林初倫
(溫州大學(xué)物理與電子信息工程學(xué)院,浙江溫州 325035)
一個(gè)腔中實(shí)現(xiàn)兩種原子量子態(tài)的隱形傳態(tài)
林初倫
(溫州大學(xué)物理與電子信息工程學(xué)院,浙江溫州 325035)
在一個(gè)外場(chǎng)驅(qū)動(dòng)的腔QED系統(tǒng)中,利用三原子糾纏態(tài)作為量子信道,提出了任意單原子態(tài)和兩原子糾纏態(tài)的隱形傳態(tài)方案.該方案不受腔損和熱場(chǎng)的影響.
腔QED;糾纏態(tài);隱形傳態(tài)
量子隱形傳態(tài)在遠(yuǎn)程量子計(jì)算[1]、遠(yuǎn)程量子克隆[2]以及遠(yuǎn)程量子控制[3]等許多量子信息處理方案中都有重要的應(yīng)用.自從1993年Bennett[4]等人首次提出隱形傳態(tài)方案以來(lái),人們又提出了很多關(guān)于實(shí)現(xiàn)量子態(tài)傳送的理論和實(shí)驗(yàn)方案[5-13],如文獻(xiàn)[7-10]利用腔QED系統(tǒng)實(shí)現(xiàn)了未知原子態(tài)的傳送,文獻(xiàn)[11]利用原子和腔的共振相互作用實(shí)現(xiàn)了未知原子態(tài)的傳送,由于腔損和熱場(chǎng)的影響,成功傳送的概率是0.25.文獻(xiàn)[12]利用GHZ態(tài)作為量子信道,在大失諧的情況下實(shí)現(xiàn)了原子糾纏態(tài)的傳送,成功概率為0.5.文獻(xiàn)[13]則通過(guò)增加一個(gè)經(jīng)典驅(qū)動(dòng)場(chǎng),使得成功傳送單原子態(tài)的概率達(dá)到了1.本文首先提出了利用三原子的最大糾纏態(tài)來(lái)實(shí)現(xiàn)一個(gè)由兩個(gè)傳送者配合來(lái)完成的隱形傳態(tài)方案.由于兩原子同時(shí)與一個(gè)單模腔和一個(gè)經(jīng)典場(chǎng)發(fā)生作用,以至于腔損和熱場(chǎng)的影響可以消除,成功的概率為1.然后,利用三原子的非最大糾纏態(tài),又提出了一個(gè)以一定概率實(shí)現(xiàn)任意兩原子糾纏態(tài)的傳送方案.
兩個(gè)相同二能級(jí)原子同時(shí)與經(jīng)典場(chǎng)驅(qū)動(dòng)的單模腔場(chǎng)發(fā)生相互作用,系統(tǒng)的哈密頓量[14]為(設(shè)?=1):
若ω=ω0,在相互作用表象中,系統(tǒng)的哈密頓量為:
其中,δ為0ω和aω間的失諧量.對(duì)于強(qiáng)驅(qū)動(dòng)場(chǎng)(Ω>>δ>>g),原子系統(tǒng)和腔場(chǎng)間沒(méi)有能量交換,因此腔損和熱場(chǎng)的影響可以忽略.利用旋波近似,系統(tǒng)的有效哈密頓量簡(jiǎn)化為[14]:
表1 Alice的測(cè)量結(jié)果, 原子3、4的態(tài), 原子4坍縮態(tài)以及Bob所做的幺正變換
若要實(shí)現(xiàn)隱形傳態(tài),Bob需要制備另一個(gè)單模高品質(zhì)共振光學(xué)腔(初態(tài)為真空態(tài))以及一個(gè)光子探測(cè)器.
[1] Cirac J I, Ekert A, Huelga S F, et al. Distributed quantum computation over noisy channels [J]. Physical Review A, 1999, 59: 4249-4254.
[2] Murao M, Jonathan D, Plenio M B, et al. Quantum telecloning and multiparticle entanglement [J]. Physical Review A, 1999, 59: 156-161.
[3] Huelga S F, Vaccaro J A, Chefles A, et al. Quantum remote control: Teleportation of unitary operations [J]. Physical Review A, 2001, 63: 042303.
[4] Bennett C H, Brassard G, Grepeau C, et al. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels [J]. Physical Review Letter, 1993, 70: 1895-1899.
[5] 馬剛龍, 查新未. 利用兩個(gè)EPR態(tài)完全隱形傳輸四粒子W態(tài)[J]. 光子學(xué)報(bào), 2010, 39(9): 1627-1630.
[6] 劉俊昌, 李淵華, 聶義友. 基于糾纏交換和團(tuán)簇態(tài)實(shí)現(xiàn)兩粒子任意態(tài)的可控隱形傳態(tài)[J]. 光子學(xué)報(bào), 2010, 39(11): 2078-2082.
[7] Cao Z L, Yang M. Probabilistic teleportation of unknown atomic state using W class states [J]. Physica A, 2004, 337:132-140.
[8] Zheng S B, Guo G C. Teleportation of atomic states within cavities in thermal states [J]. Physical Review A, 2001, 63: 044302.
[9] Cao Z L, Yang M, Guo G C. The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED [J]. Physical Letter A, 2003, 308: 349-354.
[10] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching [J]. Physical Review A, 2000, 61: 034301.
[11] Zheng S B. Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement [J]. Physical Review A, 2004, 69: 064302.
[12] Ye L, Guo G C. Scheme for teleportation of an unknown atomic state without the Bell-state measurement [J]. Physical Review A, 2004, 70: 054303.
[13] Yang M, Cao Z L. Scheme for deterministic Bell-state-measurement-free quantum teleportation [J]. Int J Quant Inform, 2006, 4(2): 341-346.
[14] Zheng S B. Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion [J]. Physical Review A, 2003, 68: 035801.
[15] Xue Z Y, Yang M. Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity QED [J]. Optics Communications, 2006, 258: 315-320.
Teleportation of Two Atomic States in a Thermal Cavity
LIN Chulun
(School of Physics and Electronic Information Engineering, WenZhou University, WenZhou, China 325035)
A scheme is presented to teleport an arbitrary single atomic state and an unknown entangled quantum state of two atoms using an entangled quantum state of three atoms in driven cavity QED. In addition, the scheme is insensitive to the cavity and the thermal field.
Cavity Quantum Electrodynamics; Entangled State; Teleportation
O431
A
1674-3563(2014)02-0022-05
10.3875/j.issn.1674-3563.2014.02.004 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
(編輯:王一芳)
2013-11-11
林初倫(1991- ),男,浙江溫州人,碩士研究生,研究方向:量子信息物理