǎo)[27]。在低銅環(huán)境下,SPL7通過(guò)誘導(dǎo)miR398從而抑制了Cu,Zn-SOD的生成,SPL7還可以激活鐵超氧化物歧化酶(Fe-SOD,F(xiàn)SD1)的表達(dá),Cu,Zn-SOD的功能將會(huì)被FSD1所取代并參與到植物氧化應(yīng)激反應(yīng)過(guò)程當(dāng)中[6]。

2.1 microRNA應(yīng)對(duì)環(huán)境脅迫的調(diào)控者

植物在環(huán)境脅迫條件下的生長(zhǎng)發(fā)育會(huì)受到miRNA的調(diào)控,miRNA參與植物應(yīng)激反應(yīng)并能調(diào)節(jié)植物生長(zhǎng)素和信號(hào)傳導(dǎo)等過(guò)程。在擬南芥中miR398編碼3個(gè)基因:miR398a、miR398b、miR398c。miR398b和miR398c序列相似,而miR398a 3'末端的核苷酸跟它們不同。miR398b和miR398c的表達(dá)量比miR398a高的多,且顯示出了更強(qiáng)的調(diào)控能力[28]。miR398的4個(gè)目標(biāo)蛋白分別是:細(xì)胞質(zhì)CSD1、葉綠體CSD2、線粒體細(xì)胞色素氧化酶亞基COX5b-1和銅分子伴侶CCS。通過(guò)調(diào)控這些靶基因,miR398參與了一系列的環(huán)境脅迫響應(yīng)過(guò)程,其中包括氧化應(yīng)激、鹽應(yīng)激、脫落酸信號(hào)傳導(dǎo)以及細(xì)菌性病原體侵染后的應(yīng)激過(guò)程等[29]。

高濃度的蔗糖通過(guò)抑制miR398的表達(dá)從而降低植物體內(nèi)銅離子的積累量,這表明在植物細(xì)胞內(nèi)蔗糖的信號(hào)轉(zhuǎn)導(dǎo)和含銅蛋白的積累有一定聯(lián)系,啟動(dòng)子結(jié)合蛋白SPL7是誘導(dǎo)miR398的關(guān)鍵因子,但是這種通過(guò)蔗糖調(diào)控植物體內(nèi)銅離子含量的響應(yīng)過(guò)程并不完全由SPL7所控制[30]。除了降解轉(zhuǎn)錄產(chǎn)物之外,一些miRNA如miR398、miR172和miR156在正常情況下可以通過(guò)翻譯抑制來(lái)調(diào)控目標(biāo)蛋白[31],但植物在逆境中是用這兩種調(diào)控機(jī)制還是是偏愛(ài)其中某一種尚不清楚。endprint

由于受到氧化脅迫,作為miRNA轉(zhuǎn)錄因子的SPL7失活可能是導(dǎo)致miRNA轉(zhuǎn)錄受到抑制的原因,miRNA含量會(huì)在幾個(gè)小時(shí)之內(nèi)消失[32],核糖核酸外切酶也會(huì)在miRNA轉(zhuǎn)錄后將其降解,這些說(shuō)明miRNA的脅迫響應(yīng)可能在轉(zhuǎn)錄水平或轉(zhuǎn)錄后水平被調(diào)控。是由于脅迫誘導(dǎo)miRNA表達(dá)量下降還是由于其自身的降解能力下降導(dǎo)致脅迫響應(yīng),目前尚不清楚。研究脅迫響應(yīng)miRNA與其目標(biāo)基因表達(dá)量的關(guān)系將為深入了解miRNA網(wǎng)絡(luò)的調(diào)控過(guò)程提供依據(jù)。 2.2 轉(zhuǎn)錄因子SPL7通過(guò)誘導(dǎo)miR398調(diào)控SOD的表達(dá)

啟動(dòng)子結(jié)合蛋白SPL7是一種保守的銅離子響應(yīng)轉(zhuǎn)錄因子,和綠藻中的Crr1(Copper Response Regulator)屬于同一家族[33],研究發(fā)現(xiàn),SPL7是Cu,Zn-SOD受銅離子影響的主要調(diào)控因子[6]。在擬南芥中,啟動(dòng)子結(jié)合蛋白SPL7在銅離子缺乏時(shí)被激活表達(dá),其SBP(for SQUAMOSA promoter binding protein,SBP) 結(jié)構(gòu)域可以直接和miR398啟動(dòng)子的GTAC序列結(jié)合并激活miR398的轉(zhuǎn)錄,但Fe-SOD啟動(dòng)子也含有GTAC序列并能被SPL7激活[6,34]。miR398可以阻礙CSD1、CSD2和CCS的mRNA的轉(zhuǎn)錄[26-27],因此當(dāng)銅離子成為限制因素時(shí),SPL7將正調(diào)控FSD1而負(fù)調(diào)控CSD1和CSD2的表達(dá)。另外,SPL7也參與銅離子轉(zhuǎn)運(yùn)蛋白和銅分子伴侶CCS的調(diào)控[26]。

但是,Dugas和Bartel[27]發(fā)現(xiàn),將擬南芥移栽到含有蔗糖的培養(yǎng)基上會(huì)促進(jìn)miR398的表達(dá)而造成CSD1和CSD2含量下降,因此在蔗糖存在下,CSD1和CSD2的轉(zhuǎn)錄不受銅離子含量的影響,但Fe-SOD表達(dá)量卻恒定,這表明蔗糖環(huán)境中,并不是通過(guò)SPL7而是其他未知因子來(lái)調(diào)控miR398的表達(dá)。Ren[30]等發(fā)現(xiàn),在擬南芥細(xì)胞內(nèi),不管SPL7是否存在,蔗糖都能通過(guò)調(diào)控miRNAs的表達(dá)從而影響銅離子的積累量,如果將CSD1和CSD2 mRNA的miR398識(shí)別位點(diǎn)改變,這些突變mRNA甚至在miR398表達(dá)量很高的情況下都能成功轉(zhuǎn)錄,然而CSD1和CSD2的表達(dá)量卻依然受到銅缺乏的影響,這說(shuō)明miR398并不是唯一影響CSD1和CSD2轉(zhuǎn)錄的因素[27-32]。不過(guò)這種現(xiàn)象還可以解釋為,CSD1和CSD2含量的積累需要銅離子起穩(wěn)定作用,而在銅缺乏條件下傳遞銅離子的CCS蛋白會(huì)被miR398負(fù)調(diào)控。

3 討論

Cu,Zn-SOD的研究起步較早,對(duì)其蛋白結(jié)構(gòu)、功能和分類的研究也比較深入。關(guān)于Cu,Zn-SOD的激活途徑和分子調(diào)控機(jī)理也是研究較多的領(lǐng)域之一,但尚有諸多未知的機(jī)理有待深入探究。首先,Cu,Zn-SOD與多種抗逆性有關(guān),目前研究限于低溫、干旱、高鹽[35-37]等逆境,針對(duì)不同的逆境Cu/Zn-SOD的調(diào)控機(jī)理是否存在差異有待進(jìn)一步系統(tǒng)研究。例如擬南芥Cu,Zn-SOD在蔗糖存在下除了SPL7以外,還存在一種未知蛋白在SPL7缺失的情況下調(diào)控植物體內(nèi)的銅離子,而受銅離子影響的Cu,Zn-SOD是否也能被這種未知蛋白所調(diào)控需要進(jìn)一步的驗(yàn)證;另外,蔗糖脅迫中miR398也并不是唯一影響CSD1和CSD2轉(zhuǎn)錄的因素,說(shuō)明逆境條件下CSD的調(diào)控存在多種可能。其次,Cu,Zn-SOD的激活途徑有兩條,不同的真核生物選擇這兩條激活途徑的機(jī)理尚不清晰,非CCS激活途徑研究較少,尚需大量的科學(xué)研究揭示該未知因子以及未知因子與谷胱甘肽的作用機(jī)理。這些基礎(chǔ)研究的數(shù)據(jù)將明晰植物的抗逆能力與Cu/Zn-SOD的關(guān)系,并利用這些結(jié)論創(chuàng)制具有良好的耐逆能力的植物新品系。

參考文獻(xiàn)

[1] Richardson D C, Bier C J, Richardson J S. Two crystal forms of bovine superoxide dismutase[J]. J Biol Chem. 1972, 247(19): 6 368-6 369.

[2] Tainer J A, Getzoff E D, Beem K M, et al. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase[J]. J Mol Biol, 1982, 160(2): 181-217.

[3] Banci L, Bertini I, Ciofi B S, et al. Affinity 278 gradients drive copper to cellular destinations[J]. Nature,2010,465(7928): 645-648.

[4] Valentine S J, Gralla E B. Delivering copper inside yeast and human cells[J]. Science, 1997, 278(5339): 817-818.

[5] 林玉玲,賴鐘雄. 龍眼胚性愈傷組織Cu/Zn-SOD分子伴侶基因CCS的克隆及其在體胚發(fā)生過(guò)程中的表達(dá)分析[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2012,18(3):351-358.

[6] Yamasaki H, Hayashi M, Fukazawa M. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in Arabidopsis[[J]. The Plant Cell, 2009, 21(1): 347-361.

[7] Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate copper chaperone forsuperoxide dismutase[J]. Gene, 2013, 516(1):69-75.endprint

[8] Chu C C, Lee W C, Guo W Y, et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis[J]. Plant Physiol, 2005, 139(1): 425-36.

[9] Trindade L M, Horvath B M, Bergervoet M J, et al. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiol, 2003, 133(2): 618-29.

[10] Abdel-Ghany S E, Burkhead J L, Gogolin K A. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7[J]. FEBS Letters, 2005, 579(11): 2 307-2 312.

[11] Cohu C M, Abdel-Ghany S E, Gogolin Reyndds K A, et al. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc- superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant[J]. Mol Plant, 2009, 2(6): 1 336-1 350.

[12] Brady G F, Galba′n s, Liu X W. Regulation of the copper chaperone CCS by XIAP-Mediated ubiquitination[J]. Mol. Cell. Biochem, 2010, 30(8): 1 923-1 936.

[13] Furukawa Y, Torres A S, O'Halloran T V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS[J]. J EMBO, 2004, 23(14): 2 872-2 881.

[14] Jeffry M, Leitch, Priscilla J, et al. The Right to choose: multiple pathways for activating copper,zinc superoxide dismutase[J]. Bio Chem, 2009, 284(37): 24 679-24 683.

[15] Leitch J M, Jensen L T, Bouldin S D, et al. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS[J]. Biol. Chem, 2009, 284(33): 21 863-21 871.

[16] Fisher C L, Cabelli D E, Tainer J A, et al. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis[J] .Proteins, 1994, 19(1): 24-34.

[17] Lindenau J, Noack H, Possel H, et al. Cellular distribution of superoxide dismutases in the rat CNS[J]. Glia, 2000, 29(1): 25-34.

[18] Kim H K, Chung Y W, Chock P B, et al. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrialtranslocation of SOD1 mutants: implication of a free radical hypothesis[J]. Arch Biochem Biophys, 2011, 509(2): 177-185.

[19] Reddehase S, Grumbt B, Neupert W, et al. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1[J]. Mol Biol, 2009, 385(2): 331-338.

[20] Wong P C, Waggoner D, Subramaniam J R, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase[J]. Proc Natl Acad Sci USA, 2000, 97(16): 2 886-2 891.endprint

[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.

[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.

[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.

[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.

[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.

[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.

[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.

[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.

[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.

[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.

[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.

[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.

[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.

[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.

[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.

[36] 葉亞新,金 進(jìn),秦 粉,等. 低溫脅迫對(duì)小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào). 2009,25(23):244-248.

[37] 張海娜,李小娟,李存東,等. 過(guò)量表達(dá)小麥超氧化物歧化酶(SOD)基因?qū)煵菽望}能力的影響[J]. 作物學(xué)報(bào),2008,34(8):1 403-1 408.endprint

[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.

[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.

[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.

[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.

[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.

[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.

[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.

[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.

[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.

[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.

[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.

[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.

[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.

[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.

[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.

[36] 葉亞新,金 進(jìn),秦 粉,等. 低溫脅迫對(duì)小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào). 2009,25(23):244-248.

[37] 張海娜,李小娟,李存東,等. 過(guò)量表達(dá)小麥超氧化物歧化酶(SOD)基因?qū)煵菽望}能力的影響[J]. 作物學(xué)報(bào),2008,34(8):1 403-1 408.endprint

[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.

[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.

[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.

[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.

[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.

[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.

[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.

[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.

[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.

[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.

[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.

[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.

[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.

[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.

[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.

[36] 葉亞新,金 進(jìn),秦 粉,等. 低溫脅迫對(duì)小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào). 2009,25(23):244-248.

[37] 張海娜,李小娟,李存東,等. 過(guò)量表達(dá)小麥超氧化物歧化酶(SOD)基因?qū)煵菽望}能力的影響[J]. 作物學(xué)報(bào),2008,34(8):1 403-1 408.endprint

张家川| 西盟| 乐清市| 县级市| 平谷区| 通海县| 通城县| 宣化县| 苗栗市| 德州市| 定襄县| 株洲市| 堆龙德庆县| 巨野县| 永平县| 营口市| 山东省| 兴业县| 东台市| 沙雅县| 班玛县| 凤冈县| 乐昌市| 陆河县| 苏尼特右旗| 阿拉尔市| 渝中区| 阜城县| 白玉县| 周宁县| 麟游县| 东宁县| 吉木乃县| 尼玛县| 莱州市| 金塔县| 高阳县| 宁城县| 汾阳市| 晋州市| 青河县|