陳曉文
TDM-PON上行信號光功率均衡器的鎖模特性
陳曉文1,2
(1.福建信息職業(yè)技術(shù)學(xué)院電子工程系,福州350003;2.萬能科技大學(xué)工程與電子學(xué)院,中壢32061)
為了減小時分復(fù)用無源光網(wǎng)絡(luò)(TDM-PON)上行信號光波長的飄移,基于TDM-PON上行信號光功率均衡器架構(gòu),采用單模激光注入鎖定光網(wǎng)絡(luò)單元(ONU)法布里-珀羅(F-P)激光器(LD)方法,研究了F-P LD輸出光波長的鎖模特性,包括鎖模的范圍、驅(qū)動電流對鎖模特性的影響、鎖模前后溫度變化引起F-P LD光波長變化情況等。結(jié)果表明,當(dāng)驅(qū)動電流為9mA時,F(xiàn)-P LD可被鎖模的波長范圍為0.38nm,大于ONU上行光波長因環(huán)境溫度變化5℃而產(chǎn)生的波長位移量0.25nm,F(xiàn)-P LD被鎖??墒筄NU上行信號的光波長相同且穩(wěn)定,降低光功率均衡后的噪聲。
光通信;光功率均衡;光注入鎖定;法布里-珀羅激光器;分布反饋半導(dǎo)體激光器
[8]中的方法,其關(guān)鍵是單模激光注入鎖定各用戶端F-P LD上行光波長。實驗中發(fā)現(xiàn),如果沒有鎖模,光功率均衡器輸出光強(qiáng)會突然變小,光輸出眼圖張開程度變小、噪聲大,不能有效地傳輸信號?;赥DM-PON上行信號光功率均衡器架構(gòu),通過實驗研究單縱模激光波長增減變化能注入鎖定FP LD光波長的范圍,驅(qū)動電流對鎖模特性的影響,鎖模前后溫度變化引起F-P LD光波長變化情況。
圖1所示是TDM-PON之ONU上行信號的光功率均衡器架構(gòu)圖,LD1用作光功率均衡,其驅(qū)動電流略低于F-P LD臨界電流,1490nm LD用于下行信號光發(fā)射機(jī),分布反饋式(distributed feedback,DFB)激光器作為各ONU的外部注入光源。由于F-P LD溫度效應(yīng)特性,輸出的模態(tài)會因升溫而往長波長移動,使ONU上行信號波長發(fā)生漂移,為了不使它移動,在局端OLT中,1310nm的分布反饋式激光器輸出單縱模激光,經(jīng)光纖傳輸至遠(yuǎn)程節(jié)點(diǎn)處,單縱模激光于遠(yuǎn)程節(jié)點(diǎn)處由光環(huán)形器第一光纖輸入,從光環(huán)形器第二光纖輸出注入每個ONU之F-P LD,鎖定后從光環(huán)形器第三光纖輸出同一穩(wěn)定波長光,避免不同ONU的上行信號光波長不一或因溫度效應(yīng)而發(fā)生漂移。遠(yuǎn)程節(jié)點(diǎn)處DFB LD單縱模激光注入鎖定ONU之F-P LD示意圖如圖2所示。
Fig.1 Architecture with power equalization of the upstream traffic in a TDM-PON structure
Fig.2 Schematic diagram of the injection-locked F-P LD
當(dāng)DFB LD單縱模激光與F-P LD的模態(tài)相互對應(yīng),外部注入的單模光將影響激光介質(zhì)的增益與折射率分布,使其可于激光共振腔中共振放大,獲得激光介質(zhì)的大部分功率,其它模態(tài)的光強(qiáng)度將被大幅抑制,邊模抑制比大增(大于40dB),F(xiàn)-P LD輸出與原來DFB LD光譜類似的單縱模激光。圖3為光環(huán)形器第三光纖鎖模前后輸出的光譜圖,由光譜變化可知,F(xiàn)-P LD模態(tài)被鎖定后有單縱模激光輸出。
Fig.3 Spectrogram comparison with and without mode-locking by injection of F-P LD
圖2中,用可調(diào)諧激光器來代替單縱模外部注入光源,方便調(diào)整其光波長以進(jìn)行光注入鎖模。由于1310nm設(shè)備與器件一般實驗室多不具備,為了實驗的方便,實驗中所采用F-P LD的波長為1550nm,其臨界電流為9.3mA,所用驅(qū)動電流為9mA與15mA,分別代表光功率均衡器與ONU端法布里-珀羅激光器的操作條件。以下是F-P LD在驅(qū)動電流為9mA與15mA時,分別執(zhí)行單縱模光注入鎖模實驗的結(jié)果。圖4與圖5分別是驅(qū)動電流9mA時單縱模光波長遞減與遞增的鎖模光譜圖,此時F-P LD被鎖模前的初始模態(tài)波長是1549.55nm。圖6與圖7分別是驅(qū)動電流15mA時單縱模光波長遞減與遞增的鎖模光譜圖,此時F-P LD被鎖模前的初始模態(tài)波長是1549.60nm。
Fig.4 Spectrograms of the mode-locking with decreasing wavelengths of injected single longitudinal mode when the drive current of F-P LD is 9mA
Fig.5 Spectrograms of the mode-locking with increasing wavelengths of injected single longitudinal mode when the drive current of F-P LD is 9mA
Fig.6 Spectrograms of the mode-locking with decreasing wavelengths of injected single longitudinal mode when the drive current of F-P LD is 15mA
Fig.7 Spectrograms of the mode-locking with increasing wavelengths of injected single longitudinal mode when the drive current of F-P LD is 15mA
根據(jù)以上各圖,可得出以下結(jié)論。
(1)外部注入光波長與F-P LD的初始模態(tài)波長越接近,邊模抑制比越大,可達(dá)鎖模的外部注入光強(qiáng)度也可越小。
(2)外部注入光由波長遞減與波長遞增鎖模范圍不同,外部注入光由波長遞減要比波長遞增有更大的鎖模范圍。如驅(qū)動電流9mA時,波長遞減時鎖模范圍為0.3nm,波長遞增時鎖模范圍為0.08nm。
(3)驅(qū)動電流超過F-P LD臨界電流時,外部注入光波長與F-P LD的初始模態(tài)相同時,會有類似五指山峰的頻譜輸出,而不是類似單縱模的頻譜輸出。
(4)驅(qū)動電流越大,F(xiàn)-P LD各模態(tài)的光強(qiáng)大,不容易被外注入光鎖定,F(xiàn)-P LD可被鎖模的范圍越小。驅(qū)動電流15mA時,F(xiàn)-P LD可被鎖模的范圍為0.16nm;驅(qū)動電流9mA時,F(xiàn)-P LD可被鎖模的范圍為0.38nm。
器件的溫度上升,會使激光器材料的折射率和帶隙發(fā)生變化,導(dǎo)致光諧振腔尺寸增大,帶隙變窄,使激光器輸出光的峰值波長隨溫度升高向長波長方向漂移。以DFB LD為外部注入光源來鎖定各用戶端F-P LD的上行光波長,可以避免因用戶溫度環(huán)境不同而使上行光波長有所差異。圖8是F-P LD被外部單縱模注入光鎖模前后于不同溫度下的輸出光波長變化,其中三角形記號為F-P LD未被外部注入光鎖模的特定模態(tài)波長變化,溫度由23.15℃升高至27.15℃,模態(tài)波長位移量為0.25nm。以相同的條件來測試,F(xiàn)-P LD被外部單縱模鎖模后的輸出波長(實心圓記號處)變化接近于0。
Fig.8 The variation of F-PLD output wavelength before and after modelocking at different temperatures
外部單縱模光注入鎖定F-P LD模態(tài),可使F-P LD輸出類似單縱模光譜。要使F-P LD輸出較好的鎖模光譜圖,驅(qū)動電流不能高于F-P LD臨界電流,驅(qū)動電流越大,F(xiàn)-P LD可被鎖模的范圍越小,實際應(yīng)用時驅(qū)動電流可采用略小于臨界電流。要獲得較大的鎖模范圍,外部注入單縱模光應(yīng)由波長遞減對F-P LD進(jìn)行鎖模,并且外部注入光波長與F-P LD的初始模態(tài)波長越接近越容易鎖模。當(dāng)溫度變化時,被外部單縱模光鎖模后F-P LD輸出的光波長基本不變,可以避免因用戶溫度環(huán)境不同而導(dǎo)致上行光波長不同。當(dāng)驅(qū)動電流略小于臨界電流時,F(xiàn)-P LD可被鎖模的波長范圍為0.38nm,大于ONU上行光波長因環(huán)境溫度變化5℃而產(chǎn)生的波長位移量0.25nm,即當(dāng)環(huán)境溫度變化在5℃之內(nèi),ONU之F-P LD可被外部單縱模光注入鎖定。
參考文獻(xiàn)
[1] LEE C H,SORIN W V,KIM B Y.Fiber to the home using a PON infrastructure[J].Journal of Lightwave Technology,2006,24(12):4568-4573.
[2] EFFENBERGER F,EL-BAWAB T S.Passive optical networks(PONs):past,present,and future[J].Optical Switching and Networking,2009,6(3):143-150.
[3] DHAINIA R,HO P H,SHEN G X.Toward green next-generation passive optical networks[J].IEEE Communications Magazine,2011,49(11):94-101.
[4] YOUNGIL P,CHUNGHWAN L,INKWUN J.ONU power equalization of ethernet PON systems[J].IEEE Photonics Technology Letters,2004,16(8):1984-1986.
[5] LING Y,QIU K,ZHANG W,et al.Optical power equalization using Fabry-Perot semiconductor optical amplifier[J].Chinese Optics Letters,2006,4(12):690-693.
[6] VERHULST D,BAUWELINCK J,MARTENSY,et al.A fast and intelligent automatic power control for a GPON burst-mode optical transmitter[J].IEEE Photonics Technology Letters,2005,17(11):2439-2441.
[7] YEH C H,HSU D Z,CHIS.Upstream power equalization in a gigabit passive optical network[J].Optics Express,2007,15(8):5191-5195.
[8] CHEN XW,CHENG E.An optical power equalization ofupstream traffic in TDM-PON[J].Journal of Xiamen University,2012,51(5):829-833(in Chinese).
[9] KOU R,YAMADA K,TSUCHIZAWA T,et al.Fast-response,wide-dynamic-range optical equalisation based on silicon photonic platform[J].Electronics Letters,2010,46(25):1683-1685.
[10] HUANG LR,HONGW,JIANGG Y.All-optical power equalization based on a two-section reflective semiconductor optical amplifier[J].Optics Express,2013,21(4):4598-4611.
[11] LIU D,NGO N Q,LIU H,et al.Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier[J].Optics Communications,2009,282(8):1598-1601.
[12] PATO SV,MELEIROR,F(xiàn)ONSECA D,et al.All-optical burstmode power equalizer based on cascaded SOAs for 10Gb/s EPONs[J].IEEE Photonics Technology Letters,2008,20(24):2078-2080.
[13] ISMAIL A,SEZGINER S,F(xiàn)IORINA J,et al.A simple and robust equal-power transmit diversity scheme[J].IEEE Communications Letters,2011,15(1):37-39.
M ode-locking characteristics of TDM-PON upstream traffic optical power equalizers
CHEN Xiaowen1,2
(1.Department of Electronic Engineering,F(xiàn)ujian Polytechnic of Information Technology,F(xiàn)uzhou 350003,China;2.College of Engineering and Electronic Information,Vanung University,Zhongli32061,China)
In order to reduce the wavelength drift of the time division multiplexing passive optical network(TDMPON)upstream traffic,based on a architecture with optical power equalization of the upstream traffic in a TDM-PON,using single mode laser injection locking Fabry-Perot laser diode(F-P LD)of optical network unit(ONU),the mode-locking characteristics of Fabry-Perot output laser wavelength was discussed,such as the range of injection-locking,the influence of driving current on mode-locking characteristics,the influence of temperature variation on the wavelength with or without injection-locking.The results show that,for such a laser,when the driving current is 9mA,the injection-locking wavelength range is 0.38nm which is larger than the 0.25nm upstream wavelength drift of the ONU caused by the 5℃change of environmental temperature.The identical and stable wavelength of the ONU upstream traffic and the low noise after the optical power equalization were achieved by the injection-locking F-P LD.
optical communications;optical power equalization;optical injection-locked;Fabry-Perot laser diode; distributed feedback semiconductor laser
TN929.11
A
10.7510/jgjs.issn.1001-3806.2014.01.027
引 言
1001-3806(2014)01-0124-04
中國臺灣省“經(jīng)濟(jì)部”科技專案計劃資助項目(7301XS2410)
陳曉文(1968-),女,副教授,主要從事光學(xué)與電子信息方面的研究。
E-mail:351335889@qq.com
2013-06-13;
2013-07-03
目前實現(xiàn)光纖到家最受歡迎的方法是采用成本低廉的無源光網(wǎng)絡(luò)(passive optical network,PON)[1-2]。一個無源光網(wǎng)絡(luò)包含一個位于局端的光線路終端(optical line termination,OLT)和多個位于用戶端的光網(wǎng)絡(luò)單元(optical network unit,ONU)[3]。在無源光網(wǎng)絡(luò)中,因每個用戶端到局端的距離不一樣,造成上行光信號光功率大小不同,因此,局端必須用突發(fā)模式光接收機(jī)接收ONU的上傳信號,導(dǎo)致局端OLT設(shè)計復(fù)雜度上升,且ONU實際可用帶寬下降。為此,參考文獻(xiàn)[4]~參考文獻(xiàn)[13]中研究了用不同方法實現(xiàn)光功率均衡。參考文獻(xiàn)[7]中采用上行光注入于工作在臨界電流以下的法布里-珀羅(Fabry-Perot,F(xiàn)-P)二極管激光器(laser diode,LD)來實現(xiàn)光功率均衡,本方法要求ONU上行信號的光波長相同且穩(wěn)定,實際上用戶端ONU上傳光波長容易因溫度效應(yīng)而飄移,當(dāng)注入光波長差超過0.08nm時,信號將產(chǎn)生嚴(yán)重噪聲。參考文獻(xiàn)[8]中對參考文獻(xiàn)[7]中的方法進(jìn)行了改進(jìn),在時分復(fù)用無源光網(wǎng)絡(luò)(time division multiplexing passive optical network,TDM-PON)上行光注入F-P LD前,用單模激光注入用戶端ONU,鎖定各用戶端F-P LD上行光波長,使ONU上行光波長不會因溫度效應(yīng)而飄移,有效降低光功率均衡后的直流噪聲。