胡志軍,趙素平
(1.廣西師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,桂林 541004;
2.重慶大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 401331)
擾動(dòng)變分不等式的序下半連續(xù)性
胡志軍1,趙素平2
(1.廣西師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,桂林 541004;
2.重慶大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 401331)
對(duì)向量?jī)?yōu)化準(zhǔn)則下集值映射(SMVOR)半連續(xù)性和集優(yōu)化準(zhǔn)則下集值映射(SMSOR)序半連續(xù)性進(jìn)行了研究。通過舉例指出了SMVOR下半連續(xù)與SMSOR序下半連續(xù)沒有關(guān)系,在一定條件下由SMVOR上半連續(xù)性得到了SMSOR序下半連續(xù)。重點(diǎn)討論了集序關(guān)系意義下廣義向量擬變分不等式(GVQVI)的序下半連續(xù)性。通過對(duì)集序關(guān)系意義下序下半連續(xù)的進(jìn)一步研究,得到了擾動(dòng)變分不等式問題的解集在空間上序下半連續(xù)的充分條件,并用不同方法證明了該充分條件。
集序關(guān)系;序下半連續(xù);擾動(dòng)變分不等式;半連續(xù)
Lions等建立了初期變分不等式理論,Giannessi在有限維空間中引入了向量變分不等式?;谙蛄?jī)?yōu)化的發(fā)展,向量變分不等式問題在理論和應(yīng)用上日益完善[1-2],被廣泛應(yīng)用于工程、經(jīng)濟(jì)等領(lǐng)域。向量變分不等式的穩(wěn)定性、適定性和半連續(xù)性等被廣泛研究[3-5]。集優(yōu)化問題是以函數(shù)的每一個(gè)像集作為一個(gè)整體來比較像集間的優(yōu)劣關(guān)系。Kuroiwa在文獻(xiàn)[6-7]中介紹了多種集序關(guān)系及其性質(zhì)。Jahn在文獻(xiàn)[8]中引入了新的集序關(guān)系,并給出了序下半連續(xù)的概念。Madeda在文獻(xiàn)[9]中給出了集值映射在整個(gè)空間序半連續(xù)的條件。
3.1 擾動(dòng)廣義向量變分不等式模型
3.2 下面討論≤l序關(guān)系意義下一種特殊的變分不等式問題
本文給出了變分不等式在集序關(guān)系意義下的表示,并用2種方法證明了擾動(dòng)變分不等式在空間上≤l下半連續(xù)的充分條件,為繼續(xù)研究集序關(guān)系意義下的變分不等式開拓了思路。
[1]Chen G Y,Li S J.Existence of Solutions for a Generalized Vector Quasivariational Inequality[J].Optim Theory Appl,1996,90 (1):321-334.
[2]Yang X Q,Goh C J.On Vector Variational Inequalities:Application to Vector Equilibria[J].Optim.Theory Appl,1997,95(2): 431-443.
[3]Li S J,Zhang W Y.Hadamard Well-posed Vector Optimization Problems[J].Optim Theory Appl,2010,46:383-393.
[4]曾靜.向量?jī)?yōu)化及相關(guān)問題解的存在性和適定性研究[D].重慶:重慶大學(xué),2011.
[5]陳光亞.向量?jī)?yōu)化問題某些基礎(chǔ)理論及其發(fā)展[J].重慶師范大學(xué)學(xué)報(bào):自然科學(xué)版,2005,22(3):6-9.
[6]Kuroiwa D.On Set-valued Optimization[J].Nonlinear Anal,2001,47:1395-1400.
[7]Kuroiwa D.The natural Criteria in Set-valued Optimization[J].RIMS Kokyuroku,1998,1031:85-90.
[8]Jahn J,Ha T X D.New Order Relations in Set Optimization[J].Optim.Theory Appl,2011,148:209-236.
[9]Maeda T.On Optimization Problems with Set-valued Objective Maps:Existence and Optimality[Z].Optim Theory Appl,2011.
[10]Aubin J P,Ekland I.Applied Nonlinear Analysis[M].New York:NY,1984:518.
[11]Hogan W W.Point-to-set Maps in Mathematical Programming[J].SI AM Rev,1973,15:591-603.
(責(zé)任編輯 劉舸)
Lower Semicontinuity with Set-relations of Perturbed Generalized Vector Quasivational Inequality Problems
HU Zhi-jun1,ZHAO Su-ping2
(1.College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China; 2.College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China)
The semicontinuity of set-valued mapping under set-valued optimization rules and the lower semicontinuity with set-relations under set optimization rules have been studied.By some examples,one can find the semicontinuity of set-valued mapping under set-valued optimization rules has no relations with the lower semicontinuity with set-relations under set optimization rules.It is easy to get the relation between the upper semicontinuity with the lower semicontinuity with set-relations.In addtition,the key point is discussing the lower semicontinuity with set-relations of GVQVI.By analyzing the lower semicontinuity with set-relations,one can conclude the sufficient conditions of the lower semicontinuity with set-relations of perturbed GVQVI and prove the sufficient condition by two different ways.
set-relations;lower semicontinuity with set-relations;perturbed vector vational inequality;semicontinuous
O175.8
A
1674-8425(2014)06-0122-04
10.3969/j.issn.1674-8425(z).2014.06.024
2013-12-21
廣西教育廳科研立項(xiàng)項(xiàng)目(201106LX047)
胡志軍(1981—),男,四川成都人,碩士研究生,講師,主要從事最優(yōu)化理論和分形圖形壓縮方面的研究。
胡志軍,趙素平.擾動(dòng)變分不等式的序下半連續(xù)性[J].重慶理工大學(xué)學(xué)報(bào):自然科學(xué)版,2014(6):122 -125.
format:HU Zhi-jun,ZHAO Su-ping.Lower Semicontinuity with Set-relations of Perturbed Generalized Vector Quasivational Inequality Problems[J].Journal of Chongqing University of Technology:Natural Science,2014 (6):122-125.