国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

油棕QTL定位的研究進(jìn)展

2014-08-12 17:12石鵬等
熱帶農(nóng)業(yè)科學(xué) 2014年3期

石鵬等

摘 要 QTL定位是以遺傳連鎖圖譜為基礎(chǔ),利用分子標(biāo)記與QTL之間的連鎖關(guān)系來確定控制數(shù)量性狀的基因在基因組中的位置。油棕的產(chǎn)量性狀、品質(zhì)性狀和發(fā)育性狀等重要的農(nóng)藝性狀都是數(shù)量性狀,利用QTL定位是對數(shù)量性狀進(jìn)行分析的重要方法之一,它有利于加快油棕育種進(jìn)程。綜述油棕重要農(nóng)藝性狀的QTL定位研究進(jìn)展,闡述存在的問題并對未來的研究方向提出建議。

關(guān)鍵詞 油棕 ;數(shù)量性狀位點(diǎn)(QTL) ;作圖群體

分類號 S59 ;Q348

Agricultural Sciences, Wenchang, Hainan 571339)

Abstract QTL mapping is the way which identify the position of gene controlling quantitative trait in genome by using linkage of molecular markers and QTL based on genetic linkage map. The important agronomic traits are quantitative traits in oil palm, including yield, quality and developmental traits, QTL mapping which is one of the crucial approaches analyzing the quantitative traits will facilitate accelerating progress in oil palm breeding. The progress of QTL mapping for important agronomic traits was reviewed in oil palm, existing problems described and suggestions for future research gave in this paper.

Keywords oil palm ; quantitative trait locus ; mapping population

油棕(Elaeis guineensis Jacq.,2n=2x=32)作為重要的熱帶油料作物,有“世界油王”之稱[1]。油棕是世界產(chǎn)油量最高的作物之一。目前為止是單位面積產(chǎn)油量最高的作物,平均每公頃年產(chǎn)油量高達(dá)4.27 t,是花生的5~6倍、大豆的9~10倍[2]。油棕用途廣泛,經(jīng)濟(jì)價(jià)值高,其主要產(chǎn)品棕櫚油和棕櫚仁油,在食品、化工及生物能源方面具有廣泛的應(yīng)用[3]。油棕的大多數(shù)重要農(nóng)藝性狀,比如產(chǎn)量性狀、品質(zhì)性狀和發(fā)育性狀等都是數(shù)量性狀,QTL定位是對這些數(shù)量性狀進(jìn)行初步解析的重要方法之一。油棕重要農(nóng)藝性狀QTL定位研究對于性狀遺傳機(jī)制解析和分子標(biāo)記輔助育種具有重要意義[4]。

1 QTL定位基本原理和方法

QTL(Quantitative Trait Locus)即數(shù)量性狀位點(diǎn),是基因組中控制數(shù)量性狀的基因組區(qū)域。QTL定位(QTL Mapping)是檢測分子標(biāo)記和QTL位點(diǎn)之間的連鎖關(guān)系,并估計(jì)QTL的效應(yīng),從而檢測出控制某一個(gè)性狀的QTL[5]。QTL定位主要依據(jù)的理論基礎(chǔ)是假設(shè)某個(gè)標(biāo)記與某個(gè)QTL之間存在連鎖關(guān)系,則在雜交分離群體中,該標(biāo)記與QTL會(huì)發(fā)生一定程度的共分離,所以該標(biāo)記在不同基因型的均值、方差和數(shù)量性狀分布情況上都會(huì)有差異,標(biāo)記分析法正是通過檢驗(yàn)標(biāo)記的不同基因型之間的差異來推斷標(biāo)記與QTL是否連鎖。簡而言之,QTL定位基本原理就是分析標(biāo)記基因型和數(shù)量性狀值之間的連鎖[6]。

QTL定位常用的群體主要有F2群體[7]、RIL(重組自交系)群體[8]和DH(雙單倍體)群體[9]等初級作圖群體。F2群體構(gòu)建所需時(shí)間短,且能提供大量的信息,但是不能做重復(fù)性實(shí)驗(yàn)。而構(gòu)建永久性分離群體是作圖成功和高效的關(guān)鍵,RIL和DH群體是永久性群體,穩(wěn)定性較好,其中DH群體構(gòu)建所需時(shí)間短,而RIL構(gòu)建時(shí)間較長[10]。在構(gòu)建好作圖群體之后,需要開發(fā)分子標(biāo)記來構(gòu)建遺傳連鎖圖譜。分子標(biāo)記相比表型標(biāo)記和生化標(biāo)記這兩類遺傳標(biāo)記,多態(tài)性更加豐富,隨著DNA提取和檢測技術(shù)的發(fā)展,分子標(biāo)記已經(jīng)廣泛應(yīng)用于動(dòng)植物遺傳學(xué)研究[11]。按照分子標(biāo)記開發(fā)的原理和技術(shù)差異,分子標(biāo)記大致分為三類:(1)基于雜交技術(shù)的分子標(biāo)記,如RFLP,限制性片段長度多態(tài)性[12];(2)基于PCR技術(shù)的分子標(biāo)記,如RAPD,隨機(jī)擴(kuò)增多態(tài)性[13]、SSR,微衛(wèi)星標(biāo)記[14]、STS,特定序列位點(diǎn)[15]、SCAR,特征序列擴(kuò)增區(qū)域[16]等;(3)基于高通量測序技術(shù)的分子標(biāo)記,如SNP,單核苷酸多態(tài)性標(biāo)記[17]等。

遺傳圖譜可以被看作是來自兩個(gè)不同親本染色體的路線圖,連鎖圖譜上標(biāo)示著每一個(gè)標(biāo)記的位置和標(biāo)記間的遺傳距離。連鎖圖譜最重要的用途就是確認(rèn)包含有與感興趣的性狀相關(guān)的基因和QTL的染色體區(qū)域。連鎖圖譜構(gòu)建一般分為3個(gè)主要步驟:(1)作圖群體的構(gòu)建;(2)多態(tài)性標(biāo)記篩選;(3)標(biāo)記連鎖分析。在利用分子標(biāo)記和作圖群體建立完整的遺傳連鎖圖譜后,就可以在全基因組進(jìn)行QTL檢測,目前QTL定位方法主要有單標(biāo)記分析法(SMA,single marker analysis)、區(qū)間作圖法(IM,interval mapping)、復(fù)合區(qū)間作圖法(CIM,composite interval mapping)、完備復(fù)合區(qū)間作圖法(ICIM,inclusive interval mapping)和基于混合線性模型復(fù)合區(qū)間作圖法(MCIM,mixed-model-based composite interval mapping)等[18-21]。endprint

2 油棕重要性狀QTL研究進(jìn)展

油棕產(chǎn)量性狀和品質(zhì)性狀等數(shù)量性狀受到多基因控制,并且受環(huán)境因素的影響,傳統(tǒng)的數(shù)量遺傳學(xué)無法研究控制這些重要農(nóng)藝性狀的QTL的數(shù)目、單個(gè)QTL的遺傳效應(yīng)及其在染色體上的位置。分子遺傳學(xué)的發(fā)展和RFLP、AFLP、SSR等分子標(biāo)記技術(shù)的完善,尤其是高密度遺傳圖譜的構(gòu)建,使得對數(shù)量性狀位點(diǎn)(QTL)進(jìn)行定位和遺傳效應(yīng)分析成為可能。從Paterson等[22]首次在番茄中用RFLP連鎖圖譜進(jìn)行QTL定位研究開始,植物QTL定位研究蓬勃發(fā)展,重要農(nóng)作物如水稻、小麥、棉花和油菜等都取得了不錯(cuò)進(jìn)展,而油棕相關(guān)研究起步較晚。目前,油棕QTL研究報(bào)道主要集中在以下幾個(gè)方面,詳情見表1。

2.1 產(chǎn)量性狀

產(chǎn)量是油棕最重要的經(jīng)濟(jì)性狀,目前主要針對產(chǎn)量及其構(gòu)成因子開展QTL定位研究,包括果串平均重量、平均果串?dāng)?shù)量、單株產(chǎn)油量和果殼厚度等性狀。Mayes等[23]首次在油棕中定位到了距離控制果殼厚度基因Sh最近的RFLP標(biāo)記pOPgSP1282,其距離為9.8 cM,并且在更小的包含45個(gè)油棕單株的群體(A137/30×E80/29)中其距離進(jìn)一步縮短為6.6 cM,作圖群體是重要的育種材料A137/30自交得到的分離群體,且群體中果殼厚度(Sh)性狀產(chǎn)生分離,使得有可能定位到這個(gè)重要的經(jīng)濟(jì)性狀位點(diǎn),基于該群體構(gòu)建的連鎖圖譜包含103個(gè)RFLP標(biāo)記,圖譜全長860 cM,其標(biāo)記覆蓋度較高,偏分離水平低,具有較高的質(zhì)量。Rance等[24]對油棕果實(shí)重量、果殼與果實(shí)比率、中果皮與果實(shí)比率和果仁與果實(shí)比率等產(chǎn)量相關(guān)性狀進(jìn)行了QTL定位,檢測到了顯著相關(guān)的QTL位點(diǎn),為高產(chǎn)油棕分子標(biāo)記輔助育種奠定了基礎(chǔ)。Billotte等[25]首次定位到距離Sh位點(diǎn)最近的AFLP標(biāo)記E-Agg/M-CAA132,距離為4.7 cM,作圖群體由來自于La Me群體的薄殼油棕LM2T和來自于Deli群體的DA10D雜交得來,在油棕中共開發(fā)了390個(gè)SSR標(biāo)記,并用21個(gè)椰子SSR標(biāo)記評估了遺傳多態(tài)性,遺傳圖譜包含255個(gè)微衛(wèi)星標(biāo)記和688個(gè)AFLP標(biāo)記,以及一個(gè)控制油棕果實(shí)中種殼有無的Sh基因位點(diǎn),構(gòu)建了一張基于微衛(wèi)星標(biāo)記的高密度連鎖圖譜,作為油棕中第一張對應(yīng)16對同源染色體的連鎖圖譜,該圖譜是棕櫚科植物中唯一的包含微衛(wèi)星標(biāo)記的高密度遺傳圖譜,是油棕物種中進(jìn)行數(shù)量性狀位點(diǎn)分析和物理作圖的重要一步。Billotte等[4]進(jìn)一步在油棕中利用多親本連鎖作圖進(jìn)行QTL定位研究,檢測到控制包括平均果串?dāng)?shù)量、平均果串重量和平均每果串果實(shí)數(shù)量等19個(gè)產(chǎn)量相關(guān)性狀的76個(gè)QTL位點(diǎn),連鎖圖譜構(gòu)建使用了251個(gè)微衛(wèi)星標(biāo)記,控制果殼有無的Sh基因位點(diǎn)和一個(gè)AFLP標(biāo)記,通過比較QTL檢測結(jié)果發(fā)現(xiàn)雜交群體對于QTL分析更加有效,但是家族的大小問題還有待解決。Seng等[26]構(gòu)建了一張可以用于定位產(chǎn)量相關(guān)QTL的遺傳圖譜,作圖群體的親本分別是厚殼Deli dura和無殼Yangambi,與目前最好的商業(yè)種植材料相比,雜交群體在4個(gè)試驗(yàn)中產(chǎn)量平均提高8%~21%,從CIRAD、MPOB和FELDA上公布信息中收集到的SSR標(biāo)記和自己設(shè)計(jì)的AFLP標(biāo)記一起用來作圖。母本連鎖圖譜包含317個(gè)標(biāo)記,父本圖譜有331個(gè)標(biāo)記,都有16個(gè)連鎖群,每個(gè)連鎖群的標(biāo)記數(shù)目分別為8~47和12~40個(gè),整合圖譜全長2247.5 cM,包含479個(gè)標(biāo)記和168個(gè)錨定位點(diǎn),每個(gè)連鎖群上標(biāo)記數(shù)目是15~57,平均為29個(gè),平均圖譜密度4.7 cM,連鎖群長度從77.5~223.7 cM不等,平均長度137 cM。Kittipat等[27]對油棕果殼厚度等重要性狀進(jìn)行了QTL定位,在控制油棕果實(shí)類型的Sh位點(diǎn)附近找到兩個(gè)新的SSR標(biāo)記。目前,產(chǎn)量性狀的QTL定位研究主要集中于果殼厚度,而其它相關(guān)性狀的定位研究和功能標(biāo)記開發(fā)還有待于進(jìn)一步展開。

2.2 品質(zhì)性狀

目前,品質(zhì)性狀QTL定位研究主要集中在脂肪酸及其組分的含量和碘值等方面,而對于維生素E、β-胡蘿卜素和植物甾醇等功能性成分的研究較少。Rajinder等[28]在油棕雜交群體中定位了控制脂肪酸組分的QTL,碘值、肉豆蔻酸、棕櫚酸、棕櫚油酸、硬脂酸、油酸和亞油酸含量等相關(guān)QTL都被檢測到,其中1號連鎖群上的一個(gè)基因組區(qū)域存在控制著包括碘值、C14:0、C16:0、C18:0和C18:1含量的QTL位點(diǎn),2號連鎖群上檢測到控制C18:2的一個(gè)微效QTL,3號連鎖群上檢測到控制C18:0的另一個(gè)QTL,15號連鎖群上同一個(gè)位點(diǎn)存在著控制C14:0、C16:0、C18:0和C18:1含量的顯著性QTL位點(diǎn),因此揭示了另一個(gè)影響油棕脂肪酸組分的主效位點(diǎn),其作圖群體的親本為哥倫比亞美洲油棕UP1026和尼日利亞的非洲油棕T128,遺傳圖譜上共有252個(gè)標(biāo)記(199個(gè)AFLP,38個(gè)RFLP和15個(gè)SSR),21個(gè)連鎖群(1815cM)。Carmenza等[29]利用美洲油棕和非洲油棕的回交群體進(jìn)行棕櫚油脂肪酸組分QTL定位,最終定位到19個(gè)控制棕櫚油脂肪酸組分的QTL位點(diǎn),連鎖圖譜包含362個(gè)微衛(wèi)星標(biāo)記,圖譜全長1 485 cM,有16個(gè)連鎖群,大量有豐富多態(tài)性的SSR標(biāo)記和QTL信息使得在其它棕櫚屬材料中進(jìn)行定位研究成為可能。Morcillo等[30]通過定位引起油降解的脂肪酶基因,提供了一個(gè)可以鑒定脂肪酸酶基因型的標(biāo)記,可以用來進(jìn)行棕櫚油品質(zhì)改良,油棕中果皮包含有使果穗收獲時(shí)提高脂肪酸降解的高含量脂肪酸酶,脂肪酸酶會(huì)引起油脂減少,因此需要采取措施來控制脂肪酸質(zhì)量,低含量脂肪酸酶的品種有更少的自由脂肪酸,使得在收獲過程中提高油脂的穩(wěn)定性。品質(zhì)性狀的定位研究相對較少,有用的分子標(biāo)記還需要不斷開發(fā)。

2.3 發(fā)育性狀

油棕發(fā)育性狀的QTL研究主要集中在葉片長寬和數(shù)目、莖高和雌雄花比率等方面,還有待于進(jìn)一步挖掘油棕不同器官和發(fā)育不同時(shí)期的性狀,比如油棕苗期根莖葉的長寬和數(shù)目等性狀。Rance等[24]利用153個(gè)RFLP標(biāo)記在F2群體中對油棕發(fā)育相關(guān)性狀(包括葉柄橫截面和葉軸長度等)進(jìn)行了QTL定位,在分析的13個(gè)性狀中,有11個(gè)性狀找到了顯著相關(guān)的QTL位點(diǎn),QTL定位分析采用區(qū)間作圖法,未連鎖標(biāo)記采用單標(biāo)記法進(jìn)行分析,QTL檢測的顯著性閾值通過排布測驗(yàn)獲得,其中通過單標(biāo)記法計(jì)算的均值為27%,區(qū)間作圖法計(jì)算的均值為19%,作圖群體由84個(gè)果殼厚度基因分離的油棕單株構(gòu)成,連鎖圖譜包含22個(gè)連鎖群,在商業(yè)群體中進(jìn)行QTL定位的最大目的是使用如標(biāo)記輔助選擇的新育種策略,本文也討論了MAS在油棕育種過程中的潛在作用。Billotte等[4]利用多親本群體對油棕發(fā)育相關(guān)性狀進(jìn)行了QTL定位,包括主莖高、平均葉片數(shù)目、平均葉片長度和平均葉片寬度等,這些QTL定位研究為油棕株型的分子標(biāo)記輔助育種打下了基礎(chǔ)。Kittipat等[27]對油棕雌雄花比率等重要性狀進(jìn)行了QTL定位,在6個(gè)連鎖群上共定位到8個(gè)控制雌雄花比率和相關(guān)性狀的QTL位點(diǎn),QTL解釋表型變異為8.1%~13.1%,在8號連鎖群上同時(shí)檢測到控制雌雄花比率和雄花序數(shù)量的QTL,作圖群體是來自于兩個(gè)雌雄花比率有差異的薄殼油棕親本雜交得到的208個(gè)子代,圖譜包含210個(gè)基因組SSR標(biāo)記,28個(gè)EST-SSRs,185個(gè)AFLP標(biāo)記和控制果殼厚度的Sh位點(diǎn),圖譜包含16個(gè)連鎖群,全長1931 cM,平均標(biāo)記間距離為4.6 cM。發(fā)育性狀的QTL定位針對的性狀較多,但是每個(gè)性狀研究的深度不夠,今后可以加大對例如雌雄花比率這類在生產(chǎn)上有用性狀的研究力度。endprint

2.4 其它性狀

組織培養(yǎng)是快速繁育優(yōu)良油棕種質(zhì)資源和純化材料的重要方法,愈傷組織發(fā)生是組織培養(yǎng)中的重要環(huán)節(jié),目前QTL定位研究著重于愈傷組織的發(fā)生時(shí)間和發(fā)生比率。Ngoot等[31]用軟件MapQTL 4.0的區(qū)間作圖法對第一次愈傷組織發(fā)生時(shí)間進(jìn)行QTL定位分析,在99%和95%顯著性閾值下分別檢測到3個(gè)和2個(gè)QTL位點(diǎn),在Deli dura和Yangambi pisifera雜交得來的87個(gè)F1單株中利用400個(gè)分子標(biāo)記(126個(gè)RFLP標(biāo)記和274個(gè)AFLP標(biāo)記)構(gòu)建連鎖圖譜,無殼種和厚殼種油棕遺傳圖譜總長分別為1 714和1 225 cM,本研究是第一次在油棕中定位到組織培養(yǎng)過程中愈傷組織發(fā)生相關(guān)性狀的QTL,是解析油棕?zé)o性繁殖過程分子機(jī)制的重要一步。Rajinder等[32]介紹了從油棕基因組序列中簡單高效分離SSR標(biāo)記的方法,總共12個(gè)有信息的SSR標(biāo)記,除了遺傳定位SSR標(biāo)記也可以作為分子探針進(jìn)行油棕組培克隆的DNA指紋分析和克隆的認(rèn)定。Ngoot等[33]進(jìn)一步利用SSR標(biāo)記構(gòu)建的遺傳圖譜定位控制油棕?zé)o性系繁殖和胚胎發(fā)生相關(guān)QTL位點(diǎn),利用SSR圖譜,兩個(gè)愈傷組織發(fā)生率和胚胎發(fā)生率的QTL位點(diǎn)被檢測到,愈傷組織發(fā)生的QTL定位在ENL48的D4b連鎖群上,解釋表型變異的17.5%,胚胎發(fā)生的QTL定位在ML161圖譜的P16b連鎖群上,解釋表型變異的20.1%,作圖群體由厚殼種ENL48和無殼種ML161構(gòu)建而來,SSR標(biāo)記整合到用2006年由AFLP和RFLP標(biāo)記構(gòu)建的圖譜上,新的ENL48連鎖圖譜包含148個(gè)標(biāo)記(33個(gè)AFLPs,38個(gè)RFLPs和77SSRs),共23個(gè)連鎖群,圖譜全長798 cM,ML161圖譜共240個(gè)標(biāo)記(50個(gè)AFLPs,71個(gè)FRLPs和119個(gè)SSRs),24個(gè)連鎖群,總長1 328.1 cM。胚胎發(fā)生率等其它性狀的QTL定位研究找到了一些有用的分子標(biāo)記,但是還沒有出現(xiàn)大范圍應(yīng)用這些分子標(biāo)記的報(bào)道。

3 目前存在的問題與展望

油棕QTL定位研究雖然取得了一些進(jìn)展,但是無論是在定位到的QTL數(shù)量、涉及性狀和遺傳圖譜密度等方面,和水稻、油菜及小麥等作物相比還很少,仍需進(jìn)一步的深入研究。此外,目前油棕QTL定位針對的性狀主要是產(chǎn)量和品質(zhì)性狀,對抗寒性、抗旱性和抗病性等抗逆性狀研究較少。油棕遺傳連鎖圖譜構(gòu)建采用的分子標(biāo)記多是RFLP、AFLP和SSR等第一、二代分子標(biāo)記,最新發(fā)展起來的高通量SNP標(biāo)記還未能應(yīng)用到油棕圖譜構(gòu)建中。

隨著油棕QTL研究的不斷深入,油棕重要數(shù)量性狀的遺傳基礎(chǔ)及分子調(diào)控機(jī)制將進(jìn)一步得到闡述,而且基于QTL定位的分子標(biāo)記輔助選擇可以用來提高育種效率,比傳統(tǒng)的依靠形態(tài)特征進(jìn)行育種更高效,育種目標(biāo)更明確。隨著油棕基因組測序完成和高通量分子標(biāo)記技術(shù)的發(fā)展,對油棕重要農(nóng)藝性狀的遺傳機(jī)制解析將更加深入,使得油棕遺傳育種進(jìn)入到一個(gè)新的水平[34-35]。今后油棕QTL定位可以采用最新的高通量分子標(biāo)記,構(gòu)建更大密度的遺傳圖譜,來研究更多的重要數(shù)量性狀。國內(nèi)油棕QTL定位研究剛剛起步,可以借鑒國外QTL定位研究采用的先進(jìn)經(jīng)驗(yàn),包括理想的作圖親本和群體類型、合適的作圖群體大小、具有豐富遺傳信息的新一代分子標(biāo)記和更準(zhǔn)確的定位方法,針對油棕產(chǎn)量相關(guān)性狀及抗逆性性狀開展研究工作,為培育適合在我國熱區(qū)栽培種植的油棕奠定基礎(chǔ)。

參考文獻(xiàn)

[1] 熊惠波,李 瑞,李希娟,等. 油棕產(chǎn)業(yè)調(diào)查分析及中國發(fā)展油棕產(chǎn)業(yè)的建議[J]. 中國農(nóng)學(xué)通報(bào),2009,25(24):114-117.

[2] Zeven A C. On the origin of the oil palm (Elaeis guineensis Jacq.) [J]. Grana Palynologica, 1964, 5(1): 121-123.

[3] 雷新濤,曹紅星. 油棕[M]. 北京:中國農(nóng)業(yè)出版社,2013:1-3.

[4] Billotte N, Jourjon M F, Marseillac N,et al. QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)[J]. Theor Appl Genet, 2010, 120(8): 1 673-1 687.

[5] Miles C, Wayne M. Quantitative trait locus (QTL) analysis[J]. Nature Education, 2008,1(1): 208.

[6] Trudy F C M, Eric A S, Julien F A. The genetics of quantitative traits: challenges and prospects[J]. Nature Reviews Genetics,2009(10): 565-577.

[7] Li J X, Yu S B, Xu CG, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population form a cross between the parents of an elite rice hybrid[J]. Theor Appl Genet, 2000, 101(1-2): 248-254.

[8] Shanmugavadivel P S, Amitha S V M, Dokku P, et al. Mapping quantitative trait loci (QTL) for grain size in rice using a RIL population from Basmati×indica cross showing high segregation distortion. Euphytica, 2013, 194(3): 401-416.endprint

[9] Danelle K S, Daniele L F, Isabelle M H, et al. Rapid creation of Arabidopsis doubled hapoid lines for quantitative trait locus mapping[J]. PNAS, 2013, 109(11): 4 227-4 232.

[10] Adesio F, Marcia F S, Luciano C S, et al. Estimating the effects of population size and type on the accuracy of genetic maps[J]. Genet Mol Biol, 2006,29(1): 187-192.

[11] Semagn K, Bjornstad A, Ndjiondjop M N. An overview of molecular marker methods for plants[J]. African Journal of Biotechnology,2006,5(25): 2 540-2 568.

[12] Caren C, John L B, Arthur W D, et al. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana[J]. Proc. Natl Acad Sci,1988(85): 6 856-6 860.

[13] Richard W B, Susan J B. RAPD-based genetic linkage maps of Tribolium castaneum[J]. Genetics, 1999, 153: 333-338.

[14] Gilda R, Ivan S. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes[J]. BMC Plant Biology, 2013(13): 11.

[15] Daniel J P, Jean B. Sequence-Tagged-Site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics,1998,149(2): 1 089-1 098.

[16] Luquan Yang, Shelly F, Asaduzzaman K M, et al. Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication[J]. Springerplus, 2013(2): 501.

[17] Nussberger B, Greminger M P, Grossen C, et al. Development of SNP markers identifying European wildcats, domestic cats, and their admixed progeny[J]. Mol Ecol Resour,2013,13(3): 447-460.

[18] Lander E, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1): 185-199.

[19] Tanksley S D. Mapping polygenes[J]. Annu Rev Genet, 1993(27): 205-233.

[20] Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J]. Proc. Natl. Acad. Sci.,1993, 90(23): 10 972-10 976.

[21] Collard B C Y, Jahufer M Z Z, Brouwer J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts[J]. Euphytica, 2005(142): 169-196.

[22] Paterson A H, Eric S L, John D H, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988, 335(6 193): 721-726.

[23] Mayes S, Jack P L, Corley R H, et al. Construction of a RFLP genetic linkage map for oil palm(Elaeis guineensis Jacq.)[J]. Genome,1997,40(1): 116-122.endprint

[24] Rance K A, Mayes S, Price Z, et al. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.)[J]. Theoretical and applied Genetics,2001,103(8): 1 302-1 310.

[25] Billotte N, Marseillac N, Risterucci A M, et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)[J]. Theor Appl Genet, 2005(4): 754-765.

[26] Seng T Y, Mohamed S S, Chin C W, et al. Genetic linkage map of a high yielding FELDA Deli×Yangambi oil palm cross[J]. PLOS ONE, 2011, 6(11): 1-9.

[27] Kittipat U, Vipavee C, Ganlayarat B, et al. Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits[J]. Mol Breeding, 2013, 1-10.

[28] Rajinder S, Soon G T, Jothi M P, et al. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm[J]. BMC Plant Biology, 2009,9: 114.

[29] Carmenza M, Ricardo L, Albert F, et al. Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortes and oil palm (Elaeis guineensis Jacq.)[J]. Tree Genetics & Genomes,2013,9(5): 1 207-1 225.

[30] Morcillo F, Cros D, Billotte N, et al. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration[J]. Nat Commun, 2013(4): 2 160.

[31] Ngoot C T, Cheah S C, Ishak Z, et al. Statistical mapping of quantitative trait loci controlling the time to first callusing in oil palm (Elaeis guineensis) tissue culture[J]. Pertanika Journal of Tropical Agricultural Science, 2006, 29(1-2): 35-45.

[32] Rajinder S, Jayanthi N, Tan S G, et al. Development of simple sequence repeat (SSR) markers for oil palm and their application in genetic mapping and fingerprinting of tissue culture clones[J]. Asia Pacific Journal of Molecular Biology and Biotechnology,2007,15(3): 121-131.

[33] Ngoot C T, Johannes J, Jayanthi N, et al. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers[J]. PLoS ONE,2013,8(1): e53076.

[34] Rajinder S, Meilina O A, Eng T L, et al. Oil palm genome sequence reveals divergence of interfertile species in oil and new worlds[J]. Nature, 2013, 500(7 462): 335-339.

[35] Rajinder S, Eng T L, Leslie C L, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK[J]. Nature, 2013, 500(7 462): 340-344.endprint

[24] Rance K A, Mayes S, Price Z, et al. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.)[J]. Theoretical and applied Genetics,2001,103(8): 1 302-1 310.

[25] Billotte N, Marseillac N, Risterucci A M, et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)[J]. Theor Appl Genet, 2005(4): 754-765.

[26] Seng T Y, Mohamed S S, Chin C W, et al. Genetic linkage map of a high yielding FELDA Deli×Yangambi oil palm cross[J]. PLOS ONE, 2011, 6(11): 1-9.

[27] Kittipat U, Vipavee C, Ganlayarat B, et al. Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits[J]. Mol Breeding, 2013, 1-10.

[28] Rajinder S, Soon G T, Jothi M P, et al. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm[J]. BMC Plant Biology, 2009,9: 114.

[29] Carmenza M, Ricardo L, Albert F, et al. Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortes and oil palm (Elaeis guineensis Jacq.)[J]. Tree Genetics & Genomes,2013,9(5): 1 207-1 225.

[30] Morcillo F, Cros D, Billotte N, et al. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration[J]. Nat Commun, 2013(4): 2 160.

[31] Ngoot C T, Cheah S C, Ishak Z, et al. Statistical mapping of quantitative trait loci controlling the time to first callusing in oil palm (Elaeis guineensis) tissue culture[J]. Pertanika Journal of Tropical Agricultural Science, 2006, 29(1-2): 35-45.

[32] Rajinder S, Jayanthi N, Tan S G, et al. Development of simple sequence repeat (SSR) markers for oil palm and their application in genetic mapping and fingerprinting of tissue culture clones[J]. Asia Pacific Journal of Molecular Biology and Biotechnology,2007,15(3): 121-131.

[33] Ngoot C T, Johannes J, Jayanthi N, et al. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers[J]. PLoS ONE,2013,8(1): e53076.

[34] Rajinder S, Meilina O A, Eng T L, et al. Oil palm genome sequence reveals divergence of interfertile species in oil and new worlds[J]. Nature, 2013, 500(7 462): 335-339.

[35] Rajinder S, Eng T L, Leslie C L, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK[J]. Nature, 2013, 500(7 462): 340-344.endprint

[24] Rance K A, Mayes S, Price Z, et al. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.)[J]. Theoretical and applied Genetics,2001,103(8): 1 302-1 310.

[25] Billotte N, Marseillac N, Risterucci A M, et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)[J]. Theor Appl Genet, 2005(4): 754-765.

[26] Seng T Y, Mohamed S S, Chin C W, et al. Genetic linkage map of a high yielding FELDA Deli×Yangambi oil palm cross[J]. PLOS ONE, 2011, 6(11): 1-9.

[27] Kittipat U, Vipavee C, Ganlayarat B, et al. Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits[J]. Mol Breeding, 2013, 1-10.

[28] Rajinder S, Soon G T, Jothi M P, et al. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm[J]. BMC Plant Biology, 2009,9: 114.

[29] Carmenza M, Ricardo L, Albert F, et al. Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortes and oil palm (Elaeis guineensis Jacq.)[J]. Tree Genetics & Genomes,2013,9(5): 1 207-1 225.

[30] Morcillo F, Cros D, Billotte N, et al. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration[J]. Nat Commun, 2013(4): 2 160.

[31] Ngoot C T, Cheah S C, Ishak Z, et al. Statistical mapping of quantitative trait loci controlling the time to first callusing in oil palm (Elaeis guineensis) tissue culture[J]. Pertanika Journal of Tropical Agricultural Science, 2006, 29(1-2): 35-45.

[32] Rajinder S, Jayanthi N, Tan S G, et al. Development of simple sequence repeat (SSR) markers for oil palm and their application in genetic mapping and fingerprinting of tissue culture clones[J]. Asia Pacific Journal of Molecular Biology and Biotechnology,2007,15(3): 121-131.

[33] Ngoot C T, Johannes J, Jayanthi N, et al. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers[J]. PLoS ONE,2013,8(1): e53076.

[34] Rajinder S, Meilina O A, Eng T L, et al. Oil palm genome sequence reveals divergence of interfertile species in oil and new worlds[J]. Nature, 2013, 500(7 462): 335-339.

[35] Rajinder S, Eng T L, Leslie C L, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK[J]. Nature, 2013, 500(7 462): 340-344.endprint

开封市| 四子王旗| 乌拉特后旗| 云龙县| 思茅市| 新泰市| 南昌县| 榆中县| 厦门市| 清水河县| 噶尔县| 宣城市| 桂林市| 江城| 灵璧县| 平乐县| 来宾市| 沐川县| 九江县| 武川县| 怀安县| 罗源县| 屏南县| 调兵山市| 海林市| 奈曼旗| 温泉县| 乳山市| 浮山县| 定安县| 禹州市| 辽宁省| 竹北市| 灵璧县| 化州市| 环江| 江都市| 始兴县| 信阳市| 宁海县| 锡林郭勒盟|