李鐵剛 武廣 劉軍 胡姸青 張?jiān)聘?羅大峰LI TieGang, WU Guang*, LIU Jun, HU YanQing, ZHANG YunFu and LUO DaFeng
1. 中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 1000832. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所 國土資源部成礦作用與資源評價重點(diǎn)實(shí)驗(yàn)室,北京 1000373. 云南馳宏資源勘查開發(fā)有限公司,曲靖 6550001. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China3. Yunnan Chihong Resources Exploration and Development Limited Liability Company, Qujing 655000, China2013-08-11 收稿, 2013-11-27 改回.
甲烏拉鉛鋅銀礦床位于內(nèi)蒙古自治區(qū)東北部的滿洲里地區(qū)(圖1a)。本區(qū)已發(fā)現(xiàn)烏奴格吐山大型銅鉬礦床、甲烏拉和查干布拉根大型鉛鋅銀礦床、額仁陶勒蓋大型銀礦床、八大關(guān)中型銅鉬礦床、哈拉勝小型鉛鋅礦床、頭道井小型銅鉬礦床、八八一小型銅鉬礦床、巴彥浩雷銅金銀礦點(diǎn)及大壩銅金銀礦點(diǎn)等(圖1b)。滿洲里地區(qū)的主要礦床類型為斑巖型、熱液脈型和淺成低溫?zé)嵋盒?。前人對甲烏拉礦床的研究主要集中在礦床地質(zhì)特征(潘龍駒和孫恩守,1992;曾令平,2010;聶鳳軍等,2011)、地球化學(xué)(王大平等,1991;李憲臣和秦克章,1999;呂志成等,2000;趙清泉等,2005)和流體包裹體(雙寶等,2009;翟德高等,2010;武廣等,2010)方面。因以前缺少對鉛鋅礦床定年的有效方法,長期以來,一直未獲得該區(qū)鉛鋅銀礦床可靠的成礦年齡。精確測定礦床的形成年齡,對于正確認(rèn)識礦床成因、控礦因素和總結(jié)成礦規(guī)律并指導(dǎo)找礦勘探工作都具有極為重要的意義(程裕淇,1983;翟裕生等,1992,2008;陳毓川等,1994;裴榮富和吳良士,1994;劉建明等,2004,1998a;毛景文和王志良,2000; 毛景文等,2005,2006)。近年來,隨著同位素年代學(xué)的不斷發(fā)展,直接利用礦石礦物開展同位素測年已經(jīng)逐漸成熟,國內(nèi)外研究者已在輝鉬礦Re-Os同位素測年(Maoetal., 1999, 2008; 袁順達(dá)等,2012)、錫石的U-Pb定年(Yuanetal., 2008, 2011)以及閃鋅礦、方鉛礦、黃銅礦、黃鐵礦Rb-Sr測年(Nakaietal., 1990, 1993; Brannonetal., 1992a, b; Christensenetal., 1993, 1995a, b; Pettke and Diamond,1996,楊進(jìn)輝和周新華,2000;韓以貴等,2007;張長青等,2008;張瑞斌等,2008;胡喬青等,2012;鄭偉等,2013)等方面取得了一系列重要進(jìn)展。本文在詳細(xì)研究甲烏拉礦床地質(zhì)特征的基礎(chǔ)上,選取主成礦階段的閃鋅礦、黃鐵礦開展Rb-Sr同位素定年工作,目的是確定甲烏拉礦床的成礦時代,為成礦地質(zhì)背景和成礦規(guī)律研究提供年代學(xué)制約。
滿洲里地區(qū)大地構(gòu)造上位于額爾古納興凱造山帶(亦稱額爾古納地塊)東南緣,得爾布干深斷裂北西側(cè)(圖1a)。額爾古納造山帶是西伯利亞板塊南緣的薩彥-中蒙古-額爾古納造山帶的東段,呈北東向展布于大興安嶺西北部。該造山帶南東界為得爾布干深斷裂,北西側(cè)為蒙古-鄂霍茨克縫合帶。額爾古納造山帶經(jīng)歷了復(fù)雜的構(gòu)造演化,中元古代以后的主要事件有6次:(1)新元古代中晚期-早寒武世,該區(qū)處于地槽發(fā)展階段,發(fā)育中新元古代興華渡口群和佳疙疸組的海相火山巖-碎屑巖建造,震旦-早寒武世期間,沉積額爾古納河組海相碎屑巖-碳酸鹽巖建造(Wuetal., 2012);(2)新元古代末期-早古生代初期,該區(qū)發(fā)生了興凱造山運(yùn)動,它與西伯利亞大陸東南緣的維吉姆-斯塔諾夫地塊拼貼,形成興凱-薩拉伊爾增生帶(葛文春等,2005;Wuetal., 2005, 2012);(3)在早古生代,它與西南部的中蒙古地塊沿克魯倫河斷裂拼合(李錦軼,1998;李錦軼等,2004);(4)在晚古生代,隨古亞洲洋板塊向西伯利亞板塊俯沖消減和蒙古-鄂霍茨克弧后洋盆形成,它與西伯利亞大陸再次分離,成為古亞洲洋與蒙古-鄂霍茨克洋之間的島弧地體的基底(祁進(jìn)平等,2005);(5)在古生代末至中生代早期,蒙古-鄂霍茨克洋盆向南北兩側(cè)俯沖消減,額爾古納造山帶發(fā)育陸緣弧花崗巖類,形成八八一、八大關(guān)和烏奴格吐山斑巖型銅鉬礦床;(6)古生代末以來,蒙古-鄂霍茨克洋自西向東閉合,蒙古-中朝大陸與西伯利亞大陸碰撞,額爾古納造山帶于中侏羅世末期完成與外貝加爾造山帶的拼合(李錦軼,1998;Sorokinetal., 2004),晚侏羅世-早白堊世轉(zhuǎn)入后碰撞階段,發(fā)育中酸性為主的火山巖和小型侵入體,并形成一系列熱液礦床,構(gòu)成了著名的額爾古納成礦帶(武廣等,2007)。
滿洲里地區(qū)前中生代地層零星分布,主要包括新元古界佳疙疸組和震旦-下寒武統(tǒng)額爾古納河組。前者由絹云石英片巖、石英巖、砂巖、板巖、流紋質(zhì)凝灰?guī)r和大理巖組成;后者主要為大理巖,夾少量絹云石英片巖和變砂巖。中生代地層構(gòu)成研究區(qū)的主體,自下而上包括中侏羅統(tǒng)萬寶組、中侏羅統(tǒng)塔木蘭溝組、上侏羅統(tǒng)滿克頭鄂博組、上侏羅統(tǒng)瑪尼吐組、下白堊統(tǒng)白音高老組、下白堊統(tǒng)梅勒圖組和下白堊統(tǒng)大磨拐組。萬寶組為陸相礫巖、砂礫巖、長石砂巖及薄層泥質(zhì)粉砂巖夾煤層;塔木蘭溝組主要由安山巖和玄武安山巖組成;滿克頭鄂博組為流紋巖;瑪尼吐組為安山巖和英安巖;白音高老組由英安巖、流紋巖、凝灰?guī)r組成;梅勒圖組為玄武巖、安山巖;大磨拐組為礫巖、砂巖、頁巖夾煤層(內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局,1991;舒廣龍等,2003;孟恩等,2011)。
滿洲里地區(qū)褶皺和斷裂構(gòu)造均較發(fā)育。斷裂構(gòu)造主要為北東向和北西向。前者以得爾布干斷裂為代表,該斷裂控制了北東向斷隆、斷坳的分布,并在該斷裂的北西側(cè)隆起-半隆起區(qū)發(fā)育眾多斑巖型銅鉬礦床和中低溫?zé)嵋盒豌U鋅銀礦床,即該斷裂控制了北東向成礦帶的展布;后者以八大關(guān)、哈尼溝斷裂和木哈爾斷裂帶為代表,控制了北西向成礦亞帶的分布。前中生代褶皺較發(fā)育,主要為北東走向,以緊密褶皺為主,巖層陡傾,甚至倒轉(zhuǎn),軸部多有巖漿巖分布;中生代構(gòu)造層中褶皺多為寬緩的短軸狀,表現(xiàn)為穹隆或盆地。由于區(qū)域上火山巖漿作用強(qiáng)烈,相應(yīng)產(chǎn)生一些火山構(gòu)造,是區(qū)域上構(gòu)造的又一特征。
圖1 滿洲里地區(qū)大地構(gòu)造位置(a, 據(jù)葛文春等,2007修改)和區(qū)域地質(zhì)簡圖(b,據(jù)趙一鳴和張德全,1997;武廣等,2010修改)1-八大關(guān)斑巖型銅鉬礦床;2-八八一斑巖型銅鉬礦床;3-龍嶺矽卡巖型銅鋅錫礦點(diǎn);4-哈拉勝中低溫?zé)嵋好}型鉛鋅礦床;5-長嶺斑巖型銅鉬礦點(diǎn);6-頭道井斑巖型銅鉬礦床;7-烏奴格吐山斑巖型銅鉬礦床;8-大壩淺成低溫?zé)嵋盒豌~金銀礦點(diǎn);9-甲烏拉中低溫?zé)嵋好}型鉛鋅銀礦床;10-查干布拉根中低溫?zé)嵋好}型鉛鋅銀礦床;11-額爾登烏拉淺成低溫?zé)嵋盒豌y礦點(diǎn);12-巴彥浩雷淺成低溫?zé)嵋盒豌~金銀礦點(diǎn);13-努其根烏拉中低溫?zé)嵋好}型鉛鋅銀礦點(diǎn);14-額仁陶勒蓋淺成低溫?zé)嵋盒豌y礦床.①-得爾布干斷裂;②-額爾古納河-呼倫斷裂;③-八大關(guān)斷裂;④-哈尼溝斷裂;⑤-木哈爾斷裂帶Fig.1 Sketch regional geological map of the Manzhouli area in Inner Mongolia, showing geotectonic units (a, modified after Ge et al., 2007) and locations of major deposits/occurrences (b, modified after Zhao and Zhang, 1997; Wu et al., 2010)Names of numbered deposits/occurrences: 1-Badaguan porphyry Cu-Mo deposit; 2-Babayi porphyry Cu-Mo deposit; 3-Longling skarn Cu-Zn-Sn occurrence; 4-Halasheng epithermal-to-mesothermal lode Pb-Zn deposit; 5-Changling porphyry Cu-Mo occurrence; 6-Toudaojing porphyry Cu-Mo deposit; 7-Wunugetushan porphyry Cu-Mo deposit; 8-Daba epithermal Cu-Au-Ag occurrence; 9-Jiawula epithermal-to-mesothermal lode Pb-Zn-Ag deposit; 10-Chaganbulagen epithermal-to-mesothermal lode Pb-Zn-Ag deposit; 11-Erdengwula epithermal Ag occurrence; 12-Bayanhaolei epithermal Cu-Au-Ag occurrence; 13-Wuqigenwula epithermal-to-mesothermal lode Pb-Zn-Ag occurrence; 14-Erentaolegai epithermal Ag deposit. Names of numbered faults/fault belt: ①-Derbugan fault; ②-Ergunahe-Hulun fault; ③-Badaguan fault; ④-Hanigou fault; ⑤-Muhar fault belt
圖2 甲烏拉礦床地質(zhì)圖(據(jù)趙一鳴和張德全,1997修改)1-第四系;2-下白堊統(tǒng)梅勒圖組基性火山巖;3-上侏羅統(tǒng)-下白堊統(tǒng)酸性、中酸性火山巖;4-中侏羅統(tǒng)塔木蘭溝組中基性火山巖;5-中侏羅統(tǒng)萬寶組砂巖、礫巖;6-燕山晚期正長斑巖;7-燕山晚期石英斑巖;8-燕山晚期石英二長斑巖;9-燕山晚期長石斑巖;10-海西晚期花崗巖;11-地質(zhì)界線;12-破碎帶;13-礦體;14-礦體編號Fig.2 Geological map of the Jiawula Pb-Zn-Ag deposit(modified after Zhao and Zhang 1997)1-Quaternary; 2-Lower Cretaceous Meiletu Fm. basalt volcanic rock; 3-Lower Cretaceous-Upper Jurassic acidic volcanic rock and intermediate-acidic volcanic rock; 4-Middle Jurassic Tamulangou Fm. intermediate-basalt volcanic rock; 5-Middle Jurassic Wanbao Fm. sandstone and conglomerate; 6-Late Yanshanian orthophyre; 7-Late Yanshanian quartz porphyry; 8-Late Yanshanian quartz monzonite porphyry; 9-Late Yanshanian feldspar porphyry; 10-Late Hercynian granite; 11-geological boundary; 12-fracture zone; 13-ore body; 14-ore body number
區(qū)域巖漿活動頻繁,可劃分為海西晚期、印支期、燕山早期和燕山晚期4期(武廣等,2010)。海西晚期花崗巖類多呈巖基、巖株?duì)町a(chǎn)出,主要巖石類型為花崗巖、斜長花崗巖、花崗閃長巖、二長花崗巖,其K-Ar同位素年齡為262~271Ma(趙一鳴和張德全,1997);印支期花崗巖多呈巖基產(chǎn)出,主要巖石類型為二長花崗巖和正長花崗巖,有少量花崗閃長巖,其Rb-Sr等時線年齡為211±21Ma~225.4±7.9Ma(秦克章等,1998);燕山早期花崗巖類多呈巖基或巖株?duì)畛雎叮瑸楹谠颇富◢弾r、花崗閃長巖、二長花崗巖,其K-Ar同位素年齡為138~177Ma(趙一鳴和張德全,1997),其與斑巖型銅鉬礦化關(guān)系密切(武廣等,2010);燕山晚期侵入巖多以淺成-超淺成的巖株或巖枝產(chǎn)出,主要巖石類型為花崗斑巖、石英斑巖和石英二長斑巖,其K-Ar同位素年齡為93~138Ma(Qinetal. 1995),與該區(qū)鉛鋅銀金成礦關(guān)系密切(武廣等,2010)。
甲烏拉礦床位于滿洲里市南西150km,東距新巴爾虎右旗政府所在地——阿拉坦額莫勒鎮(zhèn)45km,地理坐標(biāo):東經(jīng):116°14′30″~116°20′00″、北緯:48°46′00″~48°49′30″。礦區(qū)出露地層主要為侏羅系中統(tǒng)萬寶組陸相礫巖和砂巖、中侏羅統(tǒng)塔木蘭溝組安山巖和玄武安山巖、上侏羅統(tǒng)滿克頭鄂博組流紋巖、上侏羅統(tǒng)瑪尼吐組安山巖和英安巖、下白堊統(tǒng)白音高老組英安巖、流紋巖和凝灰?guī)r及下白堊統(tǒng)梅勒圖組玄武巖。侵入巖有主要為海西晚期的花崗巖和燕山晚期(早白堊世)的正長斑巖、石英斑巖、石英二長斑巖、長石斑巖。礦區(qū)所在位置屬中生代燕山期構(gòu)造-巖漿活動強(qiáng)烈地區(qū),北側(cè)的北西向木哈爾斷裂和南側(cè)的北西西向甲烏拉-查干布拉根斷裂規(guī)模較大,而與火山機(jī)構(gòu)有成因聯(lián)系的北西向和北北西向斷裂構(gòu)成向北西展開、向南東收斂的扇形,這些扇形斷裂控制了礦體的產(chǎn)出(圖2)。
圖3 甲烏拉礦床2號勘探線剖面圖(據(jù)趙一鳴和張德全,1997;翟德高等,2010資料修改)Fig.3 Geological cross sections along the exploration line No. 2 of the Jiawula Pb-Zn-Ag deposit (modified after Zhao and Zhang, 1997; Zhai et al., 2010)
甲烏拉礦床現(xiàn)已圈出40余條礦體,所有礦體均呈脈狀產(chǎn)于北西西-北北西向斷裂中,礦體總體走向330°~350°,傾向南西,傾角42°~70°,水平和垂直方向,礦體均具有尖滅再現(xiàn)(圖2、圖3)。甲烏拉礦床主要由1、2、3、4和12號礦體組成,其中2號礦體規(guī)模最大,斷續(xù)延長達(dá)2000m,延深300~500m,厚度0.36~14.98m,平均3.87m(圖2、圖3)。平均品位:Ag為124.31×10-6、Pb為2.65%、Zn為4.24%、Cu為0.30%(翟德高等,2010)。
礦石中原生金屬礦物主要為方鉛礦、閃鋅礦、黃鐵礦,其次為黃銅礦、磁黃鐵礦、毒砂、磁鐵礦;含銀礦物主要為輝銻鉛銀礦、硫銻銅銀礦、含銀鉛鉍礦、銀黝銅礦、深紅銀礦、輝銀礦、自然銀;次生礦物有赤鐵礦、白鉛礦、菱鋅礦、鋅礬。非金屬礦物主要為石英、碳酸鹽、綠泥石等。
圖4 甲烏拉鉛鋅銀礦床礦石典型照片(a)-塊狀鉛鋅礦石;(b)-閃鋅礦出溶乳滴狀黃銅礦;(c)-方鉛礦交代黃鐵礦,閃鋅礦交代黃鐵礦和方鉛礦;(d)-含乳滴狀黃銅礦的閃鋅礦交代黃鐵礦;(e)-方鉛礦交代磁黃鐵礦;(f)-黃銅礦包裹黃鐵礦. Cp-黃銅礦;Gn-方鉛礦;Po-磁黃鐵礦;Py-黃鐵礦;Sp-閃鋅礦 Fig.4 Representative photographs of ores from the Jiawula Pb-Zn-Ag deposit(a)-massive lead-zinc ore; (b)-chalcopyrite exsolved from sphalerite under reflected light; (c)-galena replacing pyrite, and pyrite and galena replaced by sphalerite under reflected light; (d)-sphalerite containing emulsion droplet chalcopyrite replacing pyrite under reflected light; (e)-galena replacing pyrrhotite under reflected light; (f)-chalcopyrite involving pyrite under reflected light. Cp-chalcopyrite; Gn-galena; Po-pyrrhotite; Py-pyrite; Sp-sphalerite
礦石結(jié)構(gòu)主要有自形-半自形-他形粒狀結(jié)構(gòu)、充填結(jié)構(gòu)、交代殘余結(jié)構(gòu)、包含結(jié)構(gòu)、乳濁狀結(jié)構(gòu)、葉片狀結(jié)構(gòu)、碎裂結(jié)構(gòu)和纖狀、羽狀、雛晶結(jié)構(gòu)。構(gòu)造主要為稠密浸染狀構(gòu)造、稀疏-稠密浸染狀構(gòu)造、塊狀構(gòu)造和角礫狀構(gòu)造,部分礦石具脈狀和細(xì)脈狀構(gòu)造。
圍巖蝕變類型主要為硅化、綠泥石化、伊利石水白云母化、螢石化、碳酸鹽化和青磐巖化。其中,硅化、綠泥石化、伊利石水白云母化、螢石化、碳酸鹽化一般局限于含礦構(gòu)造帶內(nèi)及附近圍巖中,呈帶狀分布,而青磐巖化發(fā)育于塔木蘭溝組中基性火山巖中,呈面型分布。與成礦關(guān)系密切的蝕變類型主要為硅化、綠泥石化和碳酸鹽化。
依據(jù)野外礦脈穿切次序、礦物組合及礦物之間的共生關(guān)系等特征,將甲烏拉礦床的成礦過程劃分為熱液、表生2個成礦期。熱液成礦期包括4個成礦階段:(1)石英+毒砂+黃鐵礦(粗粒)+磁鐵礦階段;(2)石英+磁黃鐵礦+黃鐵礦(晶型較好)+黃銅礦階段;(3)石英+碳酸鹽+閃鋅礦+方鉛礦+黃鐵礦+自然銀+含銀礦物±黃銅礦階段;(4)石英+碳酸鹽+黃鐵礦階段。表生期形成褐鐵礦、硬錳礦、白鉛礦、菱鋅礦、鉛礬、鋅礬、軟錳礦等礦物組合。其中,熱液期第三成礦階段,即石英+碳酸鹽+閃鋅礦+方鉛礦+黃鐵礦+自然銀+含銀礦物±黃銅礦階段是甲烏拉礦床的主成礦階段,形成了該礦床主要的工業(yè)鉛鋅銀礦體。
本次實(shí)驗(yàn)的閃鋅礦和黃鐵礦樣品分別采自甲烏拉礦床1號礦體1采區(qū)四盲井一中段、1號礦體1采區(qū)四盲井五中段、12號礦體七中段、3號礦體12號井四中段、2號礦體南段。樣品均為熱液期第三成礦階段的礦石,即石英+碳酸鹽+閃鋅礦+方鉛礦+黃鐵礦+自然銀+含銀礦物±黃銅礦階段的塊狀鉛鋅礦石(圖4a)。主要金屬礦物為閃鋅礦、方鉛礦、黃鐵礦、黃銅礦和磁黃鐵礦(圖4)。閃鋅礦呈棕褐色,鏡下呈灰色,具他形粒狀結(jié)構(gòu)和固溶體分離結(jié)構(gòu)(圖4a-d);黃鐵礦呈淺黃色,鏡下呈淺棕色,具半自形-他形粒狀結(jié)構(gòu)(圖4c, d, f);方鉛礦呈鉛灰色,鏡下呈灰白色,呈半自形粒狀和他形粒狀結(jié)構(gòu),常交代黃鐵礦和磁黃鐵礦(圖4c, e);磁黃鐵礦呈暗銅黃色,鏡下呈淡玫瑰色,他形粒狀(圖4e);黃銅礦呈銅黃色,鏡下亦呈銅黃色,除在閃鋅礦中呈乳滴狀結(jié)構(gòu)外(圖4b-d),亦可見獨(dú)立的黃銅礦,常包裹早期的黃鐵礦,構(gòu)成包含結(jié)構(gòu)(圖4f)。
從圖4中可以看出,甲烏拉礦床的黃鐵礦較為純凈,但多數(shù)閃鋅礦中含有出溶的乳滴狀黃銅礦。為了挑選出純度較高的閃鋅礦,選樣前首先磨制光片,盡量挑選出固溶體分離結(jié)構(gòu)不發(fā)育的閃鋅礦樣品挑選單礦物。將樣品粉碎到40~80目,在雙目鏡下挑選出閃鋅礦和黃鐵礦,黃鐵礦和絕大多數(shù)閃鋅礦樣品的純度達(dá)99%以上,個別閃鋅礦樣品因含出溶的黃銅礦,其純度低于99%,但因?yàn)辄S銅礦與閃鋅礦的同位素分餾較接近,因此,對定年結(jié)果基本上沒有影響。將選出的黃鐵礦和閃鋅礦用蒸餾水清洗,低溫蒸干,然后將純凈的單礦物樣品在瑪瑙研缽內(nèi)研磨至200目左右待測。因?yàn)殚W鋅礦等金屬礦物的Rb、Sr含量較低,甚至低于0.01×10-6,為了確保Rb-Sr同位素定年的可行性,我們首先在南京大學(xué)現(xiàn)代分析中心同位素分析室對上面的7個閃鋅礦、6個黃鐵礦樣品進(jìn)行了微量元素Rb、Sr含量的草測,在此基礎(chǔ)上,挑選適合定年的樣品在南京大學(xué)現(xiàn)代分析中心同位素分析室進(jìn)行Rb、Sr含量和同位素組成測定。具體分析方法如下:原粉末樣品用混合酸溶解,取清液上離子交換柱分離,采用高壓密閉熔樣和陽離子交換技術(shù)分離和提純,然后用英國產(chǎn)的VG354質(zhì)譜儀測定,測定方法見文獻(xiàn)(Wangetal., 2007;王銀喜等, 2007)。用于測定的美國NBS987同位素標(biāo)樣為:87Sr/86Sr=(0.710236±7),Sr的全流程空白為(5~7)×10-9g,87Sr/86Sr同位素比值用86Sr/88Sr=0.1194進(jìn)行標(biāo)準(zhǔn)化。87Sr/86Sr的分析誤差為±1%,λRb=1.42×10-11a-1。等時線年齡用ISOPLOT(Ludwig,1998)程序計(jì)算。
表1甲烏拉鉛鋅銀礦床閃鋅礦和黃鐵礦Rb-Sr同位素組成
Table 1 Rb-Sr isotopic analyses of sphalerite and pyrite from the Jiawula Pb-Zn-Ag deposit
樣品號測試礦物Rb(×10-6)Sr(×10-6)87Rb86Sr87Sr86Sr87Sr86Sr()iNJ9-3閃鋅礦2.4391.4282.0690.716972±50.712764NJ9-4閃鋅礦3.4871.7535.8620.724464±50.712544NJ9-5閃鋅礦4.0121.6257.2810.727566±50.712770NJ9-6閃鋅礦4.3073.8133.3360.719333±50.712549NJ9-6黃鐵礦0.15726.4360.07230.712823±50.712634NJ9-7閃鋅礦2.5211.9023.9080.720578±50.712649NJ9-7黃鐵礦0.10342.2310.13670.712962±50.712641NJ9-9閃鋅礦4.9821.30111.290.735598±50.712676NJ9-9黃鐵礦7.3672.9427.3840.727391±50.712684NJ9-10黃鐵礦3.8914.1062.8610.718462±50.712381NJ9-11黃鐵礦2.9541.9834.3960.721609±50.712646NJ9-12黃鐵礦4.8071.5369.2310.731475±50.712673NJ-52閃鋅礦1.9527.1480.80560.714279±50.712711
圖5 甲烏拉鉛鋅銀礦床單礦物閃鋅礦Rb-Sr等時線圖解Fig.5 Rb-Sr isochron of sphalerite from the Jiawula Pb-Zn-Ag deposit
閃鋅礦和黃鐵礦的Rb、Sr含量和同位素組成測定結(jié)果見表1。本次測試了13個樣品,其中7個閃鋅礦,6個黃鐵礦,通過對單礦物以及共生礦物間的礦物組合來構(gòu)筑等時線,這樣單礦物和共生礦物的等時線年齡可以相互約束,從而提高等時線的精確度,得出比較精確的成礦年齡(鄭偉等,2013)。得到的87Rb/86Sr-87Sr/86Sr圖均表現(xiàn)出很好的線性關(guān)系(圖5、圖6、圖7)。
圖6 甲烏拉鉛鋅銀礦床單礦物黃鐵礦Rb-Sr等時線圖解Fig.6 Rb-Sr isochron of pyrite from the Jiawula Pb-Zn-Ag deposit
圖7 甲烏拉鉛鋅銀礦床共生組合閃鋅礦和黃鐵礦Rb-Sr等時線圖解Fig.7 Rb-Sr isochron of sphalerite and pyrite from the Jiawula Pb-Zn-Ag deposit
利用ISOPLOT軟件包計(jì)算出閃鋅礦Rb-Sr等時線年齡t=143.0±2.0Ma,初始鍶同位素比值ISr=0.71265,MSWD=3.2(圖5);黃鐵礦Rb-Sr等時線年齡t=142.0±3.0Ma,初始鍶同位素比值ISr=0.71267,MSWD=5.7(圖6);共生礦物組合閃鋅礦與黃鐵礦Rb-Sr等時線年齡t=142.7±1.3Ma,初始鍶同位素比值ISr=0.71266,MSWD=3.8(圖7)。
礦床成礦時代的精確測定一直是礦床學(xué)研究的一個難點(diǎn)。近年來,利用礦石礦物(如閃鋅礦等)或與成礦有關(guān)的脈石礦物(如螢石等)的Rb-Sr同位素體系來直接獲得成礦年齡已涌現(xiàn)大量成功實(shí)例(Nakaietal., 1990;Brannonetal., 1992a;Tretbaretal., 2000;楊進(jìn)輝和周新華,2000;Yangetal., 2001;王彥斌等,2004;鄭偉等,2013)。熱液礦物Rb-Sr等時線年齡測年的基本前提是同源、同時、封閉性、一致的(87Sr/86Sr)i以及具有不同的(87Rb/86Sr)i(李文博等,2002)。實(shí)驗(yàn)過程中,將閃鋅礦粉碎至200目以下,然后進(jìn)行超聲波清洗,基本可排除次生及原生包裹體的干擾(劉建明等,1998a)。本次工作選擇未見或少見裂隙,且結(jié)晶較好的致密塊狀礦石為研究對象,這樣閃鋅礦、黃鐵礦等單礦物純度相對比較高,盡量滿足Rb-Sr同位素測年的前提條件。硫化物Rb-Sr定年是直接將硫化物全溶,測其Rb-Sr同位素組成,以確定其形成年齡,也直接代表了成礦年齡。一些學(xué)者認(rèn)為利用金屬礦床中共生礦物組合Rb-Sr等時線確定礦床的成礦時代會更加理想,因?yàn)楣采鸁嵋旱V物不僅符合Rb-Sr等時線定年的基本前提,而且可以提高Rb-Sr等時線的精確度(李志昌等,1994;劉建明等,1998a,b)。本文利用閃鋅礦、黃鐵礦進(jìn)行Rb-Sr等時線年齡測定,這樣使所獲得的數(shù)據(jù)更為可信。
甲烏拉鉛鋅銀礦床的容礦圍巖主要為中侏羅統(tǒng)萬寶組陸相礫巖、砂礫巖、長石砂巖及薄層泥質(zhì)粉砂巖和中侏羅統(tǒng)塔木蘭溝組橄欖玄武巖、玄武巖、玄武粗安巖、輝石安山巖、粗安巖、粗安質(zhì)熔結(jié)凝灰?guī)r、粗安質(zhì)巖屑晶屑凝灰?guī)r(潘龍駒和孫恩守,1992;雙寶等,2009)。得爾布干成礦帶北段的得耳布爾、比利亞谷、二道河子鉛鋅銀礦床和西吉諾山鉛鋅銀銅礦點(diǎn)的容礦圍巖均為中侏羅統(tǒng)塔木蘭溝組火山巖。因此,其成礦時代不會早于中侏羅世(武廣等,2010)。本次獲得的閃鋅礦、黃鐵礦以及共生礦物組合閃鋅礦與黃鐵礦的Rb-Sr等時線年齡結(jié)果一致(約142~143Ma),與盛繼福和傅先政(1999)在甲烏拉礦床測得的139.2Ma石英二長斑巖單顆粒鋯石年齡在誤差范圍內(nèi)一致,進(jìn)一步驗(yàn)證了本次所測成礦年齡的準(zhǔn)確性和可行性。因此,甲烏拉鉛鋅銀礦床形成于142~143Ma前的早白堊世。
對于甲烏拉礦床的成礦物質(zhì)來源,前人主要通過鉛同位素的研究來進(jìn)行探討,曾令平(2010)認(rèn)為成礦物質(zhì)主要來源于地殼深部和上地幔。雙寶等(2009)認(rèn)為成礦物質(zhì)主要來源于下地殼,但混有地幔物質(zhì)。
87Sr/86Sr是判斷成巖成礦物質(zhì)來源的重要指標(biāo),在礦床地質(zhì)研究中常利用其來示蹤成礦物質(zhì)來源、巖漿流體、深源流體的殼?;烊咀饔?侯明蘭等,2006)。為避免放射性87Rb衰變對鍶同位素造成的影響,我們利用軟件Geokit(路遠(yuǎn)發(fā),2004)將各硫化物的87Sr/86Sr測試值換算到143Ma前的初始Sr同位素比值(表1)。從表1可以看出,甲烏拉礦床閃鋅礦和黃鐵礦的Sr同位素初始比值(87Sr/86Sr)i介于0.71238~0.71277之間,平均值為0.71264。上述數(shù)據(jù)與Rb-Sr等時線給出的鍶初始值基本一致(0.71265~0.71267)。總體上看,甲烏拉礦床閃鋅礦和黃銅礦的Sr初始比值變化較小,但其比值相對較高。甲烏拉礦床金屬硫化物的鍶初始值低于大陸地殼Sr同位素87Sr/86Sr平均值(0.719;孫省利,2001),但明顯高于地幔Sr的初始值(0.704;Faure,1986)。Rb-Sr同位素組成表明,甲烏拉礦床的成礦物質(zhì)主要來源于下地殼,但有少量地幔物質(zhì)加入。
得爾布干成礦帶主要發(fā)育斑巖型銅鉬礦床、熱液脈型和矽卡巖型鉛鋅銀礦床及淺成低溫?zé)嵋盒徒疸y礦床(武廣等,2010)。秦克章等(1999)獲得烏奴格吐山大型斑巖銅鉬礦床的二長花崗斑巖單顆粒鋯石U-Pb年齡為183.3±0.6Ma,全巖Rb-Sr等時線年齡為183.9±1.0Ma,蝕變巖絹云母K-Ar年齡為183.5±1.7Ma,分別代表巖漿侵位后開始結(jié)晶年齡、巖漿冷卻年齡和熱液蝕變年齡;Chenetal. (2011)和Lietal. (2012)通過對烏奴格吐山斑巖銅鉬礦研究,獲得成礦的輝鉬礦Re-Os等時線年齡177.6±4.5Ma。陳志廣(2010)獲得八大關(guān)中型斑巖銅鉬礦床的石英閃長玢巖鋯石LA-ICP-MS U-Pb年齡為229.6±2.0Ma。陳志廣等(2010)獲得太平川小型斑巖銅鉬礦床的花崗閃長斑巖鋯石LA-ICP-MS U-Pb年齡為202±5.7Ma,輝鉬礦Re-Os等時線年齡為203.6±4.6Ma。上述巖石、礦物年代學(xué)研究結(jié)果表明,得爾布干成礦帶斑巖型銅鉬礦床形成于晚三疊世-早侏羅世。本文獲得甲烏拉鉛鋅銀礦床的成礦時代為142~143Ma。
我們本次的定年結(jié)果及前人對得爾布干成礦帶重要礦床定年數(shù)據(jù)表明,得爾布干成礦帶存在兩期重要的成礦作用:一為斑巖型銅鉬成礦作用,該期成礦作用發(fā)生于晚三疊世-早侏羅世;另一期為晚侏羅世-早白堊世早期,主要形成熱液脈型鉛鋅銀礦床、矽卡巖型鉛鋅銀礦床和淺成低溫?zé)嵋盒豌y礦床。
得爾布干成礦帶中生代礦床的成礦構(gòu)造背景一直是一個長期爭論的問題,主要有4種認(rèn)識:(1)認(rèn)為包括本區(qū)在內(nèi)的中國東部侏羅紀(jì)-白堊紀(jì)初期大規(guī)模斑巖-矽卡巖型銅鉬礦床的形成應(yīng)與東側(cè)古太平洋板塊的俯沖有關(guān)(葛文春等,2007);(2)認(rèn)為得爾布干成礦帶內(nèi)的晚三疊世-早侏羅世斑巖型銅鉬礦形成于蒙古-鄂霍茨克洋封閉后陸陸碰撞的后碰撞環(huán)境,成礦作用與后碰撞伸展過程中所誘發(fā)的巖漿作用及相關(guān)流體活動密切相關(guān),而早白堊世期間的鉛鋅銀礦床形成于西太平洋大陸邊緣弧后伸展環(huán)境(佘宏全等,2009,2012);(3)認(rèn)為得爾布干地區(qū)斑巖-矽卡巖型多金屬礦床可能形成于晚三疊世蒙古-鄂霍茨克洋向其南側(cè)的額爾古納地塊俯沖的陸緣弧環(huán)境(陳志廣等,2010;張連昌等,2010);(4)認(rèn)為得爾布干成礦帶中生代礦床的形成均與北側(cè)的蒙古-鄂霍茨克造山帶演化過程有關(guān),而與東側(cè)的太平洋板塊作用無關(guān)(趙一鳴和張德全,1997;武廣等,2007;徐志剛等,2008;毛景文等,2013)。
蒙古-鄂霍茨克洋從二疊紀(jì)至晚侏羅世-早白堊世從東向西逐漸閉合(Kravchinskyetal., 2002),相應(yīng)地與蒙古-鄂霍茨克洋演化有關(guān)的鈣堿性火山巖或深成巖相應(yīng)的從西向東逐漸變新。江思宏等(2010)對蒙古國西北部額爾登特銅鉬礦區(qū)內(nèi)的含礦斑巖體開展了鋯石SHRIMP和LA-MC-ICP U-Pb測年,獲得成巖時代為240Ma左右,輝鉬礦的Re-Os等時線年齡241.0±3.1Ma;張連昌等(2010)對八大關(guān)、太平川斑巖Cu-Mo礦床鋯石U-Pb和輝鉬礦Re-Os定年結(jié)果表明,它們形成于三疊紀(jì)(202~229Ma),地球化學(xué)研究顯示成礦的石英閃長斑巖和花崗閃長斑巖為I型花崗巖,屬于鈣堿性-高鉀鈣堿性的花崗閃長質(zhì)巖石,輕稀土元素和大離子親石元素富集、重稀土元素和高場強(qiáng)元素虧損,成礦巖體具有典型的埃達(dá)克巖(adakite)的地球化學(xué)特征,且與俯沖洋殼源區(qū)的埃達(dá)克巖地球化學(xué)特征相似;陳志廣等(2010)認(rèn)為蒙古-鄂霍茨克洋二疊紀(jì)-三疊紀(jì)一直存在向南俯沖。毛景文等(2013)指出,斑巖銅礦通常形成于活動大陸邊緣,即使在碰撞造山帶,斑巖銅礦的物質(zhì)來源也是來自于滯留的俯沖板片,只有俯沖板片才滿足形成斑巖銅礦所需要的銅物質(zhì)和巨量流體。得爾布干成礦帶斑巖型銅鉬礦床形成于晚三疊世-早侏羅世,與蒙古-鄂霍茨克洋向南俯沖的時間一致。因此,我們認(rèn)為烏奴格吐山、八大關(guān)、八八一、太平川斑巖型銅鉬礦床形成于蒙古-鄂霍茨克洋向南俯沖的陸緣弧環(huán)境。
關(guān)于得爾布干成礦帶晚侏羅世-早白堊世礦床的成礦背景,過去通常將其與大興安嶺中南段作為一個統(tǒng)一體考慮,認(rèn)為由太平洋板塊于晚侏羅世-早白堊世向大陸俯沖而生成(葛文春等,2007;佘宏全等,2009,2012)。但是,徐志剛等(2008)指出,以往多被認(rèn)為北北東向的大興安嶺火山巖帶,實(shí)際上是大致以二連-五叉溝-博克圖一線明顯分為東、西兩個亞帶:東亞帶成巖時代為晚侏羅世-早白堊世,巖石類型為英安質(zhì)-流紋質(zhì)火山巖,呈北北東向展布,向南南西延至遼西-冀北-晉北地區(qū);而西亞帶發(fā)育中侏羅世玄武(安山)質(zhì)火山巖和晚侏羅世-早白堊世英安質(zhì)-流紋質(zhì)火山巖,火山巖呈北東向展布,向南西方向延伸至俄、蒙兩國,實(shí)屬蒙古-鄂霍茨克中生代巖漿巖帶南側(cè)的克魯倫河(蒙古)-根河火山巖帶的一部分。毛景文等(2013)指出,盡管得爾布干成礦帶與大興安嶺成礦帶的晚侏羅世-早白堊世礦床形成時代相近,但兩者的成礦類型明顯不同,前者主要形成淺成低溫?zé)嵋盒偷V床,成礦與火山-次火山熱液密切相關(guān),而后者的礦床類型主要為巖漿熱液礦床,成礦與花崗質(zhì)侵入巖有關(guān)。考慮到淺成低溫?zé)嵋盒偷V床大都形成于大陸邊緣,因此推測得爾布干成礦帶內(nèi)的晚侏羅世-早白堊世脈狀鉛鋅銀礦床和矽卡巖型礦床及淺成低溫?zé)嵋盒唾F金屬礦床很可能形成于蒙古-鄂霍茨克洋閉合后的碰撞后伸展環(huán)境。上黑龍江盆地廣泛發(fā)育中侏羅世末期的推覆構(gòu)造,而代表后碰撞階段的走滑剪切和地塊逃逸發(fā)生在早白堊世(李錦軼等,2004;武廣等, 2008),因此,蒙古-鄂霍茨克造山帶在中侏羅世期間屬于碰撞造山階段,而晚侏羅世-早白堊世為后碰撞演化階段。甲烏拉礦床位于大興安嶺火山巖帶西亞帶的額爾古納地塊內(nèi),成礦時代為早白堊世。因此,我們認(rèn)為,甲烏拉礦床可能形成于蒙古-鄂霍茨克造山帶后碰撞伸展環(huán)境,伸展導(dǎo)致巖石圈拆沉、軟流圈上涌,引致殼幔相互作用,進(jìn)而形成大興安嶺西亞帶火山-侵入巖及與其有關(guān)的熱液脈型和矽卡巖型鉛鋅銀礦床及淺成低溫?zé)嵋盒唾F金屬礦床。
綜上所述,我們認(rèn)為得爾布干成礦帶晚三疊世-早侏羅世斑巖型銅鉬礦床形成于蒙古-鄂霍茨克洋向南俯沖的陸緣弧環(huán)境,而晚侏羅世-早白堊世熱液脈型和矽卡巖型鉛鋅銀礦床及淺成低溫?zé)嵋盒唾F金屬礦床形成于蒙古-鄂霍茨克洋閉合后的碰撞后伸展環(huán)境。得爾布干成礦帶中生代礦床的形成與北西側(cè)的蒙古-鄂霍茨克洋造山過程有關(guān),屬于蒙古-鄂霍茨克成礦省的一部分。
(1)甲烏拉鉛鋅銀礦床的閃鋅礦、黃鐵礦及其共生組合的Rb-Sr等時線年齡均為143Ma左右,礦床形成于早白堊世初期。
(2)甲烏拉礦床硫化物具有較高的Sr同位素初始比值,成礦物質(zhì)主要來源于下地殼,有少量地幔物質(zhì)加入。
(3)甲烏拉礦床形成于蒙古-鄂霍茨克洋閉合后的碰撞后伸展環(huán)境,得爾布干成礦帶屬于蒙古-鄂霍茨克成礦省的一部分。
致謝野外工作得到了云南馳宏鋅鍺有限公司海拉爾分公司的大力支持和幫助;實(shí)驗(yàn)工作得到了南京大學(xué)王銀喜老師的熱情幫助;本文在完成過程中,得到了中國地質(zhì)科學(xué)院周振華博士、中國地質(zhì)大學(xué)(北京)張東陽博士生、王天天、鄭偉、郭碩、劉曉菲等碩士生的幫助;兩位審稿人指出了文中的不足,并提出了很好的修改意見和建議;在此一并表示感謝。
Brannon JC, Podosek FA and McLimans RK. 1992a. A Permian Rb-Sr age for sphalerite from the upper Mississippi valley zinc-lead district, southwest Wisconsin. Nature, 356: 509-511
Brannon JC, Frank A, Podosek FA and McLimans RK. 1992b. A clue to the origin of dark and light bands of the 270Ma upper Mississippi valley (UMV) zinc-lead district, southwest Wisconsin. Abstracts with Programs-Geological Society of America, 24: 353
Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. Beijing: Geological Publishing House, 7-498 (in Chinese)
Chen YC, Wang PA, Qing KL, Zhao DH and Mao JW. 1994. Metallogenic series of main ore deposits and regional metallogeny in the Qinling area. Mineral Deposits, 13(4): 289-298(in Chinese with English abstract)
Chen ZG. 2010. The Mesozoic tectonic-magmatic mineralization and geodynamic of Deerbugan metallogenic belt in northeast China. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-179 (in Chinese with English summary)
Chen ZG, Zhang LC, Lu BZ, Li ZL, Wu HY, Xiang P and Huang SW. 2010. Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrologica Sinica, 26(5): 1437-1449(in Chinese with English abstract)
Chen ZG, Zhang LC, Wan B, Wu HY and Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geology Reviews, 43(1): 92-105
Cheng YQ, Chen YC, Zhao YM and Song TR. 1983. Further discussion on the problems of minerogenetic series of mineral deposits. Acta Geoscientia Sinica, (2): 1-64(in Chinese with English abstract)
Christensen JN, Halliday AN, Stephen EK and Sangster DF. 1993. Further evalution of the Rb-Sr dating of sphalerite: The Nanisivik Precambrian MVT deposit, Baffin Island, Canada. Abstracts with programs-Geological Society of America, 25: 471
Christensen JN, Halliday AN, Kenneth EL, Roderick NR and Stephen EK. 1995a. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochim. Cosmochim. Acta, 59(24): 5191-5197
Christensen JN, Halliday AN, Vearncombe JR and Stephen EK. 1995b. Testing models of large-scale crustal fluid flow using direct dating of sulfides: Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning basin, Australia. Econ. Geol., 90(4): 877-884
Faure G. 1986. Principles of Isotope Geology. 2ndEdition. New York: John Wiley & Sons, 183-199
Ge WC, Wu FY, Zhou CY and Rahman AA. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105
Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24): 3416-3427
Han YG, Li XH, Zhang SH, Zhang YH and Chen FK. 2007. Single grain Rb-Sr dating and mineral inclusions of pyrite from the Linglong gold deposit, eastern Shandong, China. Chinese Science Bulletin, 52(11): 1307-1311(in Chinese)
Hou ML, Jiang SY, Jiang YH and Ling HF. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shandong Province. Acta Petrologica Sinica, 22(10): 2525-2533(in Chinese with English abstract)
Hu QQ, Wang YT, Wang RT, Li JH, Dai JZ and Wang SY. 2012. Ore-forming time of the Erlihe Pb-Zn deposit in the Fengxian-Taibai ore concentration area, Shaanxi Province: Evidence from the Rb-Sr isotopic dating of sphalerites. Acta Petrologica Sinica, 28(1): 258-266(in Chinese with English abstract)
Jiang SH, Nie FJ, Su YJ, Bai DM and Liu YF. 2010. Geochronology and origin of the erdenet superlarge Cu-Mo deposit in Mongolia. Acta Geoscientia Sinica, 31(3): 289-306(in Chinese with English abstract)
Kravchinsky VA, Cogné JP, Harbert WP and Kuzmin MI. 2002. Evolution of the Mongol-Okhotsk ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International, 148(1): 34-57
Li JY. 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review, 44(4): 339-347 (in Chinese with English abstract)
Li JY, Mo SG, He ZJ, Sun GH and Chen W. 2004. The timing of crustal sinistral strike-slip movement in the northern Great Khing’an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic. Earth Science Frontiers, 11(3): 157-167 (in Chinese with English abstract)
Li N, Chen YJ, Ulrich T and Lai Y. 2012. Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Mineralium Deposita, 47(5): 467-482
Li WB, Huang ZL, Xu DR, Chen J, Xu C and Guan T. 2002. Rb-Sr isotopic method on zinc-lead ore deposits: A review. Geotectonica et Metallogenia, 26(4): 436-441(in Chinese with English abstract)
Li XC and Qi KZ. 1999. Distribution pattern of major ore-forming elements and its significance in the Jiawula-Chaganbulagen Ag-Pb-Zn deposit, Inner Mongolia. Geological Exploration for Non-ferrous Metals, 8(6): 512-516 (in Chinese with English abstract)
Li ZC, Cai H and Zhu JP. 1994. Direct determination of mineral and sedimentary rock’s age. Geology Geochemistry, (1): 47-52(in Chinese with English abstract)
Liu JM, Zhao SR, Shen J, Jiang N and Huo WG. 1998a. Review on direct isotopic dating of hydrothermal ore-forming processes. Progress in Geophysics, 13(3): 46-55(in Chinese with English abstract)
Liu JM, Shen J, Zhao SR, Huo WG and Jiang N. 1998b. Isotopic dating for metallic deposits and its significance. Geological Exploration for Non-Ferrous Metals, 7(2): 107-113(in Chinese with English abstract)
Liu JM, Zhang R and Zhang QZ. 2004. The regional metallogeny of Daxing’anling, China. Earth Science Frontiers, 11(1): 269-277(in Chinese with English abstract)
Lu YF. 2004. Geokit: A geochemical toolkit for Microsoft excel. Geochimica, 33(5): 459-464(in Chinese with English abstract)
Ludwig KR. 1998. Using Isoplot/Ex: Age of chronological toolkit for Microsoft Excel, version 1.00. Berkeley Geochronnology Center Special Publication, 1: 1-4
Lü ZC, Duan GZ, Liu CQ, Hao LB, Li DC and Wei CD. 2000. Daxing’anling Ag deposit types, metallogenic series and metallogenic geochemical characteristics. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 305-309 (in Chinese with English abstract)
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochim. Cosmochim. Acta, 63(11-12): 1815-1818
Mao JW and Wang ZL. 2000. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in east China. Mineral Deposits, 19(4): 289-296 (in Chinese with English abstract)
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Mao JW, Hu RZ, Chen YC and Wang YT. 2006. Large-Scale Metallogenesis and Large Clusters of Mineral Deposits. Beijing: Geological Publishing House, 58-70(in Chinese)
Mao JW, Xie GQ, Bierlein F, Ye HS, Qü WJ, Du AD, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta, 72(18): 4607-4626
Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CL, Li HM, Ouyang HG and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Mineral Deposits, 32(4): 715-729(in Chinese with English abstract)
Meng E, Xu WL, Yang DB, Qiu KF, Li CH and Zhu HT. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrologica Sinica, 27(4): 1209-1226(in Chinese with English abstract)
Nakai S, Halliday AN, Kesler SE and Jones HD. 1990. Rb-Sr dating of sphalerites from Tennessce and the genesis of Mississippi Vally-type ore deposit. Nature, 346(6282): 354-357
Nakai S, Halliday AN, Kesler SE Jones HD, Kyle JR and Thomas E. 1993. Rb-Sr dating of sphalerites form Mississippi Valley type (MVT) ore deposits. Cosmochim. Acta, 57(2): 417-427
Nie FJ, Liu Y and Liu YF. 2011. Ore-forming processes of silver-polymetallic deposits occurring Within Tsav-Jiawula region along China-Mongolian Border. Journal of Jilin University (Earth Science Edition), 41(60): 1715-1725 (in Chinese with English abstract)
Pan LJ and Sun ES. 1992. Geological characteristics of the Jiawula silver-lead-zinc deposit, Inner Mongolia. Mineral Deposits, 11(1): 45-53 (in Chinese with English abstract)
Pei RF and Wu LS. 1994. On the evolution of metallogenetic province and metallogeny. Earth Science Frontiers, 1(3-4): 95-99 (in Chinese with English abstract)
Pettke K and Diamond LW. 1996. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons: A clarification of why it works. Economic Geology, 91(5): 951-956
Qi JP, Chen YJ and Pirajno F. 2005. Geological characteristics and tectonic setting of the epithermal deposits in the Northeast China. Journal of Mineralogy and Petrology, 25(2): 47-59 (in Chinese with English abstract)
Qin KZ, Wang ZT and Pan LJ. 1995. Magmatism and metallogenic systemmatics of the southern Ergun Mo, Cu, Pb, Au and Ag belt, Inner Mongolia, China. Resource Geology, 18(Suppl.1): 159-169
Qin KZ, Tanaka R, Li WS and Ishihara S. 1998. The discovery of Indo-Sinian granites in Manzhouli area: Evidence from Rb-Sr isochron. Acta Petrologica et Mineralogica, 17(3): 235-240 (in Chinese with English abstract)
Qin KZ, Li HM, Li WS and Ishihara S. 1999. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China. Geological Review, 45(2): 180-185 (in Chinese with English abstract)
She HQ, Li HH, Li JW, Zhao SB, Tan G, Zhang DQ, Jin J, Dong YJ and Feng CY. 2009. The metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the northern-central Daxing’anling mountain, Inner Monglia. Acta Geologica Sinica, 83(10): 1456-1472 (in Chinese with English abstract)
She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594 (in Chinese with English abstract)
Sheng JF and Fu XZ. 1999. Metallogenic Environment and Copper Polymetallic Ore Deposit Geological Characteristics in the Middle Daxing’anling Mountain. Beijing: Seismological Press, 1-215(in Chinese)
Shu GL, Liu JS and Ma G. 2003. Characteristics of the host strata of Ag-Pb-Zn deposits in Manzhouli, Inner Mongolia and a discussion of their age. Geology in China, 30(3): 297-301(in Chinese with English abstract)
Shuang B, Ge YQ and Liu JX. 2009. Relationship between fluid inclusions and ore-forming of Jiawula Ag-Pb-Zn deposit in Hulunbeir League, Inner Mongolia. Jilin Geology, 28(2): 32-35(in Chinese with English abstract)
Sorokin AA, Yarmolyuk VV, Kotov AB, Sorokin AP, Kudryashov NM and Li JY. 2004. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongolia-Okhotsk foldbelt and the problem of Early Mesozoic granite formation in central and eastern Asia. Doklady Earth Sciences, 399(8): 1091-1094
Sun SL. 2001. The study on metallogenic series of Hydrocarbon alkali-fluids in Devonian in Xicheng concentrated mineralization area, West Qinling, Gansu Province. Ph. D. Dissertation. Chengdu: Chengdu University of Technology, 43-44 (in Chinese with English summary)
Tretbar DR, Arehart GB and Christensen JN. 2000. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite. Geology, 28(10): 947-950
Wang DP and Tian XP. 1991. Tectonic geochemical characteristics of Jiawula deposit’s metallogenic volcanic series. Geology and Exploration, (10): 51-56(in Chinese with English abstract)
Wang YB, Tang SH, Wang JH, Zeng PS, Yang ZS, Meng YF and Tian SH. 2004. Rb-Sr dating the pyrite of the Xinqiao Cu-S-Fe-Au deposit, Tongling, Anhui Province. Geological Review, 50(5): 538-542(in Chinese with English abstract)
Wang YX, Yang JD, Chen J, Zhang KJ and Rao WB. 2007. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7Ma: Implications for the East Asian winter monsoon and source areas of loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 351-361
Wang YX, Gu LX, Zhang ZZ, Wu CZ, Li HM and Yang JD. 2007. Sr-Nd-Pb isotope geochemistry of rhyolite of the Late Carboniferous Dashitou Group in eastern Tianshan. Acta Petrologica Sinica, 23(7): 1749-1755(in Chinese with English abstract)
Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chinese Science Bulletin, 50(23): 2733-2743
Wu G, Sun FY, Zhao CS. Ding QF and Wang L. 2007. Fluid inclusion study on gold deposits in northwestern Erguna metallogenic belt, China. Acta Petrologica Sinica, 23(9): 2227-2240(in Chinese with English abstract)
Wu G, Fan CW, Li ZQ, Mi M, Liu J and Zhu MT. 2008.40Ar-39Ar dating of the muscovite in the mylonite of the Mohe ductile shear zone in northern Da Hinggan Mountain and its geological significance. Journal of Chengdu University of Technology (Science & Technology Edition), 35(3): 297-302(in Chinese with English abstract)
Wu G, Mi M, Gao FJ, Li ZY and Qiao CJ. 2010. Ore-forming fluid characteristics and genesis of silver-lead-zinc deposits in the Manzhouli area, Inner Mongolia, China. Earth Science Frontiers, 17(2): 239-255(in Chinese with English abstract)
Wu G, Chen YC, Chen YJ and Zeng QT. 2012. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications. Journal of Asian Earth Sciences, 49: 214-233
Xu ZG, Chen YC, Wang DH, Chen ZH and Li HM. 2008. The Scheme of the Classification of the Mineragenrtic Units in China. Beijing: Geological Publishing House, 1-138(in Chinese with English abstract)
Yang JH and Zhou XH. 2000. Rb-Sr isochron age and mineralogenetic epoch of ore and gold-carrying mineral of the Linglong gold field in the eastern Shandong Province. Chinese Science Bulletin, 45(14): 1547-1553 (in Chinese)
Yang JH and Zhou XH. 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 29(8): 711-714
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38(in Chinese with English abstract)
Zeng LP. 2010. Geological features of Jiawula Ag-Pb-Zn deposit and its metallogenic control discussion. Nonferrous Metals (Mining Section), 62(3): 34-39(in Chinese with English abstract)
Zhai DG, Wang JP, Liu JJ, Wu SH, Mao GJ, Wang SG and Li YX. 2010. Ore-forming fluids evolution and metallogenic mechamism analysis of the Jiawula Ag-poltmetallic deposit, Inner Mongolia. Mineral. Petrol., 30(2): 68-76(in Chinese with English abstract)
Zhai YS, Yao SZ, Lin XD and Jin FQ. 1992. Metallogenic regularity of iron and copper deposits in the Middle and Lower Valley of the Yangtze River. Mineral Deposits, 11(1): 1-12(in Chinese with English abstract)
Zhai YS, Wang JP, Deng J, Peng RM and Liu JJ. 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration. Geoscience, 22(2): 143-150(in Chinese with English abstract)
Zhang CQ, Li XH, Yu JJ, Mao JW, Chen FK and Li HM. 2008. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances. Geological Review, 54(4): 532-538(in Chinese with English abstract)
Zhang LC, Chen ZG, Wu HY, Xiang P and Huang SW. 2010. Tectonic-magmatic mineralization and geodynamic of Mongolia-Okhotsk Orogen Deerbugan polymetallic metallogenic belt. Mineral Deposits, 29(Suppl.): 547-548(in Chinese with English abstract)
Zhang RB, Liu JM, Ye J and Chen FK. 2008. Chalcopyrite Rb-Sr isochron age dating and its’ ore-forming significance in Shouwangfen copper deposit, Hebei Province. Acta Petrologica Sinica, 24(6): 1353-1358(in Chinese with English abstract)
Zhao QQ, Sun CB, Jing LH and Wang DP. 2005. Application of structure geochemistry-discrimination analysis for prospecting: Taking the Jiamala silver polymetallic deposit in Hulunbeier league as an example. Mineral Resources and Geology, 19(4): 414-417(in Chinese with English abstract)
Zhao YM and Zhang DQ. 1997. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Adjacent Regions. Beijing: Seismological Press, 8-156(in Chinese)
Zheng W, Chen MH, Zhao HJ, Xu LG, Ling SB, Wu Y, Hu YG, Tian Y and Wu XD. 2013. Rb-Sr isochron age of Tiantang Cu-Pb-Zn polymetallic deposit, Guangdong Province and its geological significance. Mineral Deposits, 30(2): 259-272(in Chinese with English abstract)
附中文參考文獻(xiàn)
陳毓川, 王平安, 秦克令, 趙東宏, 毛景文. 1994. 秦嶺地區(qū)主要金屬礦床成礦系列的劃分及區(qū)域成礦規(guī)律探討. 礦床地質(zhì), 13(4): 289-298
陳志廣. 2010. 中國東北得爾布干成礦帶中生代構(gòu)造-巖漿成礦作用及其地球動力學(xué)背景. 博士學(xué)位論文. 北京: 中國科學(xué)院地質(zhì)與地球物理研究所, 1-179
陳志廣, 張連昌, 盧百志, 李占龍, 吳華英, 相鵬, 黃世武. 2010. 內(nèi)蒙古太平川銅鉬礦成礦斑巖時代、地球化學(xué)及地質(zhì)意義. 巖石學(xué)報, 26(5): 1437-1449
程裕淇, 陳毓川, 趙一鳴, 宋天銳. 1983. 再論礦床的成礦系列問題. 中國地質(zhì)科學(xué)院院報, (2): 1-64
葛文春, 吳福元, 周長勇, Rahman AA. 2005. 大興安嶺北部塔河花崗巖體的時代及對額爾古納地塊構(gòu)造歸屬的制約. 科學(xué)通報, 50(12): 1239-1247
葛文春, 吳福元, 周長勇, 張吉衡. 2007. 興蒙造山帶東段斑巖型Cu, Mo礦床成礦時代及其地球動力學(xué)意義. 科學(xué)通報, 52(20): 2407-2417
韓以貴, 李向輝, 張世紅, 張?jiān)? 陳福坤. 2007. 豫西祁雨溝金礦單顆粒和碎裂狀黃鐵礦Rb-Sr等時線定年. 科學(xué)通報, 52(11): 1307-1311
侯明蘭, 蔣少涌, 姜耀輝, 凌洪飛. 2006. 膠東蓬萊金成礦區(qū)的S-Pb同位素地球化學(xué)和Rb-Sr同位素年代學(xué)研究. 巖石學(xué)報, 22(10): 2525-2533
胡喬青, 王義天, 王瑞廷, 李建華, 代軍治, 王雙彥. 2012. 陜西省鳳太礦集區(qū)二里河鉛鋅礦床的成礦時代: 來自閃鋅礦Rb-Sr同位素年齡的證據(jù). 巖石學(xué)報, 28(1): 258-266
江思宏, 聶鳳軍, 蘇永江, 白大明, 劉翼飛. 2010. 蒙古國額爾登特特大型銅-鉬礦床年代學(xué)與成因研究. 地球?qū)W報, 31(3): 289-306
李錦軼. 1998. 中國東北及鄰區(qū)若干地質(zhì)構(gòu)造問題的新認(rèn)識. 地質(zhì)論評, 44(4): 339-347
李錦軼, 莫申國, 和政軍, 孫桂華, 陳文. 2004. 大興安嶺北段地殼左行走滑運(yùn)動的時代及其對中國東北及鄰區(qū)中生代以來地殼構(gòu)造演化重建的制約. 地學(xué)前緣, 11(3): 157-167
李文博, 黃智龍, 許德如, 陳進(jìn), 許成, 管濤. 2002. 鉛鋅礦床Rb-Sr定年研究綜述. 大地構(gòu)造與成礦學(xué), 26(4): 436-441
李憲臣, 秦克章. 1999. 內(nèi)蒙古甲烏拉-查干鉛鋅銀銅礦床主成礦元素分布規(guī)律及意義. 有色金屬礦床與勘查, 8(6): 512-516
李志昌, 蔡紅, 朱家平. 1994. 礦石、沉積巖年齡的直接測定. 地質(zhì)地球化學(xué), (1): 47-52
劉建明, 趙善仁, 沈潔, 姜能, 霍衛(wèi)國. 1998a. 成礦流體活動的同位素定年方法評述. 地球物理學(xué)進(jìn)展, 13(3): 46-45
劉建明, 沈潔, 趙善仁, 霍衛(wèi)國, 姜能. 1998b. 金屬礦床同位素精確定年的方法和意義. 有色金屬礦產(chǎn)與勘查, 7(2): 107-113
劉建明, 張銳, 張慶洲. 2004. 大興安嶺地區(qū)的區(qū)域成礦特征. 地學(xué)前緣, 11(1): 269-277
路遠(yuǎn)發(fā). 2004. Geokit: 一個用VBA構(gòu)建的地球化學(xué)工具軟件包. 地球化學(xué), 33(5): 459-464
呂志成, 段國正, 劉叢強(qiáng), 郝立波, 李殿超, 魏存第. 2000. 大興安嶺地區(qū)銀礦床類型、成礦系列及成礦地球化學(xué)特征. 礦物巖石地球化學(xué)通報, 19(4): 305-309
毛景文, 王志良. 2000. 中國東部大規(guī)模成礦時限及其動力學(xué)背景的初步探討. 礦床地質(zhì), 19(4): 289-296
毛景文, 謝桂青, 張作衡, 李曉峰, 王義天, 張長青, 李永峰. 2005. 中國北方中生代大規(guī)模成礦作用的期次及其地球動力學(xué)背景. 巖石學(xué)報, 21(1): 169-188
毛景文, 胡瑞忠, 陳毓川, 王義天. 2006. 大規(guī)模成礦作用與大型礦集區(qū). 北京: 地質(zhì)出版社, 58-70
毛景文, 周振華, 武廣, 江思宏, 劉成林, 李厚民, 歐陽荷根, 劉軍. 2013. 內(nèi)蒙古及鄰區(qū)礦床成礦規(guī)律與成礦系列. 礦床地質(zhì), 32(4): 715-729
孟恩, 許文良, 楊德彬, 邱昆峰, 李長華, 祝洪濤. 2011. 滿洲里地區(qū)靈泉盆地中生代火山巖的鋯石U-Pb年代學(xué)、地球化學(xué)及其地質(zhì)意義. 巖石學(xué)報, 27(4): 1209-1224
內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局. 1991. 內(nèi)蒙古自治區(qū)區(qū)域地質(zhì)志. 北京: 地質(zhì)出版社, 7-498
聶鳳軍, 劉勇, 劉翼飛. 2011. 中蒙邊境查夫-甲烏拉地區(qū)中生代銀多金屬礦床成礦作用. 吉林大學(xué)學(xué)報(地球科學(xué)版), 41(60): 1715-1725
潘龍駒, 孫恩守. 1992. 內(nèi)蒙古甲烏拉鉛鋅銀礦床地質(zhì)特征. 有色金屬礦產(chǎn)與勘察, 11(1): 45-53
裴榮富, 吳良士. 1994. 金屬成礦省演化與成礦. 地學(xué)前緣, 1(3-4): 95-99
祁進(jìn)平, 陳衍景, Pirajno F. 2005. 東北地區(qū)淺成低溫?zé)嵋旱V床的地質(zhì)特征和構(gòu)造背景. 礦物巖石, 25(2): 47-59
秦克章, 田中亮吏, 李偉實(shí), 石原舜三. 1998. 滿洲里地區(qū)印支期花崗巖Rb-Sr等時線年代學(xué)證據(jù). 巖石礦物學(xué)雜志, 17(3): 235-240
秦克章, 李惠民, 李偉實(shí), Ishihara S. 1999. 內(nèi)蒙古烏奴格吐山斑巖銅鉬礦床的成巖、成礦時代. 地質(zhì)論評, 45(2): 180-185
佘宏全, 李紅紅, 李進(jìn)文, 趙士寶, 譚剛, 張德全, 金俊, 董英君, 豐成友. 2009. 內(nèi)蒙古大興安嶺中北段銅鉛鋅金銀多金屬礦床成礦規(guī)律與找礦方向. 地質(zhì)學(xué)報, 83(10): 1456-1472
佘宏全, 李進(jìn)文, 向安平, 關(guān)繼東, 楊鄖城, 張德全, 譚剛, 張斌. 2012. 大興安嶺中北段原巖鋯石U-Pb測年及其與區(qū)域構(gòu)造演化關(guān)系. 巖石學(xué)報, 28(2): 571-594
盛繼福, 傅先政. 1999. 大興安嶺中段成礦環(huán)境與銅多金屬礦床地質(zhì)特征. 北京: 地震出版社, 1-215
舒廣龍, 劉繼順, 馬光. 2003. 內(nèi)蒙古滿洲里地區(qū)銀鉛鋅礦賦礦地層特征及其時代探討. 中國地質(zhì), 30(3): 297-301
雙寶, 葛玉琦, 劉繼賢. 2009. 內(nèi)蒙古呼盟地區(qū)甲烏拉銀鉛鋅礦床流體包裹體與成礦的關(guān)系. 吉林地質(zhì), 28(2): 32-35
孫省利. 2001. 西秦嶺泥盆系西成礦化集中區(qū)烴堿流體成礦系列研究. 博士學(xué)位論文. 成都: 成都理工學(xué)院, 43-44
王大平, 田筱鵬. 1991. 甲烏拉礦床成礦次火山巖系構(gòu)造地球化學(xué)特征. 地質(zhì)與勘探, (10): 51-56
王彥斌, 唐索寒, 王進(jìn)輝, 曾普勝, 楊竹森, 蒙義峰, 田世洪. 2004. 安徽銅陵新橋銅金礦床黃鐵礦Rb/Sr同位素年齡數(shù)據(jù). 地質(zhì)論評, 50(5): 538-542
王銀喜, 顧連興, 張遵忠, 吳昌志, 李惠民, 楊杰東. 2007. 東天山晚石炭世大石頭群流紋巖Sr-Nd-Pb同位素地球化學(xué)研究. 巖石學(xué)報, 23(7): 1749-1755
武廣, 孫豐月, 趙財(cái)勝, 丁淸峰, 王力. 2007. 額爾古納成礦帶西北部金礦床流體包裹體研究. 巖石學(xué)報, 23(9): 2227-2240
武廣, 范傳聞, 李忠權(quán), 糜梅, 劉軍, 朱明田. 2008. 大興安嶺北部漠河韌性剪切帶白云母40Ar-39Ar定年及地質(zhì)意義. 成都理工大學(xué)學(xué)報(自然科學(xué)版), 35(3): 297-302
武廣, 糜梅, 高峰軍, 李宗彥, 喬翠杰. 2010. 滿洲里地區(qū)銀鉛鋅礦床成礦流體特征及礦床成因. 地學(xué)前緣, 17(2): 239-255
徐志剛, 陳毓川, 王登紅, 陳鄭輝, 李厚民. 2008. 中國成礦區(qū)帶劃分方案. 北京: 地質(zhì)出版社, 1-138
楊進(jìn)輝, 周新華. 2000. 膠東地區(qū)玲瓏金礦礦石和載金礦物Rb-Sr等時線年齡與成礦時代. 科學(xué)通報, 45(14): 1547-1553
袁順達(dá), 張東亮, 雙燕, 杜安道, 屈文俊. 2012. 湖南新田嶺大型鎢鉬礦床輝鉬礦Re-Os同位素測年及其地質(zhì)意義. 巖石學(xué)報, 28(1): 27-38
曾令平. 2010. 甲烏拉銀鉛鋅礦床地質(zhì)特征及成礦控制探討. 有色金屬, 62(3): 34-39
翟德高, 王建平, 劉家軍, 吳勝華, 毛光劍, 王守光, 李玉璽. 2010. 內(nèi)蒙古甲烏拉銀多金屬礦床成礦流體演化與成礦機(jī)制分析. 礦物巖石, 30(2): 68-76
翟裕生, 姚書振, 林新多, 金福全. 1992. 長江中下游地區(qū)鐵、銅等成礦規(guī)律研究. 礦床地質(zhì), 11(1): 1-12
翟裕生, 王建平, 鄧軍, 彭潤民, 劉家軍. 2008. 成礦系統(tǒng)時空演化及其找礦意義. 現(xiàn)代地質(zhì), 22(2): 143-150
張長青, 李向輝, 余金杰, 毛景文, 陳福坤, 李厚民. 2008. 四川大梁子鉛鋅礦床單顆粒閃鋅礦銣-鍶測年及地質(zhì)意義. 地質(zhì)論評, 54(4): 532-538
張連昌, 陳志廣, 吳華英, 相鵬, 黃世武. 2010. 蒙古-鄂霍茨克造山帶得爾布干多金屬成礦帶構(gòu)造-巖漿成礦作用及動力學(xué)背景. 礦床地質(zhì), 29(增刊): 547-548
張瑞斌, 劉建明, 葉杰, 陳福坤. 2008. 河北壽王墳銅礦黃銅礦銣鍶同位素年齡測定及其成礦意義. 巖石學(xué)報, 24(6): 1353-1358
趙清泉, 孫傳斌, 荊龍華, 王大平. 2005. 構(gòu)造地球化學(xué)-判別分析在找礦中的應(yīng)用——以呼盟甲烏拉銀多金屬礦床為例. 礦床與地質(zhì), 19(4): 414-417
趙一鳴, 張德全. 1997. 大興安嶺及其鄰區(qū)銅多金屬礦床成礦規(guī)律與遠(yuǎn)景評價. 北京: 地震出版社, 8-156
鄭偉, 陳懋弘, 趙海杰, 徐林剛, 凌世彬, 吳越, 胡耀國, 田云, 吳曉東. 2013. 廣東天堂銅鉛鋅多金屬礦床Rb-Sr等時線年齡及其地質(zhì)意義. 礦床地質(zhì), 30(2): 259-272