譚明典,鄧曉蓓,張芳,丁文軍
中國科學(xué)院大學(xué)生命科學(xué)學(xué)院 環(huán)境與健康實(shí)驗(yàn)室, 北京 100049
我國現(xiàn)已成為全球糖尿病人數(shù)最多的地區(qū)[1],成年人發(fā)病率達(dá)到了9.7%[2]。其中2型糖尿病占到90%以上。目前,1型糖尿病的發(fā)病與自身免疫紊亂、遺傳因素、環(huán)境因素等其他因素相關(guān)。誘發(fā)2型糖尿病的原因主要有:遺傳因素、環(huán)境因素、肥胖、高糖和脂毒性、炎癥反應(yīng)和氧化應(yīng)激等,導(dǎo)致β細(xì)胞功能紊亂和胰島素抵抗[3]。
我國大氣顆粒物污染對健康的影響已日益受到公眾關(guān)注和政府重視。大量流行病學(xué)和臨床研究表明,大氣細(xì)顆粒物(PM2.5,空氣動(dòng)力學(xué)直徑<2.5 μm的大氣顆粒物)污染嚴(yán)重危害人體健康,導(dǎo)致呼吸、心血管、內(nèi)分泌等系統(tǒng)的發(fā)病率上升。并且,細(xì)顆粒物的組成成分和濃度與疾病發(fā)生密切相關(guān)[4-8]。毒理學(xué)研究也顯示,顆粒物中金屬元素、脂多糖、多環(huán)芳烴、醌類化合物等組分誘導(dǎo)體內(nèi)活性氧(ROS)生成[9]和炎癥反應(yīng)[10, 11],引起組織和細(xì)胞的氧化損傷[9, 12, 13]和內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激,激活細(xì)胞轉(zhuǎn)錄因子參與一系列信號通路,引起細(xì)胞凋亡和壞死等生物效應(yīng)及疾病[9]。目前發(fā)現(xiàn),大氣顆粒物污染也與糖尿病并發(fā)癥的發(fā)病率相關(guān)[14]。
流行病學(xué)調(diào)查結(jié)果顯示,長期PM2.5暴露可誘發(fā)糖尿病。Sun等發(fā)現(xiàn)北京市PM2.5濃度升高與2型糖尿病發(fā)病率增加呈正相關(guān)[15]。Chen等的研究結(jié)果也表明,PM2.5年平均濃度每升高10 μg·m-3,2型糖尿病發(fā)病的危險(xiǎn)度將增加1.11[16]。空氣污染與糖尿病急性并發(fā)癥、昏迷和酮癥酸中毒相關(guān)[14]。Pearson等發(fā)現(xiàn),PM2.5日平均濃度每增加10 μg·m-3,2型糖尿病發(fā)病率增加1%[17]。短期亞急性暴露低濃度PM2.5導(dǎo)致人體胰島素抵抗[18]。
糖尿病、高血壓患者和肥胖人群暴露于高濃度PM2.5后,機(jī)體的C-反應(yīng)蛋白(CRP)、白介素-6(IL-6)、白細(xì)胞數(shù)量等炎癥水平明顯高于正常人群[19]。2型糖尿病患者外周血中血管內(nèi)皮細(xì)胞粘附因子(VCAM-1)的濃度隨著PM暴露水平增加而升高[20]。PM2.5日平均濃度每增加10 μg·m-3,2型糖尿病患者血液中IL-6、TNF-α水平分別升高20.2%和13.1%[19]。
動(dòng)物實(shí)驗(yàn)研究也發(fā)現(xiàn),肥胖ICR小鼠暴露于15 μg·m-3PM2.510周后,肥胖小鼠的血糖水平、脂肪組織炎癥因子(TNF-ɑ、Nos2、IL-6)均明顯升高,抗炎癥因子(IL-10、Mgl-1、PPARγ)的表達(dá)水平下調(diào),并出現(xiàn)胰島素抵抗和內(nèi)臟脂肪增多癥狀[21]。近期研究表明,當(dāng)用PM2.5暴露處理C57BL/6小鼠10周后,小鼠肝細(xì)胞的c-jun氨基末端激酶(JNK)、核因子κB(NF-κB)、Toll樣受體4(TLR4)等炎癥信號通路激活,并出現(xiàn)非酒精性脂肪肝、肝臟葡萄糖代謝紊亂以及胰島素抵抗等癥狀[8, 22, 23]。PM2.5暴露明顯引起高脂飼料(HFD)組小鼠胰島素和葡萄糖代謝失衡和炎癥反應(yīng)[15],也引起糖尿病小鼠骨骼肌中ROS產(chǎn)物增加,并誘發(fā)胰島素抵抗[24]。此外,ApoE-/-小鼠長期暴露PM2.5和過渡金屬元素Ni后,出現(xiàn)空腹血糖升高、線粒體損傷、炎癥反應(yīng)和胰島素抵抗[25]。PM2.5長期暴露導(dǎo)致小鼠白色脂肪組織內(nèi)脂滴的生成和沉積[26],引起受體識別的低密度脂蛋白氧化和脂質(zhì)受體功能紊亂[18, 27]。
大氣顆粒物導(dǎo)致的健康損害主要由細(xì)胞氧化損傷和炎癥反應(yīng)所引起的。大氣顆粒物誘導(dǎo)的氧化應(yīng)激,巨噬細(xì)胞分化[28]、DNA和線粒體損傷[23, 29, 30],抑制肝臟糖代謝相關(guān)酶活性,促進(jìn)炎癥因子釋放[31, 32],上調(diào)與炎癥應(yīng)答通路[33, 34]相關(guān)的JNK、NF-κB和TLR4表達(dá)水平。有研究發(fā)現(xiàn),炎癥應(yīng)答通路與胰島素抵抗之間密切相關(guān)[35]。此外,PM2.5降低肝糖原合成水平,破壞血糖和胰島素穩(wěn)態(tài),抑制胰島素受體底物-1(IRS-1)介導(dǎo)信號通路的激活,下調(diào)肝臟PPARγ和PPARα蛋白的表達(dá)水平[22],并引起免疫功能紊亂或細(xì)胞毒性[22, 36-38]。大氣顆粒物介導(dǎo)的炎癥反應(yīng)激活JNK通路,引起細(xì)胞功能紊亂或細(xì)胞凋亡。同時(shí),炎癥因子進(jìn)一步引起ROS水平升高。大氣顆粒物中的多環(huán)芳烴化合物(PAHs)可以持續(xù)激活DNA損傷的信號通路[39]。當(dāng)用顆粒物中提取的含碳有機(jī)物處理HepG2細(xì)胞后,細(xì)胞8-羥基脫氧鳥苷(8-OHdG)和NF-κB p65蛋白水平均升高,該結(jié)果與ROS誘導(dǎo)的DNA損傷相關(guān)[40]。下面主要從氧化應(yīng)激、炎癥因子、糖脂毒性和其他方面探討大氣顆粒物的致病機(jī)制。
研究表明,氧化應(yīng)激激活I(lǐng)κ激酶β(IKKβ)后引起NF-κB水平升高[58, 59],誘導(dǎo)β細(xì)胞凋亡。此外,氧化應(yīng)激還激活胰島β細(xì)胞的JNK、p38絲裂原活化蛋白激酶(p38 MAPK)和蛋白激酶C(PKC)[48]。P38 MPAK通過蛋白激酶D(PKD)抑制PKD1磷酸化,降低胰島素的分泌水平,進(jìn)一步調(diào)控β細(xì)胞的存活率和胰島素的分泌。研究表明,P38δ敲除小鼠的葡萄糖耐量和胰島β細(xì)胞分泌胰島素水平升高,高脂飼料誘導(dǎo)的胰島素抵抗明顯改善,氧化應(yīng)激誘導(dǎo)的β細(xì)胞凋亡水平降低[60]。以上也表明,P38δ是調(diào)控葡萄糖穩(wěn)態(tài)平衡的重要調(diào)節(jié)因素之一。
核因子E2相關(guān)因子2(Nrf2)與抗氧化反應(yīng)元件(antioxidant responsive element, ARE)結(jié)合后,調(diào)節(jié)抗氧化蛋白的表達(dá)[61, 62]。Nrf2/ARE信號通路已作為重要的抗氧化應(yīng)激信號通路,在調(diào)節(jié)細(xì)胞氧化還原平衡中起到重要作用。此外,Nrf2參與過氧化物酶體增殖物激活受體γ(PPARγ)和PI3K/Akt調(diào)節(jié)的抗氧化酶活性[63]。動(dòng)物實(shí)驗(yàn)也發(fā)現(xiàn),Nrf2對Nrf2-KO小鼠的肥胖、胰島素抵抗和葡萄糖耐量方面具有一定的保護(hù)作用[64]
FoxO1是β細(xì)胞中表達(dá)的FoxO家族主要的轉(zhuǎn)錄因子,也是生長因子信號的主要介導(dǎo)物,調(diào)控β細(xì)胞增殖和氧化應(yīng)激應(yīng)答[65, 66]、胰島素分泌水平,抑制由游離脂肪酸(FFAs)激活的葡萄糖代謝[67-69]。此外,激活β細(xì)胞PI3K/Akt信號可以抑制FoxO活性[70, 71],引起胰高血糖素樣肽(GLP-1)介導(dǎo)的細(xì)胞增殖和抗氧化水平升高。
炎癥反應(yīng)是誘導(dǎo)胰島素抵抗的原因之一[35]。PM2.5暴露降低與高密度脂蛋白(HDL-c)相關(guān)的抗炎能力[72],導(dǎo)致炎癥反應(yīng)增強(qiáng)。在細(xì)顆粒物長期暴露下,在各時(shí)間點(diǎn)暴露組小鼠的血糖濃度均明顯升高,葡萄糖耐量受損,肝臟、肌肉和脂肪組織胰島素抵抗,以及系統(tǒng)性炎癥和肺組織中招募巨噬細(xì)胞[73]。巨噬細(xì)胞通過分泌的細(xì)胞因子(如IL-1、IFN-γ和TNF-α等)激活NF-κB和STAT-1,尤其是IL-1β激活NF-κB可誘導(dǎo)胰島β細(xì)胞凋亡[74]、NO和趨化因子產(chǎn)生,造成內(nèi)質(zhì)網(wǎng)損傷[75]。IL-1β持續(xù)激活JNK后,損傷胰島β細(xì)胞[76, 77],抑制JNK通路可降低β細(xì)胞的氧化損傷[78, 79]。此外,游離脂肪酸(FFA)也可通過氧化/內(nèi)質(zhì)網(wǎng)應(yīng)激或PKC[80, 81]直接激活I(lǐng)KKβ和JNK;氧化應(yīng)激也可能激活PKC,且PKC也能通過NADPH氧化酶誘導(dǎo)氧化應(yīng)激[82]。另有研究顯示,TLR2缺陷性可以保護(hù)高脂食物誘導(dǎo)的β細(xì)胞功能紊亂[83];炎癥激酶和PKC激活誘導(dǎo)β細(xì)胞的功能紊亂和凋亡,影響β細(xì)胞的胰島素信號通路[84],而且PM2.5暴露引起Akt磷酸化的表達(dá)下降[21],最終引起胰島素抵抗。
PM2.5暴露引起機(jī)體血糖水平升高和脂質(zhì)堆積[21, 73],高血糖和高脂進(jìn)一步誘導(dǎo)氧化應(yīng)激,導(dǎo)致細(xì)胞內(nèi)ROS水平升高[85]。而且,脂質(zhì)也可引起血液循環(huán)系統(tǒng)相關(guān)氧化應(yīng)激因子水平的增加[86]。長期高脂和高糖減少胰島素分泌量,導(dǎo)致胰島細(xì)胞功能紊亂[87]。研究發(fā)現(xiàn),用高糖(11.1 mmol·L-1)培養(yǎng)倉鼠胰島瘤HIT-T15細(xì)胞6個(gè)月后,細(xì)胞的胰島素mRNA表達(dá)水平下降,胰島素分泌量降低。相反,在低糖(0.8 mmol·L-1)條件下,細(xì)胞的胰島素mRNA表達(dá)和胰島素分泌量胰島素均維持于正常狀態(tài)[88]。另有研究發(fā)現(xiàn),2型糖尿病患者的胰島β細(xì)胞凋亡水平明顯升高[89]。在糖毒性中,MafA是Maf bZIP(basic region leucine zipper)家族的轉(zhuǎn)錄因子之一,長期高糖(11.1mmol·L-1)培養(yǎng)的HIT-T15細(xì)胞的MafA結(jié)合和轉(zhuǎn)錄功能降低,導(dǎo)致胰島素基因表達(dá)、MafA和PDX-1蛋白水平降低[90]。重組HIT-T15細(xì)胞內(nèi)PDX-1的cDNA可部分增加高糖培養(yǎng)細(xì)胞的胰島素啟動(dòng)子活性[91]。而且,抗氧化劑NAC升高高糖培養(yǎng)HIT-T15細(xì)胞中MafA蛋白的表達(dá)水平[90]。
在高脂高糖條件下,β細(xì)胞易發(fā)生凋亡,該作用可能與Bax、caspase-2、NO和UCP-2(Uncoupling protein 2)水平升高相關(guān)[92, 93]。游離脂肪酸通過JNK激活和IRS-1絲氨酸磷酸化,影響ER的鈣離子調(diào)控[94],抑制胰島素信號通路,調(diào)節(jié)氧化調(diào)控蛋白150(ORP150,保護(hù)細(xì)胞免受ER應(yīng)激損傷)的水平。高濃度FFAs引起胰島素敏感性降低[95]。大鼠注射葡萄糖和脂肪乳劑后,其胰島素基因的表達(dá)水平降低[96]。當(dāng)FFAs水平下降時(shí),胰島素的分泌水平升高[97, 98]。
成人發(fā)病型糖尿病(MODY)由pdx-1基因變異所引起[99, 100],PDX-1在胰島β細(xì)胞發(fā)育和功能中起到重要作用[49, 101]。PDX-1下調(diào)嚴(yán)重影響胰島素生成,導(dǎo)致β細(xì)胞功能紊亂和糖尿病[102]。MafA在葡萄糖調(diào)節(jié)胰島素基因表達(dá)和介導(dǎo)其他基因(如PDX-1)表達(dá)中具有重要作用[49, 103, 104]。FoxO1和PDX-1與MafA啟動(dòng)子結(jié)合后,介導(dǎo)MafA轉(zhuǎn)錄[49],β細(xì)胞中,脂質(zhì)和前炎癥因子下調(diào)MafA和胰島素基因的表達(dá)[101, 105-107],用腺病毒轉(zhuǎn)染PDX-1和MafA可明顯增加內(nèi)源性胰島素mRNA水平約93%[108]。因此,MafA可能是治療β細(xì)胞紊亂的潛在靶點(diǎn)[101]。
總體而言,PM2.5誘導(dǎo)的氧化應(yīng)激和炎癥反應(yīng)在糖尿病的發(fā)生發(fā)展中具有一定的生物學(xué)作用(圖1)。
圖1 PM2.5誘導(dǎo)的氧化應(yīng)激在糖尿病發(fā)生發(fā)展的作用機(jī)制ARE:抗氧化反應(yīng)元件,GSH:谷胱甘肽,IKK-β:Iκ激酶β,JNK:氨基末端激酶,NF-κB:核因子κB,Nrf2:核因子E2相關(guān)因子2,p38 MAPK:p38絲裂原活化蛋白激酶,PDX-1:胰腺十二指腸同源異型盒1,PKD:蛋白激酶D,PM2.5:細(xì)顆粒物,ROS:活性氧,TLR4:Toll樣受體4 Fig. 1 The mechanesim of PM2.5-induced oxidative stress on development of diabetes mellitusARE: Antioxidant responsive element, GSH: Glutathione, IKK-β: Inhibitor of nuclear factor kappa-B kinase, JNK: c-Jun N-terminal kinases, NF-κB: Nuclear factor kappa B, Nrf2: Nuclea factor erythroid-2-related factor 2, p38 MAPK: P38 Mitogen-activated protein kinases, PDX-1: Pancreatic and duodenal homeobox 1(Insulin promoter factor 1), PKD: Protein kinase D, PM2.5: Fine particulate matter, ROS: Reactive oxygen species, TLR4: Toll-like receptor 4
目前,有關(guān)大氣細(xì)顆粒物組成成分(金屬元素、離子和有機(jī)化合物等)引起胰腺β細(xì)胞損傷的研究報(bào)道甚少,其生物學(xué)作用機(jī)制有待于深入研究。
參考文獻(xiàn):
[1] Scully T. Diabetes in numbers [J]. Nature, 2012, 485(7398): S2-S3
[2] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in china [J]. The New England Journal of Medicine, 2010, 362(12): 1090-1101
[3] 許曼音,陸廣華,陳名道. 糖尿病學(xué) [M]. 上海: 上??茖W(xué)技術(shù)出版社, 2010
[4] Hankey S, Marshall J D, Brauer M. Health impacts of the built environment: Within-urban variability in physical inactivity, air pollution, and ischemic heart disease mortality [J]. Environmental Health Perspectives, 2012, 120(2): 247-253
[5] 趙鑫, 林剛, 杜瑩. 大氣顆粒物污染對兒童健康的影響[J]. 中國學(xué)校衛(wèi)生, 2008, 29(11): 1067-1069
[6] 錢孝琳, 闞海東, 宋偉民, 等. 大氣細(xì)顆粒物污染與居民每日死亡關(guān)系的meta分析[J]. 環(huán)境與健康雜志, 2005, 22(4): 246-248
Qian X L, Kan H D, Song W M, et al. Meta-analysis of association between air fine particulate matter and daily mortality [J]. The Journal of Environment and Healthy, 2005, 22(4): 246-248 (in Chinese)
[7] Pope C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J]. The Journal of the American Medical Association, 2002, 287(9): 1132-1141
[8] Veras M M, Damaceno-Rodrigues N R, Guimar?es Silva R M, et al. Chronic exposure to fine particulate matter emitted by traffic affects reproductive and fetal outcomes in mice [J]. Environmental Research, 2009, 109(5): 536-543
[9] Li N, Xia T, Nel A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles [J]. Free Radical Biology & Medicine, 2008, 44(9): 1689-1699
[11] Gerlofs-Nijland M E, Rummelhard M, Boere A J, et al. Particle induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon contents [J]. Environmental Science & Technology, 2009, 43(13): 4729-4736
[12] Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage [J]. Current Topics in Medicinal Chemistry, 2001, 1(6): 529-539
[13] Li N, Hao M, Phalen R F, et al. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects [J]. Clinical Immunology (Orlando, Fla), 2003, 109(3): 250-265
[14] Dales R E, Cakmak S, Vidal C B, et al. Air pollution and hospitalization for acute complications of diabetes in Chile [J]. Environment International, 2012, 46: 1-5
[15] Sun Z, Mukherjee B, Brook R D, et al. Air-pollution and cardiometabolic diseases (AIRCMD): A prospective study investigating the impact of air pollution exposure and propensity for type II diabetes [J]. The Science of the Total Environment, 2013, 448: 72-78
[16] Chen H, Burnett R T, Kwong J C, et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in ontario, Canada [J]. Environmental Health Perspectives, 2013, 121(7): 804-810
[17] Pearson J F, Bachireddy C, Shyamprasad S, et al. Association between fine particulate matter and diabetes prevalence in the U. S. [J]. Diabetes Care, 2010, 33(10): 2196-2201
[18] Brook R D, Xu X, Bard R L, et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution [J]. The Science of the Total Environment, 2013, 448: 66-71
[19] Schneider A, Neas L M, Graff D W, et al. Association of cardiac and vascular changes with ambient PM2.5in diabetic individuals [J]. Particle and Fibre Toxicology, 2010, 7: 14
[20] O'Neill M S, Veves A, Sarnat J A, et al. Air pollution and inflammation in type 2 diabetes: A mechanism for susceptibility [J]. Occupational and Environmental Medicine, 2007, 64(6): 373-379
[21] Sun Q, Yue P, Deiuliis J A, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity [J]. Circulation, 2009, 119(4): 538-546
[22] Zheng Z, Xu X, Zhang X, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model [J]. Journal of Hepatology, 2013, 58(1): 148-154
[23] Danielsen P H, Moller P, Jensen K A, et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines [J]. Chemical Research in Toxicology, 2011, 24(2): 168-184
[24] Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J]. The Journal of Clinical Investigation, 2008, 118(2): 789-800
[25] Xu X, Rao X, Wang T Y, et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model [J]. Particle and Fibre Toxicology, 2012, 9: 40
[26] Mendez R, Zheng Z, Fan Z, et al. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue [J]. American Journal of Translational Research, 2013, 5(2): 224-234
[27] Manzano-Leon N, Mas-Oliva J, Sevilla-Tapia L, et al. Particulate matter promotes in vitro receptor-recognizable low-density lipoprotein oxidation and dysfunction of lipid receptors [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(1): 69-76
[28] Williams K M, Franzi L M, Last J A. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung [J]. Toxicology and Applied Pharmacology, 2013, 266(1): 48-55
[29] Hanzalova K, Rossner P, Sram R J. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter [J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2010, 696(2): 114-121
[30] Sanchez-Perez Y, Chirino Y I, Osornio-Vargas A R, et al. DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants [J]. Cancer Letters, 2009, 278(2): 192-200
[31] Xu X, Deng F, Guo X, et al. Association of systemic inflammation with marked changes in particulate air pollution in beijing in 2008 [J]. Toxicology Letters, 2012, 212(2): 147-156
[32] Hirota J A, Hirota S A, Warner S M, et al. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter [J]. Journal of Allergy and Clinical Immunology, 2012, 129(4): 1116-1125.e1116
[33] Danielsen P H, Loft S, Jacobsen N R, et al. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter [J]. Toxicological Sciences, 2010, 118(2): 574-585
[34] Park E J, Roh J, Kim Y, et al. PM2.5collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice [J]. Environmental Research, 2011, 111(3): 348-355
[35] Johnson A M, Olefsky J M. The origins and drivers of insulin resistance [J]. Cell, 2013, 152(4): 673-684
[36] Salim S Y, Kaplan G G, Barkema H, et al. early exposure to airborne particulate matter alters intestinal immune function and bacterial handling in IL-10 deficient mice [J]. Gastroenterology, 2013, 144(5, Supplement 1): S100-S101
[37] Tapanainen M, Jalava P I, M?ki-Paakkanen J, et al. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances [J]. Atmospheric Environment, 2011, 45(40): 7546-7554
[38] Hong X, Liu C, Chen X, et al. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring [J]. Toxicology, 2013, 306: 59-67
[39] Jarvis I W H, Bergvall C, Bottai M, et al. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter [J]. Toxicology and Applied Pharmacology, 2013, 266(3): 408-418
[40] Jiang L P, Dai H, Sun Q H, et al. Ambient particulate matter on DNA damage in HepG2 cells [J]. Toxicology and Industrial Health, 2011, 27(1): 87-95
[41] Kaneto H, Xu G, Song K H, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress [J]. The Journal of Biological Chemistry, 2001, 276(33): 31099-31104
[42] Gorogawa S, Kajimoto Y, Umayahara Y, et al. Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes [J]. Diabetes Research and Clinical Practice, 2002, 57(1): 1-10
[43] Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells [J]. Biochemical and Biophysical Research Communications, 2003, 300(1): 216-222
[44] Evans J L, Goldfine I D, Maddux B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? [J]. Diabetes, 2003, 52(1): 1-8
[45] Kaneto H, Fujii J, Myint T, et al. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction [J]. The Biochemical Journal, 1996, 320 (Pt3): 855-863
[46] Matsuoka T, Kajimoto Y, Watada H, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in hit cells [J]. The Journal of Clinical Investigation, 1997, 99(1): 144-150
[47] Nishikawa T, Edelstein D, Du X L, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage [J]. Nature, 2000, 404(6779): 787-790
[48] Kaneto H, Xu G, Fujii N, et al. Involvement of c-jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression [J]. The Journal of Biological Chemistry, 2002, 277(33): 30010-30018
[49] Shao S, Fang Z, Yu X, et al. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells [J]. Biochemical and Biophysical Research Communications, 2009, 384(4): 401-404
[50] Bonora E. Protection of pancreatic beta-cells: Is it feasible? [J]. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, 2008, 18(1): 74-83
[51] Kawamori D, Kajimoto Y, Kaneto H, et al. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-jun NH(2)-terminal kinase [J]. Diabetes, 2003, 52(12): 2896-2904
[52] Robertson R, Zhou H, Zhang T, et al. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes [J]. Cell Biochemistry and Biophysics, 2007, 48(2-3): 139-146
[53] Robertson R P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes [J]. The Journal of Biological Chemistry, 2004, 279(41): 42351-42354
[54] Rehman A, Nourooz-Zadeh J, Moller W, et al. Increased oxidative damage to all DNA bases in patients with type ii diabetes mellitus [J]. FEBS Letters, 1999, 448(1): 120-122
[55] Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type ii diabetic patients [J]. Diabetologia, 2002, 45(1): 85-96
[56] Evans J L, Goldfine I D, Maddux B A, et al. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes [J]. Endocrine Reviews, 2002, 23(5): 599-622
[57] Robertson R P, Harmon J, Tran P O, et al. Glucose toxicity in beta-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection [J]. Diabetes, 2003, 52(3): 581-587
[58] Li N, Wu X, Holzer R G, et al. Loss of acinar cell ikkalpha triggers spontaneous pancreatitis in mice [J]. The Journal of Clinical Investigation, 2013, 123(5): 2231-2243
[59] Hacker H, Karin M. Regulation and function of ikk and ikk-related kinases [J]. Science's STKE : Signal Transduction Knowledge Environment, 2006, 2006(357): re13
[60] Sumara G, Formentini I, Collins S, et al. Regulation of PKD by the mapk p38delta in insulin secretion and glucose homeostasis [J]. Cell, 2009, 136(2): 235-248
[61] Pi J, Qu W, Reece J M, et al. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: Involvement of hydrogen peroxide [J]. Experimental Cell Research, 2003, 290(2): 234-245
[62] Nguyen T, Sherratt P J, Pickett C B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element [J]. Annual Review of Pharmacology and Toxicology, 2003, 43: 233-260
[63] Wang X, Hai C X. Ros acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: Is Nrf2 a potential target for the treatment? [J]. Mini Reviews in Medicinal Chemistry, 2011, 11(12): 1082-1092
[64] Chartoumpekis D V, Ziros P G, Psyrogiannis A I, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice [J]. Diabetes, 2011, 60(10): 2465-2473
[65] Okamoto H, Hribal M L, Lin H V, et al. Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance [J]. The Journal of Clinical Investigation, 2006, 116(3): 775-782
[66] Glauser D A, Schlegel W. The emerging role of foxo transcription factors in pancreatic beta cells [J]. The Journal of Endocrinology, 2007, 193(2): 195-207
[67] Puddu A, Storace D, Odetti P, et al. Advanced glycation end-products affect transcription factors regulating insulin gene expression [J]. Biochemical and Biophysical Research Communications, 2010, 395(1): 122-125
[68] Buteau J, Shlien A, Foisy S, et al. Metabolic diapause in pancreatic beta-cells expressing a gain-of-function mutant of the forkhead protein FoxO1 [J]. The Journal of Biological Chemistry, 2007, 282(1): 287-293
[69] Talchai C, Xuan S, Lin H V, et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure [J]. Cell, 2012, 150(6): 1223-1234
[70] Buteau J, Spatz M L, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass [J]. Diabetes, 2006, 55(5): 1190-1196
[71] Fang D, Huang Z, Guan H, et al. The Akt/FoxO1/p27 pathway mediates the proliferative action of liraglutide in beta cells [J]. Molecular MedicineReports, 2012, 5(1): 233-238
[72] Araujo J A, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress [J]. Circulation Research, 2008, 102(5): 589-596
[73] Xu X, Liu C, Xu Z, et al. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue [J]. Toxicological Sciences : An Official Journal of the Society of Toxicology, 2011, 124(1): 88-98
[74] Barnes P J, Karin M. Nuclear factor-kappab: A pivotal transcription factor in chronic inflammatory diseases [J]. The New England Journal of Medicine, 1997, 336(15): 1066-1071
[75] Cnop M, Welsh N, Jonas J C, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities [J]. Diabetes, 2005, 54 Suppl 2: S97-107
[76] Corbett J A, Wang J L, Sweetland M A, et al. Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide [J]. The Journal of Clinical Investigation, 1992, 90(6): 2384-2391
[77] Ankarcrona M, Dypbukt J M, Brune B, et al. Interleukin-1 beta-induced nitric oxide production activates apoptosis in pancreatic rinm5f cells [J]. Experimental Cell Research, 1994, 213(1): 172-177
[78] Ammendrup A, Maillard A, Nielsen K, et al. The c-jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells [J]. Diabetes, 2000, 49(9): 1468-1476
[79] Bonny C, Oberson A, Negri S, et al. Cell-permeable peptide inhibitors of jnk: Novel blockers of beta-cell death [J]. Diabetes, 2001, 50(1): 77-82
[80] Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B [J]. Nature, 1990, 344(6267): 678-682
[81] Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells [J]. Diabetes, 2000, 49(11): 1939-1945
[82] Koulajian K, Desai T, Liu G C, et al. Nadph oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents [J]. Diabetologia, 2013, 56(5): 1078-1087
[83] Ehses J A, Meier D T, Wueest S, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet [J]. Diabetologia, 2010, 53(8): 1795-1806
[84] Kulkarni R N. Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function [J]. Biochemical Society Transactions, 2002, 30(2): 317-322
[85] Fiorentino T V, Prioletta A, Zuo P, et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases [J]. Current Pharmaceutical Design, 2013, 19(32): 5695-5703
[86] Yamato M, Shiba T, Yoshida M, et al. Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin [J]. The FEBS Journal, 2007, 274(15): 3855-3863
[87] Poitout V, Robertson R P. Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity [J]. Endocrinology, 2002, 143(2): 339-342
[88] Robertson R P, Zhang H J, Pyzdrowski K L, et al. Preservation of insulin mrna levels and insulin secretion in hit cells by avoidance of chronic exposure to high glucose concentrations [J]. The Journal of Clinical Investigation, 1992, 90(2): 320-325
[89] Butler A E, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes [J]. Diabetes, 2003, 52(1): 102-110
[90] Robertson R P, Harmon J S. Pancreatic islet beta-cell and oxidative stress: The importance of glutathione peroxidase [J]. FEBS Letters, 2007, 581(19): 3743-3748
[91] Harmon J S, Tanaka Y, Olson L K, et al. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity [J]. Diabetes, 1998, 47(6): 900-904
[92] Maestre I, Jordan J, Calvo S, et al. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1 [J]. Endocrinology, 2003, 144(1): 335-345
[93] Giacca A, Xiao C, Oprescu A I, et al. Lipid-induced pancreatic beta-cell dysfunction: Focus on in vivo studies [J]. American Journal of Physiology Endocrinology and Metabolism, 2011, 300(2): E255-262
[94] Rys-Sikora K E, Gill D L. Fatty acid-mediated calcium sequestration within intracellular calcium pools [J]. The Journal of Biological Chemistry, 1998, 273(49): 32627-32635
[95] Boden G, Chen X, Ruiz J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake [J]. The Journal of Clinical Investigation, 1994, 93(6): 2438-2446
[96] Hagman D K, Latour M G, Chakrabarti S K, et al. Cyclical and alternating infusions of glucose and intralipid in rats inhibit insulin gene expression and PDX-1 binding in islets [J]. Diabetes, 2008, 57(2): 424-431
[97] Bajaj M, Suraamornkul S, Kashyap S, et al. Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes [J]. The Journal of Clinical Endocrinology and Metabolism, 2004, 89(9): 4649-4655
[98] Cusi K, Kashyap S, Gastaldelli A, et al. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes [J]. American Journal of Physiology Endocrinology and Metabolism, 2007, 292(6): E1775-1781
[99] Stoffers D A, Zinkin N T, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence [J]. Nature Genetics, 1997, 15(1): 106-110
[100] Stoffers D A, Ferrer J, Clarke W L, et al. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1 [J]. Nature Genetics, 1997, 17(2): 138-139
[101] Kaneto H, Miyatsuka T, Kawamori D, et al. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function [J]. Endocrine Journal, 2008, 55(2): 235-252
[102] Shu T, Zhu Y, Wang H, et al. Ages decrease insulin synthesis in pancreatic beta-cell by repressing PDX-1 protein expression at the post-translational level [J]. PLoS One, 2011, 6(4): e18782
[103] Samaras S E, Zhao L, Means A, et al. The islet beta cell-enriched ripe3b1/maf transcription factor regulates PDX-1 expression [J]. The Journal of Biological Chemistry, 2003, 278(14): 12263-12270
[104] Wang H, Brun T, Kataoka K, et al. MafA controls genes implicated in insulin biosynthesis and secretion [J]. Diabetologia, 2007, 50(2): 348-358
[105] Zhang C, Moriguchi T, Kajihara M, et al. MafA is a key regulator of glucose-stimulated insulin secretion [J]. Molecular and Cellular Biology, 2005, 25(12): 4969-4976
[106] Hagman D K, Hays L B, Parazzoli S D, et al. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of langerhans [J]. The Journal of Biological Chemistry, 2005, 280(37): 32413-32418
[107] Poitout V, Hagman D, Stein R, et al. Regulation of the insulin gene by glucose and fatty acids [J]. The Journal of Nutrition, 2006, 136(4): 873-876
[108] Harmon J S, Stein R, Robertson R P. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells [J]. The Journal of Biological Chemistry, 2005, 280(12): 11107-11113