宋錦寧,李 宇
(西安交通大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科,陜西西安 710061)
◇專家述評(píng)◇
彌漫性軸索損傷后繼發(fā)性腦損傷與神經(jīng)保護(hù)治療的研究進(jìn)展
宋錦寧,李 宇
(西安交通大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科,陜西西安 710061)
彌漫性軸索損傷(diffuse axonal injury, DAI)是一個(gè)進(jìn)行性的病理生理變化,主要的腦損傷發(fā)生于繼發(fā)性損傷(secondary injury, SI)階段。因此,SI是影響患者病情及預(yù)后的重要因素。目前,有關(guān)SI病理機(jī)制的研究表明,DAI后神經(jīng)元的SI涉及神經(jīng)元及軸膜的離子平衡紊亂、沃勒變性、軸膜通透性改變、線粒體損傷及能量代謝障礙、免疫炎癥反應(yīng)以及氧化應(yīng)激損傷等多種損傷機(jī)制。這些SI機(jī)制相互作用相互影響,是最終導(dǎo)致DAI后神經(jīng)元變性、甚至壞死和凋亡以及軸突繼發(fā)性斷裂的關(guān)鍵原因。雖然臨床上對(duì)DAI患者的治療目前無突破性進(jìn)展,仍采用一般性治療、亞低溫以及神經(jīng)營(yíng)養(yǎng)等手段。但新近研究顯示,有一些動(dòng)物的體內(nèi)或體外實(shí)驗(yàn)為DAI后的SI提供了潛在的治療靶點(diǎn),如鈣離子拮抗劑、軸膜保護(hù)及修復(fù)藥物、鈣依賴的蛋白水解酶抑制劑、氧化應(yīng)激抑制劑以及免疫抑制劑等。進(jìn)一步闡明DAI后鈣離子平衡紊亂、軸漿運(yùn)輸中斷、線粒體損傷及能量代謝障礙、免疫炎癥反應(yīng)等SI的相關(guān)分子機(jī)制,以及這些多因素導(dǎo)致的DAI病理機(jī)制相互間的關(guān)系,將對(duì)減輕或阻斷DAI后發(fā)生SI,加強(qiáng)神經(jīng)保護(hù)與修復(fù),以及為未來突破DAI的治療瓶頸均具有重要意義。
腦外傷;彌漫性軸索損傷;繼發(fā)性損傷;神經(jīng)保護(hù);治療
彌漫性軸索損傷(diffuse axonal injury, DAI)是腦外傷(traumatic brain injury, TBI)中一種常見且十分危重的類型。該疾病自1956年由STRICH等[1]首次報(bào)道至今,人類雖然對(duì)DAI發(fā)生機(jī)制的研究已取得了許多成果,同時(shí)臨床上隨著影像技術(shù)的提高及對(duì)該疾病的進(jìn)一步認(rèn)識(shí),對(duì)DAI的診斷已有了明顯進(jìn)步,然而對(duì)該疾病的治療仍未取得較好的突破,DAI患者的死亡率與重殘率仍然偏高,預(yù)后極差。因此,進(jìn)一步揭示DAI發(fā)生、發(fā)展的病理機(jī)制與變化規(guī)律,將對(duì)DAI后神經(jīng)保護(hù)及指導(dǎo)治療具有重要意義。近10多年來圍繞DAI的損傷機(jī)制的研究已逐漸從結(jié)構(gòu)病理觀察轉(zhuǎn)向功能性研究。隨著體外模型的建立,能更加直接地觀察機(jī)械外力作用神經(jīng)元軸突后的損傷過程,并更加便利地去研究相關(guān)的分子機(jī)制。目前的大量研究顯示,造成DAI不良預(yù)后的主要原因是繼發(fā)性損傷(secondary injury, SI)階段軸突的廣泛的變性以及斷裂過程,這其中包括了各種原因?qū)е碌拟}濃度平衡紊亂而引起的細(xì)胞骨架水解,以及軸漿運(yùn)輸中斷導(dǎo)致的沃勒變性(Wallerian degeneration, WD)。另一方面,近來學(xué)者研究發(fā)現(xiàn)DAI后的線粒體損傷及谷氨酸介導(dǎo)的損傷,同樣將造成神經(jīng)元的壞死及凋亡[2-3]。因此,DAI雖然是軸突在機(jī)械應(yīng)力作用下產(chǎn)生的損傷,但實(shí)際上該損傷不僅僅局限于軸突,同樣可導(dǎo)致神經(jīng)元的死亡。針對(duì)DAI后SI的病理生理變化與分子機(jī)制的深入研究,并進(jìn)一步探索及完善SI的治療策略,將為攻克DAI治療這一難題提供重要方向。
DAI按時(shí)間可劃分為兩部分,即原發(fā)性損傷和SI階段[4-5]。原發(fā)性腦損傷是指損傷當(dāng)時(shí)由機(jī)械力直接作用所導(dǎo)致的腦組織損傷,僅僅發(fā)生于機(jī)械外力作用的即刻時(shí)間段中。SI是在原發(fā)性腦損傷的基礎(chǔ)上,由多種因素所引起的逐漸出現(xiàn)的腦組織損傷,包含了大量的細(xì)胞及組織層面的事件,最終導(dǎo)致軸突進(jìn)行性變性及斷裂[6-7]、神經(jīng)元的壞死及凋亡[8]、炎癥反應(yīng)[9]、缺血缺氧損傷[10-11]、腦血流改變等[11-12]。其中DAI后SI階段中最具特異性和重要的病理生理改變是軸突廣泛進(jìn)行性變性及斷裂,實(shí)驗(yàn)研究發(fā)現(xiàn)DAI損傷后立即作病理學(xué)檢查,在顯微鏡下未發(fā)現(xiàn)軸索斷裂,也未能檢出DAI特征的典型病理變化即軸索回縮球(retraction balls, RBs)的形成,這說明軸索的變性及斷裂過程并非發(fā)生于原發(fā)性損傷階段。DAI的損傷是一個(gè)進(jìn)行性的病理生理變化,主要的損傷發(fā)生于SI階段[13-14]。由于SI是影響患者病情及預(yù)后的重要因素,因此如何預(yù)防SI的發(fā)生、并降低SI的程度是整個(gè)DAI治療過程中十分關(guān)鍵的步驟。
對(duì)于DAI后SI的病理特點(diǎn),在軸突部位主要表現(xiàn)為髓鞘結(jié)構(gòu)的破壞及脫失、軸突的腫脹或斷裂,RBs形成。而對(duì)于神經(jīng)元或膠質(zhì)細(xì)胞,并不具有特異性的形態(tài)學(xué)變化,主要表現(xiàn)為神經(jīng)元細(xì)胞死亡的形態(tài)學(xué)改變,炎癥反應(yīng)導(dǎo)致的膠質(zhì)細(xì)胞聚集。因此,在損傷后,HE染色無法觀察到特異性的形態(tài)學(xué)改變;采用特殊染色法如鍍銀染色,可見損傷后的軸索神經(jīng)纖維髓鞘脫失,軸索屈曲呈波浪狀或串珠樣改變[15-16],但鍍銀染色僅可觀察到傷后5 h以后的病理改變。對(duì)于更早期的病理改變需要在電子顯微鏡下觀察,電鏡觀察結(jié)果顯示DAI并非損傷即刻由剪應(yīng)力直接造成軸索的牽拉變性或撕裂,而是一個(gè)逐漸發(fā)展的病理過程,大約在傷后3~24 h之間發(fā)生,因此稱為遲發(fā)性軸索斷裂[17]。對(duì)DAI后的腦組織進(jìn)行電鏡觀察,發(fā)現(xiàn)軸突的主要變化為:軸膜的局部損傷造成軸膜通透性改變,軸突內(nèi)線粒體腫脹聚集形成RBs和(或)RBs之間軸突內(nèi)徑的局限性變細(xì),軸索內(nèi)微管的消失和神經(jīng)絲由早期的聚集到側(cè)臂的丟失,結(jié)節(jié)間軸膜降解,軸膜從髓鞘內(nèi)面開始分離,進(jìn)而產(chǎn)生軸突間的空隙,軸索腫脹出現(xiàn)髓鞘突起直至最后軸索斷裂,形成軸索RBs[18]。
β-淀粉樣前體蛋白(β-amyloid precursor protein, β-APP)免疫組化技術(shù)為早期檢測(cè)DAI的SI提供了可能[19]。β-APP是目前診斷DAI敏感的指標(biāo),β-APP為跨膜糖蛋白,在哺乳動(dòng)物的正常神經(jīng)元中廣泛表達(dá),胞體合成后通過軸漿快速轉(zhuǎn)運(yùn)機(jī)制運(yùn)輸至軸索[20]。目前發(fā)現(xiàn)β-APP有4種亞型,根據(jù)相對(duì)分子質(zhì)量分為:β-APP563、β-APP695、β-APP751和β-APP770,其中β-APP695在正常狀態(tài)下的神經(jīng)元軸索中表達(dá)水平較低,一旦外界損傷因素(機(jī)械性損傷、缺血缺氧損傷、神經(jīng)興奮性毒損傷等)作用后,β-APP695可作為一種快速反應(yīng)性蛋白,其表達(dá)水平明顯升高。同時(shí),因軸索損傷引起軸索的軸漿運(yùn)輸障礙,使得β-APP在損傷部位聚集,因而在DAI后β-APP可以作為一個(gè)早期診斷指標(biāo)[21]。
2.1 鈣離子平衡紊亂 對(duì)于DAI來說,出現(xiàn)神經(jīng)元內(nèi)及軸突的鈣離子平衡穩(wěn)態(tài)破壞是較為公認(rèn)的SI重要機(jī)制之一[22-23]。對(duì)于DAI后鈣離子濃度升高的發(fā)生已在細(xì)胞、動(dòng)物模型上得到證實(shí)[24-25]。一旦神經(jīng)元內(nèi)或神經(jīng)元軸突內(nèi)鈣離子產(chǎn)生聚集,升高的細(xì)胞內(nèi)鈣離子濃度可以通過以下幾個(gè)方面參與SI:①直接通過激活鈣依賴的蛋白水解酶(Calpain),從而損傷細(xì)胞骨架[26]。神經(jīng)元內(nèi)的細(xì)胞骨架主要由位于細(xì)胞質(zhì)的微管、微絲及貼附于細(xì)胞膜內(nèi)側(cè)由血影蛋白、肌動(dòng)蛋白、錨蛋白組成的膜網(wǎng)狀結(jié)構(gòu)構(gòu)成,Calpain被激活后可以直接使得以上細(xì)胞骨架蛋白水解,從而破壞細(xì)胞骨架,產(chǎn)生軸突繼發(fā)性斷裂[27];②通過激活Calpain繼而活化Caspase-3,上調(diào)促凋亡蛋白的表達(dá),同時(shí)下調(diào)凋亡抑制蛋白Bcl-2的表達(dá),導(dǎo)致神經(jīng)元凋亡[28];③神經(jīng)元或軸漿內(nèi)Ca2+升高后,線粒體將增強(qiáng)對(duì)Ca2+的攝入,導(dǎo)致線粒體管腔內(nèi)Ca2+濃度升高,當(dāng)細(xì)胞內(nèi)Ca2+濃度上升在閾值以下時(shí),該過程可以在某種程度上調(diào)節(jié)細(xì)胞內(nèi)Ca2+濃度趨于穩(wěn)態(tài)。一旦細(xì)胞內(nèi)Ca2+升高超過閾值,線粒體管腔內(nèi)Ca2+濃度升高劇烈,將導(dǎo)致線粒體跨膜電位下降,誘導(dǎo)位于線粒體內(nèi)膜上的線粒體通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore, mPTP)開放,繼而使得Ca2+反過來向胞質(zhì)釋放,進(jìn)一步加劇鈣離子超載程度。同時(shí),線粒體內(nèi)的H+可由開放的mPTP漏出,從而導(dǎo)致活性氧自由基(reactive oxygen species,ROS)損傷[29]。
有關(guān)DAI后鈣離子是如何在神經(jīng)元內(nèi)聚集,目前已被揭示的有以下幾方面機(jī)制:①Na+通道開放導(dǎo)致的鈣離子濃度升高。在機(jī)械應(yīng)力作用于軸突后損傷電壓依賴鈉通道,導(dǎo)致持續(xù)的Na+進(jìn)入細(xì)胞內(nèi),從而去極化產(chǎn)生動(dòng)作電位激活電壓門控的鈣離子通道,細(xì)胞外Ca2+進(jìn)入細(xì)胞內(nèi)[30];②應(yīng)力導(dǎo)致的細(xì)胞膜損傷。KILINC等[31-32]在使用液壓損傷建立的DAI細(xì)胞模型上,發(fā)現(xiàn)機(jī)械性外力作用于神經(jīng)元可直接導(dǎo)致細(xì)胞膜損傷,從而使得細(xì)胞膜通透性升高,導(dǎo)致細(xì)胞外Ca2+進(jìn)入細(xì)胞內(nèi);③谷氨酸受體介導(dǎo)的Ca2+內(nèi)流。DAI后細(xì)胞外液中谷氨酸含量明顯升高,谷氨酸通過作用于相應(yīng)的離子型受體如N-甲基-D-天冬氨酸受體(NMDAR)[33]、α-氨基-3羥基-5甲基-4異惡唑受體(AMPAR)[34]及海人藻酸受體(KAR)[35]并激活這些受體,細(xì)胞外Ca2+繼而通過上述受體進(jìn)入細(xì)胞內(nèi);④神經(jīng)元內(nèi)鈣庫Ca2+釋放。神經(jīng)元及其軸突經(jīng)機(jī)械牽拉損傷后,細(xì)胞內(nèi)鈣庫的Ca2+釋放。WEBER等[36]率先報(bào)道,牽拉損傷后的神經(jīng)元通過PLC-IP3信號(hào)通路激活內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum, ER)上的IP3受體,從而將ER內(nèi)Ca2+釋放至細(xì)胞質(zhì)。STAAL等[37]的研究也發(fā)現(xiàn)軸突損傷可激活Ca2+濃度快速升高,并且進(jìn)一步實(shí)驗(yàn)發(fā)現(xiàn)這種升高的Ca2+濃度來源于細(xì)胞內(nèi)Ca2+,而非由細(xì)胞外流入。
2.2 軸漿運(yùn)輸障礙及WD 1850年,WD由神經(jīng)科學(xué)家WALLER發(fā)現(xiàn),當(dāng)時(shí)他在觀察青蛙的視神經(jīng)橫斷后實(shí)驗(yàn)時(shí),發(fā)現(xiàn)斷裂后的遠(yuǎn)側(cè)神經(jīng)顯示了一系列形態(tài)結(jié)構(gòu)變化,并將這種過程定義為WD。目前,已發(fā)現(xiàn)其在中樞或外周的多種軸突變性性疾病中均發(fā)揮著重要作用。其概念是指當(dāng)軸突由各種因素所致的損傷導(dǎo)致軸突的軸漿運(yùn)輸障礙,其遠(yuǎn)端的(遠(yuǎn)離神經(jīng)元胞體)軸突逐步變性、分解,最終被巨噬/小膠質(zhì)細(xì)胞及Schwann清除[38],這一損傷后的變性機(jī)制被很多學(xué)者認(rèn)為是由軸突自身特性決定[39-40]。對(duì)于DAI來說,其損傷即刻雖無明顯軸突斷裂的發(fā)生,但是軸突細(xì)胞骨架損傷已經(jīng)發(fā)生[41]。TANG-SCHOMER等[42]利用對(duì)體外培養(yǎng)神經(jīng)元軸突行牽拉致傷,牽拉損傷后即刻(小于2 min)進(jìn)行細(xì)胞固定后電鏡觀察,發(fā)現(xiàn)軸突部位中部分微管已發(fā)生斷裂,從而直接影響軸漿運(yùn)輸過程,軸突中微管損傷部位的軸漿運(yùn)輸物質(zhì)開始堆積,并在相應(yīng)部位形成球狀膨大,隨著逐漸脹大的球狀結(jié)構(gòu)繼續(xù)發(fā)展,最終導(dǎo)致了軸突的繼發(fā)性斷裂。
目前,WD的分子機(jī)制并不十分明確,但慢沃勒變性(slow Wallerian degeneration, Wlds)基因突變還是為WD的研究提供了一些基礎(chǔ)。所謂Wlds是利用基因突變技術(shù),將Wlds基因嵌入4號(hào)常染色體尾端的DNA中,形成一個(gè)穩(wěn)定的串聯(lián)三倍體基因片段。該突變自身并不對(duì)動(dòng)物產(chǎn)生明顯損傷,也不對(duì)軸突的生存產(chǎn)生影響,但該突變明顯減慢了WD的進(jìn)展速度[38]。Wlds突變體可編碼由70個(gè)氨基酸組成的UBE4b蛋白的羧基尾端,并與NAD蛋白融合,從而產(chǎn)生NMDAT-1。NMDAT-1的表達(dá)可導(dǎo)致NAD+合成增多,增加了軸突線粒體內(nèi)的能量代謝,雖然該變化被認(rèn)為是Wlds提供軸突保護(hù)的主要機(jī)制,但是有實(shí)驗(yàn)證明外源性地加入NAD+并未保護(hù)軸突損傷后的變性[43]。因此,Wlds影響WD的分子機(jī)制仍有待進(jìn)一步闡明。
2.3 軸膜通透性改變 軸膜通透性改變?cè)谙惹暗难芯恐芯鸵呀?jīng)被發(fā)現(xiàn),并被認(rèn)為是軸突機(jī)械性損傷后應(yīng)力作用的直接結(jié)果。在90年代中期,有研究已表明軸突機(jī)械損傷后軸膜出現(xiàn)“機(jī)械膜孔”(mechanoporation)[44-45]。利用外源性加入辣根過氧化物酶(HRP)研究軸突損傷的通透性改變,實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)機(jī)械損傷后幾分鐘HRP開始逐漸進(jìn)入軸膜內(nèi)并聚集,直到損傷后的6 h,損傷位點(diǎn)的軸突都有HRP的聚集現(xiàn)象[45]。這種損傷后的“機(jī)械膜孔”形成被認(rèn)為具有十分重要的意義。因?yàn)檩S膜通透性的升高將直接導(dǎo)致鈣內(nèi)流介導(dǎo)的一系列損傷過程,同時(shí)由于細(xì)胞內(nèi)維持著相對(duì)較低的Na+濃度,細(xì)胞外Na+同樣可以進(jìn)入軸漿,繼而細(xì)胞外液可以進(jìn)入而引起軸突腫脹[46]。隨后研究發(fā)現(xiàn)這種“機(jī)械膜孔”的形成直接與Calpain的活化相關(guān),并且進(jìn)一步的研究證實(shí),采用一些改善軸膜通透性的藥物可抑制Ca2+濃度的升高及Calpain的活化,對(duì)軸突變性具有保護(hù)作用[31-32]。
2.4 線粒體損傷及能量代謝障礙 線粒體的形態(tài)學(xué)改變及功能異常是DAI后神經(jīng)元及軸突SI機(jī)制之一。形態(tài)學(xué)上的研究發(fā)現(xiàn),軸突牽拉損傷后,線粒體在軸突上的分布將發(fā)生改變,這種變化表現(xiàn)為線粒體由較為均勻的分布改變?yōu)樵谧冃該p傷處明顯密集的一種分布形式[40]。目前,仍不清楚這種線粒體的聚集現(xiàn)象的發(fā)生機(jī)制。推測(cè)可能有以下兩點(diǎn)原因:首先,軸突損傷后的水腫部位具有較正常形態(tài)更大的體積,這可能是鏡下觀察線粒體局部增多的部分原因;其次,更為重要的是損傷后的軸突由于軸漿運(yùn)輸?shù)恼系K,線粒體可能無法正常運(yùn)輸?shù)捷S突遠(yuǎn)端,從而在變性腫脹的部分堆積。對(duì)以上推測(cè)仍需實(shí)驗(yàn)的驗(yàn)證。損傷后線粒體的另外一個(gè)形態(tài)變化表現(xiàn)為線粒體水腫,這是由mPTP的開放造成,從而可使小于1.5 ku的蛋白或游離的電解質(zhì)及水分子進(jìn)入線粒體管腔。
在功能上,損傷后線粒體內(nèi)的膜電位下降將導(dǎo)致線粒體內(nèi)的能量代謝下降。對(duì)于牽拉損傷的神經(jīng)元及膠質(zhì)細(xì)胞,線粒體的膜電位下降改變均存在,從而造成了神經(jīng)元及膠質(zhì)細(xì)胞的能量代謝紊亂[47]。ATP的供給不足將在兩個(gè)方面對(duì)損傷的神經(jīng)元軸突的SI產(chǎn)生影響:首先,ATP下降可導(dǎo)致軸膜上、ER及線粒體上維持Ca2+穩(wěn)態(tài)的離子泵功能障礙,從而進(jìn)一步加重Ca2+平衡的紊亂,Ca2+平衡紊亂造成的Calpain活化繼而可以進(jìn)一步開放mPTP,從而形成一個(gè)正反饋過程[48-49];其次,mPTP的開放可導(dǎo)致ROS以及促凋亡因子物質(zhì)(包括細(xì)胞色素C及促凋亡因子Caspase3、Caspase9)的釋放,并通過啟動(dòng)凋亡機(jī)制參與SI[50]。
2.5 谷氨酸介導(dǎo)的損傷 在中樞神經(jīng)系統(tǒng)中,谷氨酸是一種主要的興奮性神經(jīng)遞質(zhì),參與細(xì)胞多種功能過程。谷氨酸受體分為兩類,一類為離子型受體(iGIuRs)包括NMDA受體、AMPA受體及KA受體,它們與離子通道藕聯(lián),形成受體通道復(fù)合物;另一類屬于代謝型受體(mGluRs),它們與膜內(nèi)G蛋白藕聯(lián),共分為3組。
谷氨酸的興奮性毒作用在灰質(zhì)損傷中的研究已相對(duì)較為廣泛。近來發(fā)現(xiàn)谷氨酸同樣參與了白質(zhì)的變性損傷過程。已有很多報(bào)道闡明AMPA/KA及NMDA等離子型谷氨酸受體拮抗劑對(duì)損傷后軸突的保護(hù)作用。同時(shí)如果使用AMPA/KA或NMDA的激動(dòng)劑,會(huì)加重軸突的損傷。進(jìn)一步研究發(fā)現(xiàn),AMPA/KA及NMDA受體激活后均對(duì)Ca2+具有通透性,從而使得細(xì)胞內(nèi)Ca2+濃度升高,導(dǎo)致DNA、蛋白質(zhì)、磷脂降解,氧自由基形成,線粒體功能障礙[51]。特別值得一提的是,近來的研究發(fā)現(xiàn)谷氨酸受體介導(dǎo)的Ca2+超載中,有部分受體是通過ER內(nèi)Ca2+釋放來完成的:mGluR1及GluR5(KAR的一種亞型)可通過G蛋白-PLC-IP3通路,活化ER上的IP3R,從而使得ER釋放Ca2+;GluR4(AMPA的一種亞型)可通過RyR2(位于ER上的鈣通道釋放受體)使得ER內(nèi)Ca2+釋放;GluR6(KAR的另一種亞型)可通過活性氮(NOS)進(jìn)而激活RyR1受體使得ER內(nèi)Ca2+釋放[52]。
2.6 免疫炎癥反應(yīng) 目前對(duì)于DAI后的炎癥反應(yīng)的研究數(shù)量并不多,但仍有不少學(xué)者認(rèn)為,同其他類型腦外傷一樣,DAI后的炎癥反應(yīng)同樣是SI中的一環(huán)。炎癥反應(yīng)是中樞神經(jīng)系統(tǒng)對(duì)腦外傷的神經(jīng)毒性和神經(jīng)保護(hù)性反應(yīng),是活體對(duì)刺激的正常反應(yīng),包括星形膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞等炎癥細(xì)胞的浸潤(rùn)和炎癥因子的產(chǎn)生和釋放。但是過度的炎癥反應(yīng)也同樣會(huì)產(chǎn)生加重?fù)p傷的作用,并導(dǎo)致血腦屏障的破壞和腦水腫的形成,在腦組織炎癥反應(yīng)中最基本的標(biāo)志是小膠質(zhì)細(xì)胞的活化及白細(xì)胞浸潤(rùn)[53]。VENKATESAN等[54]利用小鼠顱骨中線沖擊致傷建立DAI模型,利用Galectin-3/Mac-2作為活化的小膠質(zhì)細(xì)胞標(biāo)志物,發(fā)現(xiàn)損傷后24 h活化的小膠質(zhì)細(xì)胞升高程度最為明顯,并且這種升高趨勢(shì)一直持續(xù)到損傷后的28 d。CSUKA等[55-56]利用Marmarou的落體垂直打擊建立DAI模型,發(fā)現(xiàn)損傷后星形膠質(zhì)細(xì)胞數(shù)量明顯上升,以48 h最為明顯,持續(xù)至2周左右。在損傷反應(yīng)中,細(xì)胞因子是重要的細(xì)胞與細(xì)胞信息交流的調(diào)節(jié)劑,IL-1、COX-2及TNF-α等是參與腦損傷后SI的主要炎癥因子。MINGHETTI等[53]證明在促炎性刺激物的作用下,小膠質(zhì)細(xì)胞發(fā)生應(yīng)答反應(yīng),釋放COX-2等炎癥介質(zhì),促進(jìn)前列腺素類物質(zhì)的生成。近來的研究發(fā)現(xiàn)活化的小膠質(zhì)細(xì)胞還可以引起IL-1β mRNA水平上調(diào),釋放大量促炎性因子IL-1β,而IL-1β通過IL-1RI的介導(dǎo)引起TNF-α水平升高,從而加重軸索損傷[57]。
關(guān)于DAI后SI機(jī)制的研究,雖然目前主要在上述這6個(gè)方面取得了可喜的進(jìn)展,而實(shí)際上這些SI機(jī)制各自間有著密切聯(lián)系,形成一個(gè)錯(cuò)綜復(fù)雜的機(jī)制網(wǎng),諸多因素共同作用,最終導(dǎo)致SI的發(fā)生與發(fā)展。DAI后軸突繼發(fā)性斷裂及神經(jīng)元壞死、凋亡機(jī)制示意圖見圖1。
圖1 DAI后軸突繼發(fā)性斷裂及神經(jīng)元壞死、凋亡機(jī)制示意圖
Fig.1 The pathophysiological mechanisms of secondary axonal degeneration/disruption and neuronal necrosis/apoptosis
3.1 抑制Ca2+濃度升高及其介導(dǎo)的Calpain激活 目前,對(duì)于DAI治療的研究,大部分都圍繞Ca2+及Ca2+激活的蛋白水解酶Calpain展開。在體外實(shí)驗(yàn)的研究中,發(fā)現(xiàn)Ca2+內(nèi)流抑制劑,如L-型Ca2+通道阻滯劑尼莫地平[58]及硝苯地平[59],對(duì)軸突的損傷具有很好的保護(hù)作用。金屬離子替代物,如鈷離子、鎂離子等同樣經(jīng)研究表明對(duì)軸突的變性具有緩解作用[60]。在視神經(jīng)的牽拉損傷模型中,發(fā)現(xiàn)利用苯磺酸氨氯地平、阿米洛利和喹喔啉(NBQX)的聯(lián)合治療,可緩解損傷后軸突內(nèi)Ca2+濃度升高,并對(duì)軸突的繼發(fā)性斷裂有保護(hù)作用。反之,使用Ca2+載體A23187(可將Ca2+轉(zhuǎn)運(yùn)至細(xì)胞內(nèi))加重了軸突結(jié)構(gòu)的瓦解[61-62]。對(duì)于在DAI后進(jìn)行Calpain抑制劑的干預(yù),在體外及體內(nèi)實(shí)驗(yàn)中都被證明具有明顯治療效果。如Calpain抑制劑MDL28180、5b、AK295和SJA-6017等已被多個(gè)實(shí)驗(yàn)證明對(duì)腦外傷后的軸突具有保護(hù)作用[63-66]。
3.2 軸膜完整性 由于DAI后的原發(fā)性損傷過程中的機(jī)械性應(yīng)力可直接作用軸膜,導(dǎo)致膜損傷形成“機(jī)械膜孔”,從而引起Ca2+內(nèi)流。因此,在損傷后早期改善軸膜的完整性將對(duì)軸突的繼發(fā)性變性具有保護(hù)作用。KILINC等[67]使用名為泊洛沙姆188(P188)的一種可對(duì)軸突損傷后的膜孔進(jìn)行修補(bǔ)的化合物,發(fā)現(xiàn)在皮層神經(jīng)元軸突牽拉損傷后,P188改善了軸膜通透性,同時(shí)緩解了軸漿內(nèi)Ca2+濃度的升高,并減輕了軸突的繼發(fā)性變性損傷。另外,聚乙二醇(PEG)也被證實(shí)具有類似的治療效果[68]。使用PEG修飾的硅膠顆粒物,發(fā)現(xiàn)可明顯改善損傷后腦組織的電傳導(dǎo)功能[69]。但是,該治療手段存在一些問題。比如是否可以在損傷發(fā)生的早期使用?因?yàn)檫@些治療手段只有在早期使用才具有明顯治療效果。另外,這些化學(xué)物質(zhì)的副作用及如何應(yīng)用到損傷病灶發(fā)生的位置也值得進(jìn)一步研究。
3.3 線粒體保護(hù) 如前所述,線粒體在DAI后的作用機(jī)制與mPTP的開放密切相關(guān),不論是參與Ca2+超載,還是介導(dǎo)ROS及凋亡過程。環(huán)孢霉素A(CsA)是一種熟知的免疫抑制劑,同時(shí)CsA也可以對(duì)線粒體的mPTP的開放有抑制作用。CsA對(duì)損傷的軸突具有保護(hù)作用是由OKONKWO等[70]率先發(fā)現(xiàn),然后在多種腦外傷模型中進(jìn)行了驗(yàn)證,發(fā)現(xiàn)CsA通過抑制mPTP的開放,進(jìn)而明顯減輕了線粒體的水腫及崩解[71];同時(shí)CsA對(duì)軸突Ca2+濃度升高的抑制作用也被驗(yàn)證,并證實(shí)CsA可以減輕軸突的細(xì)胞骨架進(jìn)一步水解;在對(duì)具有髓鞘包被的神經(jīng)纖維的研究中,發(fā)現(xiàn)CsA還可以保持損傷后神經(jīng)纖維的動(dòng)作電位[72],但是在不含髓鞘包被的神經(jīng)纖維中未發(fā)現(xiàn)該現(xiàn)象。隨后,發(fā)現(xiàn)另一種免疫抑制劑FK506具有類似的軸突保護(hù)作用,但是FK506的保護(hù)機(jī)制并非通過影響線粒體的mPTP,而是通過影響線粒體的磷酸酶而發(fā)揮作用[72];另外,F(xiàn)K506對(duì)無髓神經(jīng)纖維具有保護(hù)電生理功能的作用。
3.4 亞低溫治療 亞低溫是一種對(duì)代謝功能發(fā)揮明顯抑制作用的治療手段。外傷后的亞低溫治療效果被很多動(dòng)物實(shí)驗(yàn)證明具有明顯保護(hù)作用[73-74]。研究結(jié)果顯示亞低溫治療后通過緩慢復(fù)溫的治療效果較快速復(fù)溫更加穩(wěn)定明顯,如果于復(fù)溫階段加入FK506或CsA,能明顯提高DAI的治療效果[74]。值得一提的是,不論是亞低溫治療,還是FK506或CsA治療,都改善了腦組織的微循環(huán)[75],這可能也是這些治療手段具有療效的一個(gè)重要原因之一。但不幸的是,亞低溫治療對(duì)臨床上DAI的患者并未產(chǎn)生明顯治療效果,僅對(duì)合并腦出血須行引流治療的患者有保護(hù)作用。這可能是因?yàn)榇蠖鄶?shù)動(dòng)物實(shí)驗(yàn)都是在損傷后立刻(不超過1 h)進(jìn)行了亞低溫干預(yù),而對(duì)于現(xiàn)實(shí)生活中的患者,他們很難在外傷后立刻接受治療。但盡管如此,亞低溫治療仍具有意義,因?yàn)閬喌蜏刂委熆梢苑啪廌AI后的SI進(jìn)程,這為其他藥物的使用提供了時(shí)間窗。
其他治療如氧自由基清除劑、甾體類化合物、神經(jīng)營(yíng)養(yǎng)藥物、促紅素、生長(zhǎng)激素抑制素等也不同程度對(duì)DAI具有治療效果[76-79]。然而,由于仍缺乏足夠數(shù)量的深入研究,目前尚未得到廣泛的學(xué)術(shù)認(rèn)可。
目前,對(duì)于DAI的研究受限于模型的建立。與其他疾病不同,DAI模型的建立需要專門的裝置,這導(dǎo)致了對(duì)DAI研究的門檻限制。另外,由于世界上不同研究團(tuán)隊(duì)大多采用不同的模型制作方法,雖然根本的損傷機(jī)制類似,但模型建立產(chǎn)生的損傷程度各異,這或許將導(dǎo)致對(duì)DAI的研究結(jié)果產(chǎn)生不兼容性或偏倚。因此,統(tǒng)一DAI模型的制備方法,用一個(gè)比較完整的、科學(xué)的手段來評(píng)價(jià)模型迫在眉睫。
雖然近10多年來的研究已經(jīng)證明,DAI后導(dǎo)致SI的多種機(jī)制中,大部分都是與Ca2+介導(dǎo)的損傷相關(guān)聯(lián)的,是否可通過藥物干預(yù)阻斷或緩解早期的Ca2+濃度升高,進(jìn)而避免后續(xù)的SI過程發(fā)展?這還有待于更進(jìn)一步的實(shí)驗(yàn)與臨床研究。另外,有一種學(xué)說認(rèn)為其實(shí)并非所有的能導(dǎo)致細(xì)胞內(nèi)Ca2+升高的過程都將引發(fā)損傷過程,只有Ca2+通過某些特定通道或機(jī)制介導(dǎo),才會(huì)導(dǎo)致?lián)p傷及細(xì)胞壞死及凋亡的發(fā)生[80]。因此,未來研究的熱點(diǎn)問題之一仍然是更進(jìn)一步揭示早期Ca2+濃度升高的確切機(jī)制。
對(duì)于軸漿運(yùn)輸障礙是如何一步步引起軸突的變性及斷裂的機(jī)制,現(xiàn)階段并不明確。目前只是將軸漿運(yùn)輸障礙單純與WD相聯(lián)系,但是WD發(fā)生的分子機(jī)制至今仍未被闡明。比如,軸漿運(yùn)輸障礙是否與Ca2+平衡障礙或線粒體功能損傷有關(guān)聯(lián)?或者中斷的軸漿運(yùn)輸是否會(huì)引起軸突腫脹進(jìn)而改變軸膜通透性?或者軸漿運(yùn)輸障礙能否通過某些信號(hào)通路進(jìn)而引起神經(jīng)元的壞死及凋亡?闡明上述問題將有助于完善軸漿運(yùn)輸障礙導(dǎo)致的SI機(jī)制。
目前,對(duì)于在DAI后的線粒體損傷主要認(rèn)為是其參與了鈣平衡紊亂及通過ROS及Caspase途徑引起神經(jīng)元凋亡。而對(duì)于線粒體損傷的能量代謝研究并不完善,能量代謝障礙到底在DAI后的SI過程中起多大作用仍未闡明,對(duì)于改善能量代謝是否可以緩解SI仍不清楚。雖然亞低溫治療被認(rèn)為是通過改善能量代謝而產(chǎn)生腦保護(hù)作用的,但是仍需更加直接地通過DAI細(xì)胞模型,給予外源性ATP從而評(píng)估是否對(duì)SI有治療作用。而對(duì)于谷氨酸介導(dǎo)的損傷機(jī)制的研究,目前主要圍繞著離子型谷氨酸受體進(jìn)行,對(duì)于代謝性谷氨酸受體作用的了解仍十分有限。關(guān)于炎癥反應(yīng)方面在DAI或者其他類型腦、脊髓損傷中均存在爭(zhēng)議。近來,學(xué)者傾向認(rèn)為炎癥反應(yīng)是一把“雙刃劍”,而決定產(chǎn)生損傷或保護(hù)作用取決于炎癥反應(yīng)的程度[81]。因此,界定DAI后何種炎癥反應(yīng)程度會(huì)產(chǎn)生損傷以及何種炎癥反應(yīng)會(huì)產(chǎn)生神經(jīng)保護(hù)作用十分重要。
上述諸多科學(xué)問題需要大量的基礎(chǔ)及臨床實(shí)驗(yàn)進(jìn)行探索,在未來的研究方向上,應(yīng)盡量將多方向進(jìn)行結(jié)合,才能更加深入認(rèn)識(shí)DAI后SI發(fā)生發(fā)展的機(jī)制,從而找到相應(yīng)更加確切的治療途徑。
目前,對(duì)于DAI的研究已從起初的形態(tài)學(xué)觀察,轉(zhuǎn)向更為深入的功能研究、分子機(jī)制及信號(hào)通路的研究。對(duì)于DAI的損傷機(jī)制已從早先的揭示原發(fā)性損傷結(jié)構(gòu)變化,轉(zhuǎn)為研究DAI后SI的病理生理機(jī)制。大量研究已表明DAI后SI是影響該疾病發(fā)展的關(guān)鍵環(huán)節(jié),而SI是由多種機(jī)制共同導(dǎo)致的結(jié)果。在SI中各種機(jī)制之間相互影響、相互滲透,形成一個(gè)復(fù)雜網(wǎng)絡(luò),共同促進(jìn)了疾病的發(fā)展,其中主要包括:Ca2+平衡的紊亂及Calpain介導(dǎo)的細(xì)胞骨架損傷、軸膜通透性改變、線粒體損傷及其引發(fā)的凋亡和氧自由基損傷、谷氨酸的興奮性毒作用及炎癥反應(yīng)過程,而Ca2+濃度的升高被認(rèn)為是構(gòu)成軸突繼發(fā)性損傷的基礎(chǔ),DAI后Ca2+濃度升高是一個(gè)正反饋過程,一旦早期Ca2+濃度升高,將進(jìn)一步持續(xù)地導(dǎo)致源源不斷的Ca2+在損傷后的軸突及神經(jīng)元胞體聚集,介導(dǎo)SI過程。針對(duì)這些已被揭示的主要損傷機(jī)制,進(jìn)一步闡明各個(gè)機(jī)制間的相互關(guān)系,有助于更加透徹及清楚地找到新的研究思路,進(jìn)而為未來突破DAI的病理機(jī)制與治療瓶頸帶來希望,DAI后的SI有望成為治療該疾病的關(guān)鍵靶點(diǎn)。
[1] STRICH SJ. Diffuse degeneration of the cerebral white matter in severe dementia following head injury[J]. J Neurol Neurosurg Psychiatry,1956, 19(3):163-185.
[2] PARK E, BELL JD, BAKER AJ. Traumatic brain injury: Can the consequences be stopped?[J]. CMAJ, 2008, 178:1163-1170.
[3] SMITH DH, HICKS R, POVLISHOCK JT. Therapy development for diffuse axonal injury[J]. J Neurotrauma, 2013, 30(5):307-323.
[4] BROWNE KD, CHEN XH, MEANEY DF, et al. Mild traumatic brain injury and diffuse axonal injury in swine[J]. J Neurotrauma, 2011, 28(9):1747-1755.
[5] MEANEY DF, MARGULIES SS, SMITH DH. Diffuse axonal injury[J]. J Neurosurg, 2001, 95(6):1108-1110.
[6] WEEKS D, SULLIVAN S, KILBAUGH T, et al. Influences of developmental age on the resolution of diffuse traumatic intracranial hemorrhage and axonal injury[J]. J Neurotrauma, 2014, 31(2):206-214.
[7] SMITH DH, MEANEY DF, SHULL WH. Diffuse axonal injury in head trauma[J]. J Head Trauma Rehabil, 2003, 18(4):307-316.
[8] HAYNES RL, BILLIARDS SS, BORENSTEIN NS, et al. Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin[J]. Pediatr Res, 2008, 63:656-661.
[9] LIN Y, WEN L. Inflammatory response following diffuse axonal injury[J]. Int J Med Sci, 2013, 10(5):515-521.
[10] BODANAPALLY UK, SHANMUGANATHAN K, SAKSOBHAVIVAT N, et al. MR imaging and differentiation of cerebral fat embolism syndrome from diffuse axonal injury: application of diffusion tensor imaging[J]. Neuroradiology, 2013, 55(6):771-778.
[11] OKAMOTO T, HASHIMOTO K, AOKI S, et al. Cerebral blood flow in patients with diffuse axonal injury—examination of the easy Z-score imaging system utility[J]. Eur J Neurol, 2007, 14(5):540-547.
[12] FARKAS O, POVLISHOCK JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage[J]. Prog Brain Res, 2007, 161:43-59.
[13] MEANEY DF, MARGULIES SS, SMITH DH. Diffuse axonal injury[J]. J Neurosurg, 2001, 95(6):1108-1110.
[14] SMITH DH, MEANEY DF, SHULL WH. Diffuse axonal injury in head trauma[J]. J Head Trauma Rehabil, 2003, 18(4):307-316.
[15] LI Y, SONG J, LIU X, et al. High expression of STIM1 in the early stages of diffuse axonal injury[J]. Brain Res, 2013, 1495:95-102.
[16] 劉曉斌,宋錦寧,陳景宇,等. 腦彌漫性軸索損傷實(shí)驗(yàn)裝置的研制及動(dòng)物模型的建立[J]. 西安交通大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2008, 29(5):595-598.
[17] POVLISHOCK JT, CHRISTMAN CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts[J]. J Neurotrauma, 1995, 12(4):555-564.
[18] ROSS DT, MEANEY DF, SABOL MK, et al. Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine[J]. Exp Neurol, 1994, 126(2):291-299.
[19] STONE JR, SINGLETON RH, POVLISHOCK JT. Antibodies to the C-terminus of the beta-amyloid precursor protein (APP): a site specific marker for the detection of traumatic axonal injury[J]. Brain Res, 2000, 871:288-302.
[20] KOO EH, SISODIA SS, ARCHER DR, et al. Precursor of amyloid protein in alzheimer-disease undergoes fast anterograde axonal-transport[J]. Proc Natl Acad Sci U S A, 1990, 87:1561-1565.
[21] JOHNSON MW, STOLL L, RUBIO A, et al. Axonal injury in young pediatric head trauma: a comparison study of beta-amyloid precursor protein (beta-APP) immunohistochemical staining in traumatic and nontraumatic deaths[J]. J Forensic Sci, 2011, 56(5):1198-1205.
[22] POVLISHOCK JT. Traumatically induced axonal injury: pathogenesis and pathobiological implications[J]. Brain Pathol, 1992, 2(1):1-12.
[23] BUKI A, SIMAN R, TROJANOWSKI JQ, et al. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury[J]. J Neuropathol Exp Neurol, 1999, 58(4):365-375.
[24] WOLF JA, STYS PK, LUSARDI T, et al. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels[J]. J Neurosci, 2001, 21(6):1923-1930.
[25] HE X, YI S, ZHANG X, et al. Intra-axonal overloading of calcium ion in rat diffuse axonal injury and therapeutic effect of calcium antagonist[J]. Chin J Traumatol, 1999, 2(1):25-29.
[26] SAATMAN KE, ABAI B, GROSVENOR A, et al. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice[J]. J Cereb Blood Flow Metab, 2003, 23(1):34-42.
[27] BUKI A, SIMAN R, TROJANOWSKI JQ, et al. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury[J]. J Neuropathol Exp Neurol, 1999, 58(4):365-375.
[28] SHARMA AK, ROHRER B. Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line[J]. J Biol Chem, 2004, 279(34):35564-35572.
[29] COURT FA, COLEMAN MP. Mitochondria as a central sensor for axonal degenerative stimuli[J]. Trends Neurosci, 2012, 35(6):364-372.
[30] IWATA A, PK S, JA W. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors[J]. J Neurosci, 2004, 24(19):4605-4613.
[31] KILINC D, GALLO G, BARBEE KA. Mechanical membrane injury induces axonal beading through localized activation of calpain[J]. Exp Neurol, 2009, 219(2):553-561.
[32] KILINC D, GALLO G, BARBEE KA. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage[J]. Exp Neurol, 2008, 212(2):422-430.
[33] SPAETHLING J, LE L, MEANEY DF. NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury[J]. Neurobiol Dis, 2012, 46(3):646-654.
[34] SPAETHLING JM, KLEIN DM, SINGH P, et al. Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate[J]. J Neurotrauma, 2008, 25(10):1207-1216.
[35] TEKKOK SB, FADDIS BT, GOLDBERG MP. AMPA/kainate receptors mediate axonal morphological disruption in hypoxic white matter[J]. Neurosci Lett, 2005, 382(3):275-279.
[36] WEBER JT, RZIGALINSKI BA, ELLIS EF. Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx[J]. J Biol Chem, 2001, 276(3):1800-1807.
[37] STAAL JA, DICKSON TC, GASPERINI R, et al. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury[J]. J Neurochem, 2010, 112(5): 1147-1155.
[38] COLEMAN MP, CONFORTI L, BUCKMASTER EA, et al. An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse[J]. Proc Natl Acad Sci U S A, 1998, 95(17):9985-9990.
[39] HOOPFER ED, MCLAUGHLIN T, WATTS RJ, et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning[J]. Neuron, 2006, 50(6):883-895.
[40] MACLEOD D, DOWMAN J, HAMMOND R, et al. The familial Parkinsonism gene LRRK2 regulates neurite process morphology[J].Neuron, 2006, 52(4): 587-593.
[41] SMITH DH, WOLF JA, LUSARDI TA, et al. High tolerance and delayed elastic response of cultured axons to dynamic stretch injury[J]. J Neurosci, 1999, 19(11):4263-4269.
[42] TANG-SCHOMER MD, JOHNSON VE, BAAS PW, et al. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury[J]. Exp Neurol, 2012, 233(1): 364-372.
[43] CONFORTI L, FANG G, BEIROWSKI B, et al. NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration[J]. Cell Death Differ, 2007, 14(1):116-127.
[44] PETTUS EH, CHRISTMAN CW, GIEBEL ML, et al. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change[J]. J Neurotrauma, 1994, 11(5):507-522.
[45] PETTUS EH, POVLISHOCK JT. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability[J]. Brain Res, 1996, 722(1-2):1-11.
[46] MEDANA IM, ESIRI MM. Axonal damage: a key predictor of outcome in human CNS diseases[J]. Brain, 2003, 126(Pt 3):515-530.
[47] AHMED SM, RZIGALINSKI BA, WILLOUGHBY KA, et al. Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons[J]. J Neurochem, 2000, 74(5):1951-1960.
[48] YANG JC, CORTOPASSI GA. Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c[J]. Free Radic Biol Med, 1998, 24(4):624-631.
[49] GORES GJ, MIYOSHI H, BOTLA R, et al. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases[J]. Biochim Biophys Acta, 1998, 1366(1-2):167-175.
[50] MASHAYEKHI V, ESKANDARI MR, KOBARFARD F, et al. Induction of mitochondrial permeability transition (MPT) pore opening and ROS formation as a mechanism for methamphetamine-induced mitochondrial toxicity[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(1):47-58.
[51] LAU A, TYMIANSKI M. Glutamate receptors, neurotoxicity and neurodegeneration[J]. Pflugers Arch, 2010, 460:525-542.
[52] STIRLING DP, STYS PK. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation[J]. Trends Mol Med, 2010, 16(4): 160-170.
[53] MINGHETTI L, LEVI G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide[J]. Prog Neurobiol, 1998, 54(1):99-125.
[54] VENKATESAN C, CHRZASZCZ M, CHOI N, et al. Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury[J]. J Neuroinflammation, 2010, 7:32.
[55] FODA MA, MARMAROU A. A new model of diffuse brain injury in rats. Part II: Morphological characterization[J]. J Neurosurg, 1994, 80(2):301-313.
[56] MARMAROU A, FODA MA, VAN DEN BRINK W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics[J]. J Neurosurg, 1994, 80(2):291-300.
[57] LOANE DJ, BYRNES KR. Role of microglia in neurotrauma[J]. Neurotherapeutics, 2010, 7(4):366-377.
[58] FENG D, MA Y, ZHANG Y, et al. Controlled study of nimodipine in treatment of patients with diffuse axonal injury[J]. Chin J Traumatol, 2000, 3(2):85-88.
[59] YAMATO M, SHIBA T, IDE T, et al. Nifedipine treatment reduces brain damage after transient focal ischemia, possibly through its antioxidative effects[J]. Hypertens Res, 2011, 34(7):840-845.
[60] GEORGE EB, GLASS JD, GRIFFIN JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels[J]. J Neurosci, 1995, 15(10):6445-6452.
[61] KNOFERLE J, KOCH JC, OSTENDORF T, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo[J]. Proc Natl Acad Sci U S A, 2010, 107(13):6064-6069.
[62] KOCH JC, KNOFERLE J, TONGES L, et al. Acute axonal degeneration in vivo is attenuated by inhibition of autophagy in a calcium-dependent manner[J]. Autophagy, 2010, 6(5):658-659.
[63] BUKI A, FARKAS O, DOCZI T, et al. Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury[J]. J Neurotrauma, 2003, 20(3):261-268.
[64] MA M, LI L, WANG X, et al. Short-duration treatment with the calpain inhibitor MDL-28170 does not protect axonal transport in an in vivo model of traumatic axonal injury[J]. J Neurotrauma, 2012, 29(2):445-451.
[65] KUPINA NC, NATH R, BERNATH EE, et al. The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury[J]. J Neurotrauma, 2001, 18(11):1229-1240.
[66] LUBISCH W, BECKENBACH E, BOPP S, et al. Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability[J]. J Med Chem, 2003, 46(12):2404-2412.
[67] KILINC D, GALLO G, BARBEE K. Poloxamer 188 reduces axonal beading following mechanical trauma to cultured neurons[C]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007:5395-5398.
[68] KOOB AO, BORGENS RB. Polyethylene glycol treatment after traumatic brain injury reduces beta-amyloid precursor protein accumulation in degenerating axons[J]. J Neurosci Res, 2006, 83(8):1558-1563.
[69] CHO WS, CHO M, JEONG J, et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles[J]. Toxicol Appl Pharmacol, 2010, 245(1): 116-123.
[70] OKONKWO DO, POVLISHOCK JT. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury[J]. J Cereb Blood Flow Metab, 1999, 19(4):443-451.
[71] BUKI A, POVLISHOCK JT. All roads lead to disconnection? —Traumatic axonal injury revisited[J]. Acta Neurochir (Wien), 2006, 148(2):181-193, 193-194.
[72] REEVES TM, PHILLIPS LL, LEE NN, et al. Preferential neuroprotective effect of tacrolimus (FK506) on unmyelinated axons following traumatic brain injury[J]. Brain Res, 2007, 1154:225-236.
[73] MA M, MATTHEWS BT, LAMPE JW, et al. Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury[J]. Exp Neurol, 2009, 215(1):119-127.
[74] FUJITA M, ODA Y, WEI EP, et al. The combination of either tempol or FK506 with delayed hypothermia: implications for traumatically induced microvascular and axonal protection[J]. J Neurotrauma, 2011, 28(7):1209-1218.
[75] ODA Y, GAO G, WEI EP, et al. Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat[J]. J Cereb Blood Flow Metab, 2011, 31(4):1143-1154.
[76] MARION DW, WHITE MJ. Treatment of experimental brain injury with moderate hypothermia and 21-aminosteroids[J]. J Neurotrauma, 1996, 13(3):139-147.
[77] DENG-BRYANT Y, SINGH IN, CARRICO KM, et al. Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model[J]. J Cereb Blood Flow Metab, 2008, 28(6):1114-1126.
[78] MILLS JD, BAILES JE, SEDNEY CL, et al. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model[J]. J Neurosurg, 2011, 114(1):77-84.
[79] TAMAS A, REGLODI D, FARKAS O, et al. Effect of PACAP in central and peripheral nerve injuries[J]. Int J Mol Sci, 2012, 13(7):8430-8448.
[80] KIRCHHOFF F. Neuroscience. Questionable calcium[J]. Science, 2010, 327 (5970):1212-1213.
[81] MORGANTI-KOSSMANN MC, RANCAN M, STAHEL PF, et al. Inflammatory response in acute traumatic brain injury: a double-edged sword[J]. Curr Opin Crit Care, 2002, 8(2):101-105.
(編輯 國 榮)
Research advances of secondary brain injury caused by diffuseaxonal injury and its therapeutic strategies
SONG Jin-ning, LI Yu
(Department of Neurosurgery, the First Affiliated Hospital, Medical School ofXi’an Jiaotong University, Xi’an 710061, China)
Diffuse axonal injury (DAI) involves many progressive pathophysiological changes of brain tissue, which mainly occur in the secondary injury (SI) period. So, in this way, SI can be seen as the crucial step determining the outcomes of DAI patients. Accumulated research results show that the mechanisms of DAI-induced SI are associated with the disruption of irons homeostasis, Wallerian degeneration, increased axilemma permeability, mitochondrial injury, energy shortage, inflammation, and reactive oxygen species (ROS) injury. Nevertheless, so far no breakthrough has been made in the therapeutic strategy. In clinic to date, there are only some general treatments such as mild hypothermia and neuronal nutrition used to cure DAI. But in research area, several more specific treatment methods have been developed. These research progresses may provide therapeutic targets, such as calcium channel inhibitors, protective agents for axilemma permeability, Calpain inhibitors, and agents reducing ROS and inflammation-induced injury. These advances may improve the situation of DAI treatment in the future. In this paper, we will review the important progress in SI pathogenic mechanisms and treatment methods in both basic research and clinical research. More importantly, we will discuss and summarize the complicated relations among each single mechanism. This may provide a more comprehensive understanding for the DAI induced-SI and potential therapeutic targets in the future.
traumatic brain injury; diffuse axonal injury; secondary injury; neuronal protection; therapeutic strategy
宋錦寧,西安交通大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科教授,主任醫(yī)師,博士生導(dǎo)師。教育部新世紀(jì)優(yōu)秀人才。擅長(zhǎng)于腦出血、顱內(nèi)動(dòng)脈瘤、顱腦損傷、垂體瘤、聽神經(jīng)瘤、腦膜瘤、膠質(zhì)瘤等疾病的微創(chuàng)手術(shù)與規(guī)范化治療。是西安交通大學(xué)醫(yī)學(xué)學(xué)科神經(jīng)介入放射學(xué)的奠基人。承擔(dān)國家“863計(jì)劃”1項(xiàng),國家自然科學(xué)基金3項(xiàng),教育部博士點(diǎn)基金1項(xiàng),陜西省“13115”重大科技專項(xiàng)基金1項(xiàng),其他省部級(jí)課題4項(xiàng)。培養(yǎng)碩士與博士生53名。在國內(nèi)外期刊發(fā)表學(xué)術(shù)論文161篇,參編著書4部。以第一完成人獲陜西省科學(xué)技術(shù)獎(jiǎng)2項(xiàng)、陜西省高等學(xué)??茖W(xué)技術(shù)獎(jiǎng)2項(xiàng)及醫(yī)院新醫(yī)療、新技術(shù)獎(jiǎng)多項(xiàng)。兼任中國醫(yī)師協(xié)會(huì)中國神經(jīng)介入專家委員會(huì)委員、陜西省醫(yī)學(xué)會(huì)神經(jīng)外科專業(yè)學(xué)會(huì)副主委等學(xué)術(shù)職務(wù)。擔(dān)任全國多種專業(yè)雜志編委及審稿專家。
2014-04-21
2014-07-18
國家自然科學(xué)基金資助項(xiàng)目(No.30471774);教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃資助項(xiàng)目(No.NCET-05-0831);陜西省自然科學(xué)基金資助項(xiàng)目(No.2003C1-16) Supported by the National Natural Science Foundation of China (No.30471774), the New-Century Excellent Talents Program of Ministry of Education (No.NCET-05-0831), and the Natural Science Foundation of Shaanxi Province (No.2003C1-16)
宋錦寧(1962-),男(漢族),博士,教授,主任醫(yī)師,博士生導(dǎo)師. 研究方向:腦血管病、顱腦損傷、腦腫瘤的臨床與基礎(chǔ). E-mail: jinnings@126.com
時(shí)間:2014-09-16 11∶29 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1399.R.20140916.1129.003.html
R651.1
A
10.7652/jdyxb201406001
專家介紹
西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2014年6期